SmarterGlass

state-of-the-art display solutions

www.smarterglass.com 978 465 6190 sales@smarterglass.com

TECHNICAL SPECIFICATION

MODEL NO: ED060SC7

The content of this information is subject to be changed without notice. Please contact EIH or its agent for further information.

Customer's Confirmation

Customer

Date

By

EIH's Confirmation

李穎銳 Confirmed By

Prepared By

ED060SC7

Revision History

Rev.	Issued Date	Revised Contents
1.0	September, 14,2010	New
2.0	Nov 15 , 2010	Modify
		Page 5 4. Mechanical Drawing of EPD module
		Outline drawing delete VCOM LABEL
		Page 14 7. Power on Sequence
		Add
		Page 16 8. Discharge time Sequence

TECHNICAL SPECIFICATION

<u>CONTENTS</u>

<i>NO</i> .	ITEM	PAGE
-	Cover	1
-	Revision History	2
-	Contents	3
1	Application	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of EPD module	5
5	Input/Output Terminals	7
6	Electrical Characteristics	9
7	Power on Sequence	14
8	Discharge time Sequence	16
9	Optical Characteristics	17
10	Handing, Safety and Environment Requirements	19
11	Reliability test	20
12	Bar Code definition	21
13	Border definition	21
14	Block Diagram	22
15	Packing	23

E Ink Holdings Inc.

1. Application

The display is a TFT active matrix electrophoretic display, with associated interface and control logic, and a reference system design.

The 6" active area contains 600×800 pixels, the display is capable to display images at 2-16 gray levels (1-4 bits) depending on the display controller and the associated waveform file used.

2. Features

- High contrast TFT electrophoretic
- ➢ 600 x 800 display
- ➢ High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- > Pure reflective mode
- ➢ Bi-stable
- Commercial temperature range
- Landscape, portrait mode
- Antiglare hard-coated front-surface

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	6.0 (3:4 diagonal)	Inch	
Display Resolution	600 (H)×800(V)	Pixel	
Active Area	90.6 (H)×122.4 (V)	mm	
Pixel Pitch	0.151 (H)×0.153 (V)	mm	
Pixel Configuration	Rectangle		
Outline Dimension	101.8(W)×138.4(H)×1.18(D) (panel area height)	mm	
Module Weight	34±3.4	g	

4. Mechanical Drawing of EPD Module

The information contained herein is the exclusive property of E Ink Holdings Inc., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc. PAGE:5

5. Input/Output Interface 5-1) Connector type: AXT434124

Pin Assignment

Pin # Signal Description Remark 1 VNEG Negative power supply source driver 2 VPOS Positive power supply source driver VNEG Negative power supply source driver 3 4 VPOS Positive power supply source driver 5 Digital power supply drivers VDD VSS 6 Ground 7 VDD Digital power supply drivers 8 VSS Ground 9 XCL Clock source driver 10 XLE Latch enable source driver XOE Output enable source driver 11 12 XSTL Start pulse source driver 13 D0 Data signal source driver 14 D1 Data signal source driver 15 D2 Data signal source driver 16 D3 Data signal source driver 17 D4 Data signal source driver 18 D5 Data signal source driver 19 D6 Data signal source driver D7 20 Data signal source driver 21 VCOM Common connection Serial Data Clock for Flash memory Note5-1 22 SPI SCL VCOM 23 Common connection Note5-1 24 SPI SDI Serial Data Input for Flash memory VGG Positive power supply gate driver 25 26 MODE1 Output mode selection gate driver 27 VEE Negative power supply gate driver 28 CKV Clock gate driver 29 VEE Negative power supply gate driver 30 SPV Start pulse gate driver 31 VSS Ground 32 BORDER Border connection SPI NCS 33 Chip Select for Flash memory Note5-1 34 SPI SDO Serial Data Output for Flash memory Note5-1

