

QRP, QRPp and QRPpp

Warren Pugh, KC9IL SKCC #11766S NAQCC #7610 North Shore Radio Club August 11, 2015

What is "QRP?"

- A Q-signal
 - "QRP" means to lower your power
 - "QRP?" means "Can you lower your power?"
- Technically speaking...
 - 5 watts or less on CW
 - 10 watts (PEP) or less on SSB
- QRPp 1 watt or less
- QRPpp 100 milliwatts or less

How can I operate QRP?

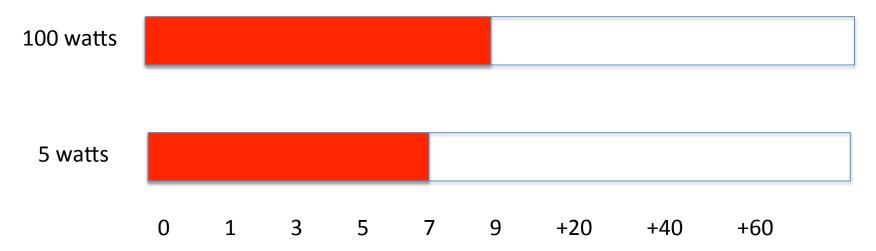
- Use a "QRP" radio
 - Commercially made or a kit
- Use your present radio and turn the power down
 - Most modern rigs will go to 5 watts or less
 - Some will go to 100 mW

Why operate QRP?

- To comply with Part 97 of the FCC rules
 - Open to vast interpretation
 - "Life is too short for QRP"
 - "Power is no substitute for skill"
 - "Use wits not watts"
- Signal strength allows it
- Safer for you, family & public (RF exposure)
- Minimizes possibility of TVI/RFI
- Simplicity of equipment (heat, power supplies, etc)
- Kit building & home brewing (incl "Manhattan")
- Get out of the house / HOA's / Portable operating
- Improve your skills (frequency, distance, time of day)
- It's fun and challenging

QRP Fun Facts

- Pioneer 10 spacecraft used 8 watts to communicate 6.8 billion miles back to Earth before losing contact in 2003
- Most military comm radios are 10 watts or less
- Typical cell phone maximum output is 600 mW
- Bluetooth output is 1 mW


Mathematics of QRP

- Signal strength varies logarithmically with power
- Gain (db) = 10 * log(P2/P1)
- One S-Unit is 6 db
- Example:
 - Increase from 5 watts to 100 (20x)
 - 20x increase in power = 13 db gain
 - 13 db gain gives improvement of about TWO S-units!!

Signal strength

What does this mean to you?

Your 5 watt (or less) signal can be heard!!

Said another way...

	S-Meter	Power		
	S9 + 20 dB S9 + 10dB	10,000	Watts	1 S Unit = 6dE
	S 9	100		
•	S 8	25	•	
	S 7	6.25		
	S 6	1.6		
	S 5	391	Milliwatts	
	S 4	98		
	S 3	24		
	S 2	6		
	S 1	1.5		

CW versus SSB

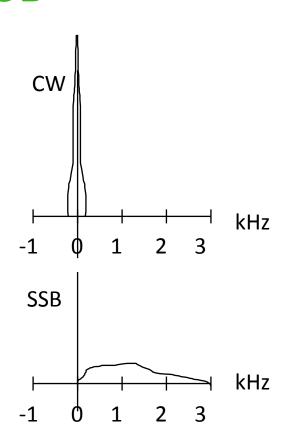
CW signal bandwidth = 100 Hz (nominal)

SSB bandwidth = 2000 Hz

Morse has much lower throughput...but...

Average power density (at 100 watts)

CW - 1 watt/Hz


SSB - 0.05 watts/Hz

Which leads to...

Gain = 10 * log (1.00/0.05) = 13 db!

5w CW is equivalent to 100w SSB!

Narrow digital modes enjoy similar advantages.

