
Computing Tigers and Goats 131

COMPUTING TIGERS AND GOATS 
 
 

Lim Yew Jin1 J. Nievergelt 2 
 

        Singapore Zurich, Switzerland 
  
 

ABSTRACT 
 

Bagha Chal, or Moving Tiger, is an ancient Nepali board game also known as Tigers and Goats. 
We describe the game, some of its characteristics, and insights gained from an incomplete computer 
analysis. As in some other games such as Merrill’s, play starts with a placement phase where 
twenty pieces are dropped on the board, followed by a sliding phase; during both phases pieces may 
be captured. The endgame-sliding phase is analysed exhaustively using retrograde analysis. After 
removal of symmetries, the complete database of all positions that arise consists of 88,260,972 
entries. The placement phase involves a search whose game-tree complexity is estimated to be of 
the order 1041. Partial results show that Tigers appears to have the better part of the opening, but 
Goats may catch up in the long run. 

 
 
1. INTRODUCTION 
 
Bagha Chal, or Moving Tiger, is an ancient Nepali board game that has recently attracted attention among 
game fans under the name Tigers and Goats. Murray (1952) describes a family of related games from South-
East Asia, all sharing the characteristic that a few tigers face a larger number of goats (or men: ‘orang-orang’). 
The goal is for the goats to immobilize the tigers, and for the tigers to kill a certain number of goats. This game 
between two opponents, which we call “Tigers” and “Goats”, is similar in concept to a number of other 
asymmetric games played around the world - asymmetric in the sense that the opponents fight with weapons of 
different characteristics, a feature whose entertainment value has been known since the days of Roman 
gladiator combat.  
 
On the small, crowded board of 5×5 grid points (shown in Figure 1), four tigers face up to twenty goats. A goat 
that strays away from the safety of the herd and ventures next to a tiger gets eaten, and the goats lose if too 
many of them get swallowed up. A tiger that gets trapped by a herd of goats is immobilized, and the tigers lose 
if none of them can move. Various games share the characteristic that a multitude of weak pieces tries to corner 
a few stronger pieces, such as Fox and Geese in various versions, as described in Winning ways (Berlekamp, 
Conway, and Guy, 2001) and other sources. 
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Figure 1a: The position after the only (modulo
symmetry) first move by Goats that avoids an early
capture of a goat. 

Figure 1b: Tigers to move can capture a goat, but 
thereafter the goats suffocate the tigers with a 
forcing sequence of 5 plies (challenge: find it). 
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The rules of Tigers and Goats are simple. The game starts with the 4 tigers placed on the 4 corner spots (grid 
points), followed by alternating moves with Goats to play first. In a placement phase, which lasts 39 plies, 
Goats drops his3 20 goats, one on each move, on any empty spot. In that phase Tigers moves one of his tigers 
according to either of the following two rules:  
- a tiger can slide from his current spot to any empty spot that is adjacent and connected by a line; or  
- a tiger may jump in a straight line over any single adjacent goat, thereby killing the goat (i.e., removing the 

goat from the board), provided that the landing spot beyond the goat is empty.  
 
If Tigers has no legal move, Tigers loses the game; if a certain number of goats have been killed (typically 
five), Goats loses. If neither of these conditions ever arises, the outcome is a draw by repetition. These rules are 
illustrated in the examples of Figure 2. They also show that Goats loses a goat within 10 plies unless his first 
move is on the centre spot of a border. 
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The 39-ply placement phase is followed by the sliding phase that can last forever. Whereas the legal Tigers 
moves remain the same, the Goats rule changes: on his turn to play, Goats must slide any of his surviving goats 
to an adjacent empty spot connected by a line. If there are 17 or fewer goats on the board, 4 tigers cannot block 
all of them and such a move always exists. In exceptional cases, which arise only if Goats cooperates with 
Tigers, the 4 tigers can surround 18 or more goats in a corner and prevent any goat moves. In this artificial 
scenario where Goats has no legal moves, Goats loses the game.  
 