Note 5-1

S1D13522 SPI Interface

6.Electrical Characteristics 6-1) Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic Supply Voltage	VDD	-0.3 to +7	V
Positive Supply Voltage	V_{POS}	-0.3 to +18	V
Negative Supply Voltage	V_{NEG}	+0.3 to -18	V
Max .Drive Voltage Range	V_{POS} - V_{NEG}	36	V
Supply Voltage	VGG	-0.3 to +45	V
Supply Voltage	VEE	-25.0 to +0.3	V
Supply Range	VGG-VEE	-0.3 to +45	V
Operating Temp. Range	TOTR	0 to +50	°C
Storage Temperature	TSTG	-25 to +70	°C

6-2) Panel DC characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal ground	V _{SS}		-	0	-	V
	V _{DD}		3.0	3.3	3.6	V
Logic Voltage supply	I _{VDD}	$V_{DD}=3.3V$	-	1.05	3.15	mA
Cata Nagativa gunglu	V _{EE}		-21	-20	-19	V
Gate Negative supply	$I_{\rm EE}$	$V_{EE} = -20V$	-	0.8	2.4	mA
Coto Dogitivo gungla	V _{GG}		21	22	23	V
Gate Positive supply	I _{GG}	$V_{GG} = 22V$	-	0.8	2.4	mA
Source Magative gunnly	V _{NEG}		-15.4	-15	-14.6	V
Source negative suppry	I _{NEG}	$V_{\text{NEG}} = -15V$	-	18	36	mA
Course Desitive sumply	V _{POS}		14.6	15	15.4	V
Source Positive supply	I _{POS}	$V_{POS} = 15V$	-	16	32	mA
Dendenennele	V	$V_{POS} = 15V$	14.6	15	15.4	V
Border supply	V _{Border}	$V_{\rm NEG} = -15V$	-15.4	-15	-14.6	V
Asymmetry source	V _{Asym}	$V_{POS} + V_{NEG}$	-800	0	800	mV
Common voltage	V _{COM}		-2.5	Adjusted	-0.3	V
	I _{COM}		-	0.25	-	mA
Maximum power panel	P _{MAX}		-	-	1131	mW
Standby power panel	P _{STBY}		-	-	0.4	mW
Typical power panel	P _{TYP}		-	547	-	mW
Operating temperature			0	-	50	°C
Storage temperature			-25	-	70	°C

E Ink Holdings Inc.

- The Typical power consumption is measured with following pattern transition: from horizontal 4 gray scale pattern to vertical 4 gray scale pattern. (Note 6-1)
- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by EIH
- Vcom is recommended to be set in the range of assigned value $\pm 0.1V$
- The maximum I_{COM} inrush current is about 800 mA

Note 6-1

The Typical power consumption

📀 E Ink Holdings Inc.

6-3) Panel AC characteristics

VDD=3.0V to 3.6V, unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit	App Pin	
Clock frequency	fckv	-	-	200	kHz		
Minimum "L" clock pulse width	twL	0.5	-	-	us	CWN	
Clock rise time	trckv	-	-	100	ns	CKV	
Clock fall time	tfckv	-	-	100	ns		
Data setup time	tSU	100	-	-	ns		
Data hold time	tH	100	-	-	ns	CKV, SPV	
Pulse rise time	trspv	-	-	100	ns	CDV	
Pulse fall time	tfspv	-	-	100	ns	SPV	
Clock XCL cycle time	tcy	50	-	DC	ns		
D0D7 setup time	tsu	8	-	-	ns		
D0 D7 hold time	th	1	-	-	ns	- D - 1	
XLE on delay time	tLEdly	40	-	-	ns	Below	
XLE high-level pulse width	high-level pulse width tLEw 40 -		-	ns	table		
XLE off delay time	tLEoff	200	-	-	ns		
Output setting time to $\pm -30 \text{mV}(C_{\text{load}} = 200 \text{pF})$	tout	-	-	12	us		