Output power = 100w

Implications

- Most (but not all) QRP contacts are either
 CW or a digital mode
- If you want to operate QRP, plan on (learning) CW or using a digital mode
- SSB is common, possible and many folks do it
 - It is, however, more challenging

QRP advantages

- Size & weight increase with higher power.
 The reverse is also true.
- Simplify & minimize current draw
 - No lamps, use LED's instead
 - No digital display unless an LCD
 - Maximize transmitter efficiency
 - As few components as possible. Use IC's.
 - Need a sensitive receiver.
- Some QRP receivers out-perform "big rigs"

Size & weight vs. power

100 watt rig:

Icom 746/756 12 lbs

Tuner 6 lbs

Power supply 5-25 lbs (Switcher vs. Linear)

Total 23 – 43 lbs Trunk of car

QRP rig:

Yaesu 817/KX-3 2 lbs

Tuner 0-2 lbs

PS / battery 3 lbs

Total 5-7 lbs Backpack

Power requirements

To operate for a day (24 hours) 10% TX, 90% RX duty cycle:

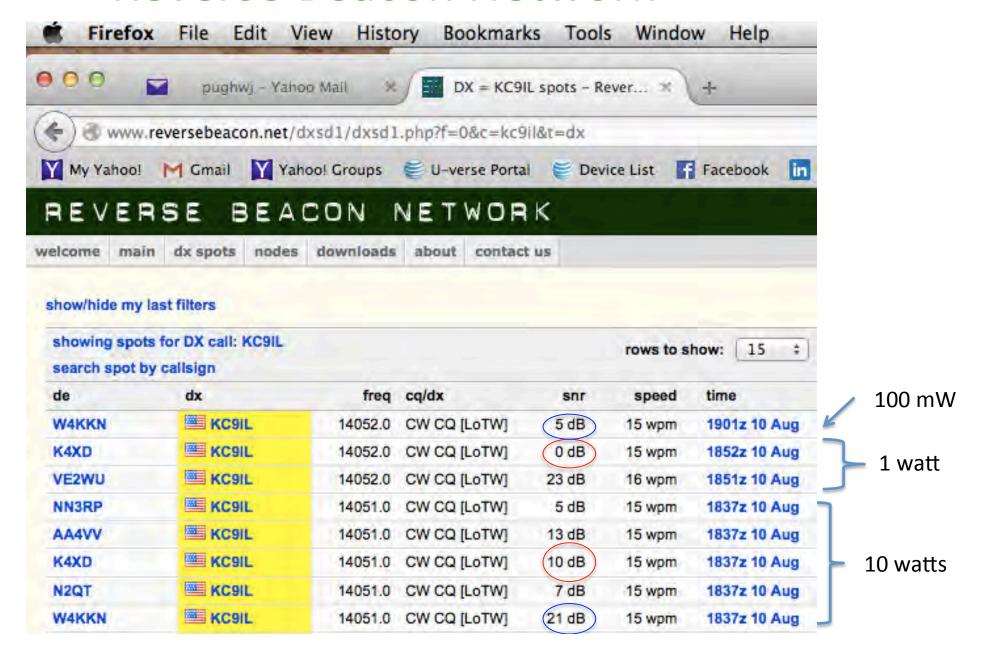
- Compact HF rig (2A RX, 10A avg. TX)
 - 2.8 AH * 24 = 67.2 AH (car battery)
- QRP rig (150 mA RX, 1A avg. TX)
 - 235 mA * 24 = 5.64 AH (2-3 lb gel cell)

QRP Operating activities

- DX-ing (DXCC and WAS)
- Contesting categories for QRP
- VHF/UHF beams are your friend
- Parks & cars
- Vacations & picnics
- Mountaintops
- QRPp or QRPpp
- Miles Per Watt (MPW)

Antennas

- Most important part of any station
- QRP is not the place to skimp on antennas
- Try for a dipole, decent vertical or end-fed
- Buddi Pole or Super Antenna are OK
- Yes, your TH7-DX or SteppIR will work too!
- As low loss cable as you can
- Ladder line is better (less loss)
- Minimize connections, watt meters, etc.
- Every (milli)watt counts



Will I be heard???