Although various web pages describing Tigers and Goats (see References) offer some advice on how to play 
the game, we have found no expert know-how about strategy and tactics. Plausible rules of thumb about good 
and bad play include the following. First, it is obvious that the goats have to hug the border during the 
placement phase - any goat that strays into the centre will get eaten, or cause the demise of some other goat, 
without any apparent benefit in return for the sacrifice. Therefore, Goats’ strategy sounds simple: first populate 
the borders, and when at full strength, try to advance in unbroken formation, in the hope of suffocating the 
tigers. However, this recipe is simpler to state than to execute. Second, in contrast to Goat’s strategy, we have 
not found any active strategy for Tigers. It appears that the tigers cannot do much better than to wait, “doing 
nothing”, i.e., moving back and forth, until near the end of the placement phase. Their goal is to stay far apart 
from each other, for two reasons: (1) in order to probe the full length of the goats’ front line for gaps; (2) so as 
to make it hard for the goats to immobilize all the four tigers at the same time. Tigers’ big chance comes during 
the sliding phase, when the compulsion to move causes some goat to step forward and offers Tigers a forcing 
sequence that leads to capture. Thus, it seems that Tigers’ play is all tactics, illustrating chess Grandmaster 
Tartakover’s famous pronouncement: “Tactics is what you do when there is something to do, strategy is what 
you do when there is nothing to do.” 

                                                           
3 In contexts where the gender of a non-neutral third person is irrelevant, we will always use he and his to avoid the more 
cumbersome (s)he and her/his. 

Figure 2b: Tigers’ last move 8 sets up a double
attack against the two goats labelled 1 and 3. 
 

Figure 2a: Goats has 5 distinct first moves
(ignoring symmetric variants). All but the first
move shown in Figure 1a lead to the capture of a
goat within at most 10 plies, as these two forcing
sequences show. 
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We are in the process of conducting an exhaustive analysis of this game with the goal of solving Tigers and 
Goats in the sense of determining the outcome: win, loss, or draw, under optimal play. We have partial results 
that shed light on the intricacies hiding inside this game that appears to admit such simple guidelines as “goats 
cautiously hug the border, tigers patiently wait to spring a surprise attack”. For example, we know that Tigers 
can force the capture of 2 goats within 38 plies, i.e., within the placement phase, and can even force the capture 
of 3 goats. Despite Tigers’ initial success, we do not know whether he can win the game - in fact, we 
conjecture that Goats has the upper hand and can at least force a draw. These results explain the seemingly 
arbitrary number five in the usual winning criterion “Tigers wins when 5 goats have been killed”. This magic 
number ‘5’ must have been observed as the best way to balance the chances. We know that Tigers can kill 
some goats, so Tigers’ challenge must be more ambitious than “kill any one goat”. In addition, experience 
suggests that once half a dozen goats are gone, they are all gone - Goats lacks the critical mass to put up 
resistance. But as long as there are at least 16 goats on the board, i.e., at most 4 goats have been captured, the 
herd is still sufficiently large to have a chance at trapping the tigers. 
 
This game does not lend itself to mathematical analysis, other than to offer symmetries which we have fully 
exploited to reduce the size of the search space. The results have been obtained by the judicious use of standard 
search techniques: exploring the space from both ends, the starting position and the terminal positions. 
Retrograde analysis is used to build databases of all board positions during the sliding phase, with anywhere 
from 16 to 20 goats (Goats has lost when there are only 15 goats left). Forward searches from the starting 
position are used to explore the placement phase, ending in the database after 39 plies.  
 
A 39-ply search with a branching factor that often exceeds a dozen legal moves is a big challenge. Therefore, 
most of these searches are designed to falsify a specific hypothesis or to verify a challenging assertion, such as 
“Tigers can kill at least one goat”. By confronting a heuristic that generates good moves by Tigers against all 
the defensive Goats’ strategies we verify the assertion using a search that is effectively at most 20 plies deep - a 
big reduction as compared to a 39-ply search. Similarly, a result like “Tigers can capture one goat at the latest 
at ply x, but cannot force a capture sooner”, is reduced to two searches of depth only about x/2: a Tigers’ 
heuristic vs. all defensive Goats’ strategies, and a heuristic Goats’ defence vs. all Tigers’ attacks. The better the 
heuristic, the more likely these reduced searches succeed in verifying such an assertion. Thus, we see that 
insight into what makes a good move is essential for designing feasible searches. Given our lack of access to 
human expertise, we have developed player programs that learn from their experience of being pitted against 
each other. 
 