6-4) Power Consumption

Parameter	Symbol	Conditions	ТҮР	Max	Unit	Remark
Panel power consumption during update.	-	-	547	1131	mW	
Power consumption in standby mode	-	-	-	0.4	mW	

7.Power on Sequence

Power Rails must be sequenced in the following order : 1. VSS \rightarrow VDD \rightarrow VNEG \rightarrow VPOS (Source driver) \rightarrow VCOM

2. VSS \rightarrow VDD \rightarrow VEE \rightarrow VGG (Gate driver)

POWER ON

	Min	Max
Tsd	100us	-
Tdn	100us	-
Tnp	1000us	-
Трv	100us	-
Tvd	100us	-
Tne	Ous	-
Тед	1000us	-
Tgv	100us	-

	Min	Max
Tdv	100 µ s	-
Tvp	$0\mu\mathrm{s}$	-
Tpn	$0\mu\mathrm{s}$	-
Tns	-	1000ms
Tsd	100 µ s	-
Tvg	$0\mu\mathrm{s}$	-
Tge	$0\mu\mathrm{s}$	-
Ten	0 μ s	_

ED060SC7

8. Discharge time Sequence

Note8-1 : Supply voltages decay through pulldown resistors.

Note8-2: VEE must remain negative of all other supplies during decay period.

8-1) Refresh Rate

The module ED60SC7 is applied at a maximum screen refresh rate of 85Hz.

	Min	Max
Refresh Rate	_	85Hz

P-511-608(V:2)

9. Optical characteristics

9-1) Specifications

Measurements are made with that the illumination is under an angle of 30 degrees, the detection is perpendicular unless otherwise specified.

						T = 25	^o °C
Symbol	Parameter	Conditions	Min	Тур.	Max	Unit	Note
R	Reflectance	White	30	40	-	%	Note 9-1
Gn	N _{th} Grey Level	-	-	DS+(WS-DS) ×n/(m-1)	-	L*	-
CR	Contrast Ratio	-	10	12	-		-

WS: White state , DS: Dark state, Gray state from Dark to White :DS $G1 \cdot G2... \cdot Gn... \cdot Gm-2 \cdot WS$ m:4 \cdot 8 \cdot 16 when 2 \cdot 3 \cdot 4 bits mode

Note 9-1: Luminance meter: Eye - One Pro Spectrophotometer

9-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd):

CR = Rl/Rd

ED060SC7

The reflection ratio is expressed as:

 $R = Reflectance Factor_{white board} x (L_{center} / L_{white board})$

 L_{center} is the luminance measured at center in a white area (R=G=B=1). $L_{white board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

 α = declination / θ = azimuth

E Ink Holdings Inc.

10.HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronics components.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet st	Data sheet status				
Product	This data sheet contains final product specifications.				
specificatio					
n					
Limiting valu	ies				
Limiting valu	es given are in accordance with the Absolute Maximum Rating System (IEC				
134). Stress a	bove one or more of the limiting values may cause permanent damage to the				
device. These	are stress ratings only and operation of the device at these or at any other				
conditions above those given in the Characteristics sections of the specification is not implied.					
Exposure to limiting values for extended periods may affect device reliability.					
Application i	nformation				
Where application information is given, it is advisory and does not form part of the					