- A simple test
 - 100 watts vs. 5 watts = 13 db difference
 - Switch in 10 db or 20 db attenuation
 - Assuming everything else is equal....
 - If you can still hear the other station, there is a good chance he will hear you!
 - May not work on very noisy bands
 - Use the Reverse Beacon Network!
 - http://www.reversebeacon.net/

Reverse Beacon Network

Rigs

- Commercial high power rigs (dial down)
- Commercial QRP kits
 - Complex or simple
 - All parts & enclosures
- Home brew kits from schematics
- DIY your own design

Commercial QRP Rigs

Elecraft KX-3
Flex Radio 1500
TenTec 507 Patriot (SDR)
Yaesu FT-817, FT-301S
Ten-Tec Century 21, 22
Heath HW-7, 8, 9

Ten-Tec Argonaut 505, 509, 515, Argo 556

Ten-Tec Argonaut II
MFJ 92xx and 93xx series radios
Kenwood TS-130V
Icom 703, 731

Commercial QRP kits

NorCal 40A – 2 watt CW, 40 meters

Small Wonder Labs SW40+ 2 w, 40 meter CW

Wilderness Radio "Sierra" – all band CW

Oak Hills Research 100A – single band

Oak Hills Research OHR 500 – 5 band

Elecraft KX1 portable and K2 (intermediate size)

Home brew kits

Tuna Tin 1 & 2 – 1 watt transmitter

Herring Aid receiver

Pixie transceiver

NMOS "Ham Can" transceiver

Rock Mite 500 mW transceiver

Rainbow tuner

Mode Comparison

Typical S/N at 3 KHz:

- SSB +3 dB
- 300 baud packet +3dB
- RTTY -5.5 dB
- CW -10 dB
- PSK31 -11.5 dB
- JT-65A -26 dB
- JT-9 -27 dB

Mode Comparison versus SSB

Mode Typical Power – SSB Equivalent

- SSB +3 dB 100 watts / 100 watts
- 300 baud packet +3dB 50 / 50
- RTTY -5.5 dB 100 / 750
- CW -10 dB 100 / 2000 or 5 / 100
- PSK31 -11.5 dB 50 / 1500
- JT-65A -26 dB 25 / 20,000 or 5 / 4,000
- JT-9 -27 dB Slightly better than JT-65

Rules for Success

Listen, listen, listen!

Check worldwide beacon system for conditions

Look for strong stations (I like > S-9)

It is better to answer a CQ than calling CQ

Use the QRP calling frequencies

Use the best antenna you can

Use higher bands if open (20 is better than 40)

Upgrade for more frequencies & options

Try 30, 17 and 12 meters (Good for DX, less activity)

How far can I reach?

Digital & CW – anywhere in USA on 5 watts DX and SSB – need reasonable conditions 40, 30, 20 and 17 meters are your friends

*** EXTREME QRPpp ***

World record on CW is 1.65 BILLION miles per watt

- 1,650 miles on 1 microwatt, 10 meters

I've done 213,757 MPW on CW

- 534 miles to Pennsylvania, 2.5 mW
 - S-3 versus +10dB over S-9 @ 100 watts (-46dB)
- 40 meters, G5RV at 45 feet

QRP calling frequencies

	CW	SSB	NOVICE
160	1.810	1.910	
80	3.560	3.985	3.710
40	7.040	7.285	7.110
30	10.106		
20	14.060	14.285	
17	18.096	18.130	
15	21.060	21.385	21.110
12	24.906	24.950	
10	28.060	28.885	28.110
6	50.060	50.885	
2	144.060	144.285	

Clubs & Support Groups

NAQCC – North American QRP CW Club

SKCC – Straight Key Century Club

ARCI – QRP Amateur Radio Club Int'l

Flying Pigs QRP Club International

NorCal – Northern California QRP Club

HF Pack – (Pedestrian) portable operation

Adventure Radio Society
American QRP Club
FISTS

References

QRP club web sites (numerous)

Newsletters (ARCI, NAQCC, SKCC)

Magazines (Homebrew, QRP Quarterly, SPRAT)

G-QRP Club – Great Britain

ARRL publications

"The History of QRP" and "The Joy of QRP"

NSRC QRP Campfire Night

Emily Oaks Park in Skokie

Tuesday September 8th, 7:00 – 9:00 PM

Not a contest, but we will recognize "winners"

Miles Per Watt (MPW)

SSB, CW, Digital modes

Commercial rigs vs. Kits/Home made

Come out and have fun!

QRP....."When you care enough to send the very least!"

"72" and good DX OM!