This paper is organized as follows. Section 2 discusses the size and structure of the two relevant state spaces, 
corresponding to the placement phase and the sliding phase. We compute their sizes using Polya’s (1937) 
theory of counting. Sections 3 and 4 describe the sliding-phase databases and the placement-phase forward 
searches, respectively, with statistical summaries. Section 5 summarizes implementation issues and the many 
experiments that were run over a period of several months. Section 6 concludes with an interpretation of the 
results obtained, and two open questions. 
 
 
2. SIZE AND STRUCTURE OF THE STATE SPACE 
 
The most important factor that determines the complexity of a search problem is the size and structure of the 
state space consisting of all the positions that must be considered. For Tigers and Goats it is convenient to 
partition this space into 6 subspaces. 
 
S0: all the positions that can occur during the placement phase, including 4 tigers and 1 to 20 goats. 
Sk for k = 1 … 5: all the positions that can occur during the sliding phase, with 4 tigers, 21 - k goats, and k 
empty spots on the board. 
 
Notice that any position in any S1 to S5 visually looks exactly like some position in S0, yet the two are different 
positions: in S0, the legal moves by Goats are to drop a goat onto an empty spot, whereas in S1 to S5, the legal 
moves are to slide one of the goats already on the board. For each subspace, a position is determined by the 
placement of pieces on the board, which we call the board image, and by the player whose turn it is to move. 
Thus, the number of positions is twice the number of distinct board images.  
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Since the game board has all the symmetries of a square that can be rotated and flipped, many board positions 
have symmetric siblings that behave identically for all game purposes. Thus, all the spaces S0 to S5 can be 
reduced in size by roughly a factor of 8, so as to contain only positions that are pairwise inequivalent. Using 
Polya’s (1937) counting theory, paper and pencil, and the mathematics software MAPLE, we have computed the 
exact size of the symmetry-reduced state spaces (see Table 1). 
 

 # of board images # of positions 

S0 3,316,529,500 6,633,059,000 

S1 33,481 66,962 

S2 333,175 666,350 

S3 2,105,695 4,211,390 

S4 9,469,965 18,939,930 

S5 32,188,170 64,376,340 
 

Table 1: Number of distinct board images and positions for corresponding subspaces. 
 
As an example, Appendix B shows the computation of | S1|; it is easy to perform by hand. One additional 
number is relevant for the definition of the indexing function that assigns an integer to each board position and 
helps to identify symmetric board positions: there are 1,666 inequivalent ways of placing 4 tigers on the game 
board.  
 
S0 is very much larger than all of S1 to S5 together, and has a more complex structure. Due to captures during 
the placement phase, play in S0 can proceed back and forth between more or fewer goats on the board, whereas 
play in the sliding phase proceeds monotonically from Sk to Sk + 1. These two facts suggest that the subspaces 
are analysed differently: S1 to S5 are analysed exhaustively using retrograde analysis, whereas S0 is probed 
selectively using forward search. 
 
 
3. DATABASES AND THEIR STATISTICS 
 
Table 2 shows the distribution of won, drawn, and lost positions among the 88,260,972 positions in the spaces 
S1 to S5, i.e., during the sliding phase. A win by Tigers is defined as the capture of 5 goats, a loss for Tigers as 
the inability to move, and a draw (by repetition) is defined as a position where no opponent can force a win, 
and each can avoid a loss. In Table 2, GTM means Goats to move, and TTM means Tigers to move. 
  
# of Goats 
Captured 

GTM 
Wins 

GTM 
Draws 

GTM 
Losses 

Total TTM  
Wins 

TTM 
Draws 

TTM 
Losses 

Total 

4 913,153 
(2.8%) 

8,045,787 
(25.0%) 

23,229,230 
(72.2%)

32,188,170 
(100%)

30,469,634 
(94.7%)

1,569,409 
(4.9%) 

149,127 
(0.5%) 

32,188,170 
(100%)

3 1,315,111 
(13.9%)

6,226,358 
(65.7%) 

1,928,496 
(20.4%)

9,469,965 
(100%)

6,260,219 
(66.1%)