E Ink Holdings Inc. 11. Reliability test

	TEST	CONDITION	METHOD
1	High-Temperature Operation	T = +50°C, RH = 30% for 240 hrs	IEC 60 068-2-2Bp
2	Low-Temperature Operation	$T = 0^{\circ}C$ for 240 hrs	IEC 60 068-2-2Ab
3	High-Temperature Storage	T = +70°C, RH=23% for 240 hrs Test in white pattern	IEC 60 068-2-2Bp
4	Low-Temperature Storage T = -25°C for 240 hrs Test in white pattern		IEC 60 068-2-1Ab
5	High-Temperature, High-Humidity OperationT = +40°C, RH = 90% for 168 hrs		IEC 60 068-2-3CA
6	High Temperature, High- Humidity Storage	emperature,T = +60°C , RH=80% for 240hrsmidity StorageTest in white pattern	
7	Temperature Cycle	-25℃ →+70℃, 100 Cycles 30min 30min Test in white pattern	IEC 60 068-2-14
8	UV exposure Resistance	765 W/m ² for 168hrs,40℃ Test in white pattern	IEC60 068-2-5Sa
9	Package Vibration	1.04G, Frequency: 10~500Hz Direction: X,Y,Z Duration: 1 hours in each direction	Full packed for shipment
10	Package Drop Impact	Drop from height of 122 cm on concrete surface. Drop sequence: 1 corner, 3 edges, 6 faces One drop for each.	full packed for shipment
11	Electrostatic Effect (non-operating)	ectrostatic Effect (Machine model)+/- 250V (non-operating) 0Ω, 200pF	
12	Altitude test Operation	700hPa (= 3000m),48Hr	
13	Altitude test Storage	260hPa (= 10000m),48Hr Test in white pattern	
14	Stylus Tapping	POLYACETAL Pen: Top R:0.8mm Load: 300gf Speed: 2 times/sec Total 13,500times,	

Actual EMC level to be measured on customer application Note : The protective film must be removed before temperature test.

📀 E Ink Holdings Inc.

12.Bar Code definition							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
ED060SC7: E2N/E32/E31/E30							
2 : Internal control codes:							
3 : FPL reversion code							
V110:4 V110A:5 V220:6 V250:7 V220E:8							
4 : FPL batch code:							
(BL/P/B)001~009:01~99, 100~109:A0~A9, 110-119:B0~B9 320~329:Z0~Z9 5 : Year:							
F: 2005 / G: 2006 / H: 2007 / I: 2008 / / Z: 2025							
6 : Month:							
1:Jan. 2:Feb 9:Sep. A:Oct. B:Nov. C:Dec. 7 : Serial number							
00000-99999							
8 : MFG code:							
TOC:M, EIH:N							

13. Border definition

14.Block Diagram

	Panel				
Source	Gate	Source			
			L	ROM	34- Pin connector

DESCRIPTION DESIGN DATE REV Charlie 10.07.20 00 INITIAL RELEASE Empty tra (5) 1st Layer 2nd Layer 6 12 Layers Total 9 99-1310114 EASY TAPE 48 For Remove Protect S 8 99-3100075 30g/life#8#####73*95mm(##JK0030) 2 50-0700021 防蠕劑(保護容積25L) <u>NOTE:</u> 7 One layer include: 1 piece of cushion sheet, 4 pcs module & 1 piece of tray. Q'TY: 48 pcs panel/carton. Dimension: 455*375*190mm Weight: 4.8 KG 6 50-0100096 CARTON INTERNAL 50-0510041 摺口袋450*380*700mm 抗靜電 5 4 ED060SC7 48 3 EPE CUSHION SHEET 抗靜電 50E0210111 12 2 50E0310161 TRAY 1 50-0300491 EPE FOAM 抗靜電 13 Make sure tray stacked with 180° rotation. We can check this by lateral side view. 5. REMARK ITEM PART NO. DESCRIPTION QTY MTL.SPEC. UNSPECIFIED TOL'S ±5.0mm REMARK 元太科技股份有限公司 ANGLE E Ink Holdings Inc. ROUGHNESS DWG.TITLE UNIT SHEET SCALE APPROVE | Patrick Lin 10.07.20 1 of 1 mm ED060SC7 PACKING Dim 1:1 CHECK 10.07.20 Patrick Lin MTL.NO. DWG.NO. REV. A₄ size DESIGN '10.07.20 CharlieYang 01

The information contained herein is the exclusive property of E Ink Holdings Inc., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of E Ink Holdings Inc. PAGE:23