2,918,104 
(30.8%) 

291,642 
(3.1%) 

9,469,965 
(100%)

2 882,523 
(41.9%) 

1,199,231 
(57.0%) 

23,941 
(1.1%)

2,105,695 
(100%)

465,721 
(22.1%)

1,353,969 
(64.3%) 

286,005 
(13.6%) 

2,105,695 
(100%)

1 252,381 
(75.8%) 

80,706 
(24.2%) 

88 
(0.03%)

333,175 
(100%)

6,452 
(1.9%)

197,537 
(59.3%) 

129,186 
(38.8%) 

333,175 
(100%)

0 30,609 
(91.4%) 

2,812 
(8.4%) 

60 
(0.2%)

33,481 
(100%)

146 
(0.4%)

9468 
(28.3%) 

23,867 
(71.3%) 

33,481 
(100%)

 
Table 2: Endgame database statistics. 

 
Table 2 confirms the game player’s experience that Goats stands a good chance of winning as long as he 
emerges from the placement phase with the loss of at most one goat. With two goats lost, Goats still has the 
upper hand, but the most likely outcome is a draw. Once three or more goats are lost, Goats’ chances decline 
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rapidly. Whereas statistical data by itself says nothing about optimal play, it gives some information about 
winning chances when play is affected by randomness, as is inevitably the case in human play. 
 
An attempt to interpret win/loss statistics from a player’s point of view shows that Tigers and Goats is a more 
complex game than the simplistic rule of thumb, “goats hug the border, tigers wait for a chance to pounce”, 
suggests. If the quality of a position was determined mainly by the general location of pieces (e.g., goats 
bunched together safely near the borders, tigers spread far apart), the turn to move should not make much of a 
difference - but it does! For example, with one goat captured, Goats to move wins in 76 per cent of all 
positions; but if it is Tigers’ turn to move, Goats wins only 39 per cent of the positions. In this instance, Goats’ 
turn to move doubles his winning chances. Thus, we see that Tigers and Goats is a highly tactical game, 
sensitive to small changes due to a single move. We cannot expect to formulate robust positional evaluation 
functions based on general concepts analogous to “good shape” in Go, or a “solid pawn structure” in chess. 
 
 
4. TREE COMPLEXITY OF THE PLACEMENT PHASE 
 
The search space S0, with approximately 6.6 billion positions, is too large for a static data structure that stores 
each position exactly once. Hence it is generated on the fly, with portions of it stored in hash tables. As a 
consequence, the same position may be generated and analysed repeatedly. A worst-case measure of the work 
thus generated is called game-tree complexity. The size of the full search tree can be estimated by a Monte-
Carlo technique as described by Knuth (1975). The idea is to sample the width of the tree for a randomly 
chosen path for a number of times and use the samples to calculate an estimate of the game-tree complexity. 
For each of a number of random paths from the root to a leaf, we evaluate the quantity F = f1 + f1  f2 + f1  
f2 f3  +..., where fj is the fan-out, i.e., the number of children, of the node at level j encountered along this 
path. The average of these values F, taken over the random paths sampled, is the expected number of nodes 
(other than the root) in the full search tree. Table 3 lists the estimated game-tree complexity (after the removal 
of symmetric positions) of five different “games”, defined by their goal of capturing 1 to 5 goats during the 
placement phase. These estimates are based on 100,000 path samples.  

  
Criterion Estimated Tree Complexity  

Kill 1 Goat 1.28 1024 
Kill 2 Goats 4.23 1036 
Kill 3 Goats 8.92 1038 
Kill 4 Goats 3.09 1040 
Kill 5 Goats 4.88 1041 

 
Table 3: Estimated Tree Complexity for winning criteria of capturing k goats during the placement phase. 

 
 
5. IMPLEMENTATION, HEURISTICS, AND EXPERIMENTS 
 
In order to verify their correctness, the endgame databases S1 to S5 of the sliding phase were computed twice, 
independently, using different software and hardware. The first computation, based on Gasser’s (1996) 
algorithm, took approximately a week on a Pentium-4 personal computer. The second computation, based on 
the retrograde algorithm (Wu and Beal, 2002), took 4 days on a PowerPC G4 Apple computer. 
 
We implemented standard alpha-beta search with hash-tables to perform the forward searches for the 
placement phase, each attempting to prove a specific hypothesis. The proof that Tigers can kill one goat took 
less than a day on a Pentium-4 PC. This was also the case for two goats. However, the attempted proof that 
Tigers can kill three goats, ran for a month without results. Next, we implemented a parallel alpha-beta search 
that distributes disjoint subtrees among the processes, to run on a Unix-based cluster of 48 Dual Pentium 3 
computers. A root process expands the root of the search to a fixed depth of 5, and distributes the offspring 
among the processors without dynamic load balancing. Symmetric positions are reduced to a single canonical 
representation, and each process manages its own hash table of 8,000,000 entries. On this configuration, the 
proof that Tigers can kill three goats took about a week using 8 processors. Table 4 shows the number of nodes 
searched to prove each assertion. 
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Hypothesis Number of nodes searched 
Kill 1 Goat 2.8 106 
Kill 2 Goats 1.1 109 
Kill 3 Goats 8.5 1010 

 
Table 4: Number of nodes searched to prove various assertions. 

 
Since Goats usually has more legal moves than Tigers, initial attempts to prove specific assertions based on the 
winning criterion of killing 5 goats focused on developing good heuristic Goats players. Recently, Chellapilla 
and Fogel (2001) implemented a co-evolutionary system with neural networks as evaluation functions that 
taught itself to play checkers at expert level. Co-evolving neural networks have also been shown to work well 
in other games such as Kalah (Oon and Lim, 2003). Co-evolution can be a flexible method for learning 
strategies to complex games where there is little available information about the domain. In the absence of 
expert knowledge for Tigers and Goats, we used co-evolutionary computing to learn a heuristic Goats player.  
 
The setup of our co-evolutionary process follows the one used by Chellapilla and Fogel (1999), but instead of 
restricting the evaluation function inputs to the raw board, we selected 26 features of the board position as 
inputs. Examples of the selected features include the number of goats captured so far, the number of tigers 
which are currently trapped, the number of legal tiger moves, the number of goat moves which avoid 
immediate capture, and the total Manhattan distance of each pair of tigers. An initial population of neural 
networks is generated with random weights. Each neural network competes against a fixed number of 
randomly chosen opponents and its fitness score is determined by the results of these games. After every neural 
network has played its games, the “fittest” or highest-scoring networks are retained, while the remaining 
networks are removed. Each of the retained neural networks creates an offspring by mutating its weights. The 
process is then repeated until the desired number of iterations is reached. 
 
The architecture of each neural network is illustrated in Figure 3: (1) the inputs have 24 nodes representing the 
current board position; moreover, there are 2 inputs directly linked to the output node; (2) there are 2 hidden 
layers and they consist of 12 and 5 nodes, respectively; (3) the single output node gives the evaluation of the 
board. The transfer function of each node in the neural network is the hyperbolic tangent (tanh bounded by 
±1). Hence, an output value closer to 1.0 denotes a better position for the player to move, and a value closer to 
-1.0 denotes a worse position. 

Input Hidden 
Layer #1

Hidden 
Layer #2

# of Goats captured

# of Trapped Tigers

Output

 
 

Figure 3: Neural network architecture of the evaluation function. 
 
Instead of a single population of 30 neural networks that are co-evolved as in Chellapilla and Fogel (1999), we 
maintain two separate populations of 20 neural networks each. One population is designated as the evaluation 
functions for Goats and the other for Tigers. This setup allows us to learn good heuristics for each single player 
rather than to develop straightforwardly one overall position evaluation function.  
 
Each neural network plays against four randomly chosen neural networks of the opposite player. The score 
awarded to a win is +1, to a draw is 0, and to a loss is -2. The fitness of each neural network is the sum of the 
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scores achieved after playing the four opponents. Similar to Chellapilla and Fogel (1999), the top 10 neural 
networks of each population are retained for the next generation. Furthermore, each retained neural network 
generates one offspring by mutating its weights. This is the end of one generation and the process is repeated 
until 1000 generations have been produced. 
 
Since one population of the neural networks is designated as evaluation functions for Goats, we are able to bias 
the strength of Tigers during play by setting the search depth of Tigers to 4 and the search depth of Goats to 2. 
This resulted in Tigers initially winning more often during the evolutionary process. However, Goats soon 
learned to draw the game despite having the handicap of a lower search depth. The handicap during the 
evolutionary process prepares the neural network for Goats to handle opponents that search more deeply than 
Goats does, and yet still be able to achieve a draw. This is vital as the top neural network for Goats after 1000 
generations is used to re-order and prune the moves to be considered during the search. The fact that Goats 
were able to draw the game despite having the handicap mentioned leads to the conjecture that Tigers and 
Goats (with the winning criterion of 5 goats killed) is a draw or win for Goats.  
 
The Tigers and Goats player that resulted from the neural network can be tested on the web (Lim, 2004). The 
lack of opponents, both human and computer, makes it difficult to assess the quality of the evaluation function 
learned. The authors, who do not claim to be expert players, have been unable to defeat the Goats player using 
a search depth of 4 ply. Additionally, the neural network has not lost to any program available online (T&G 
Players, 2004). 
 
A proof of the assertion “Goats can at least draw the game”, pitting a heuristic Goats player against all attacks 
by Tigers, breaks into six cases as shown in Figure 4.   
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Figure 4: (Left) After Goats’ only plausible first move, Tigers has 6 distinct replies (highlighted). 
One of these leads to the position shown at right that has been proven to be at least a draw for Goats. 

 
Starting with the position shown at right in Figure 4, the top neural network obtained after 1000 generations 
succeeded in proving that Goats can at least draw the game for this particular opening. In each Goat node 
searched up to ply 29, the moves are re-ordered according to a 2-ply shallow search using the neural network 
as the evaluation function. Only the top-3 Goats moves are then tried. Using 10 Pentium 4 Xeons, each process 
managing its own hash table of 8,000,000 entries, a search that took 2 months proved this position to be at least 
a draw for Goats. Due to crashes and restarts, no reliable number of nodes searched is available. 
 
The result that Goats can at least draw the game (with the winning criterion of 5 goats killed) after the most 
plausible first moves by both players leads us to the conjecture that the same assertion holds in general. Future 
work should focus on using more specialized techniques such as proof-number search (Allis, Van der Meulen, 
and Van den Herik, 1994), which are more suited to the uneven distribution of nodes in search trees of tactical 
games. 
 
 
6. INSIGHT AND OPEN QUESTIONS 
 
The insight obtained from the experiments reported is of two kinds: technical and “gamesmanship”. From a 
purely technical point of view, we understand the combinatorial complexity of Tigers and Goats. We know 
that Tigers can force the capture of up to three goats, yet we have evidence for the conjecture that Goats has 
the upper hand, in the sense of being able to force at least a draw.  
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The key to successful forward searches through the state space S0 of the placement phase is to replace a 39-ply 
search with a number of carefully designed searches that are effectively only 20 plies deep. This is achieved by 
(1) formulating hypotheses/assertions of the type “player X can achieve result Y”; (2) programming a 
competent and efficient heuristic player X that generates only one or a few candidate moves in each position; 
and (3) confronting the selective player X with his exhaustive opponent who tries all his legal moves. If this 
search that alternates selective and exhaustive move generation succeeds, the assertion Y is proven. If not, one 
may try to develop a stronger heuristic player X, or weaken the hypothesis, e.g., from “X wins” to “X can get 
at least a draw”. We conjecture that continued computation of a similar nature as done so far, but with more 
powerful resources, will settle the currently open question whether Tigers can capture 5 goats and win the 
game. 
 
The experiments also provide insight into the nature of Tigers and Goats from a game player’s point of view. 
Humans, as poor calculators, are generally fond of games that admit a vague feeling of what features are correlated 
with good and bad positions. This allows them to replace concrete computation of variations by an intuitive 
assessment of what are likely to be strong or weak moves. For example, the vocabularies of chess and Go are full 
of terms that are effective and meaningful but defy an exact definition, such as “good or bad Bishop”, or 
“territorial framework”. For Tigers and Goats we have been unable to identify any such positional features beyond 
the obvious “stray goats are in danger”. Lacking such positional guidelines, the course of a game appears to be a 
random walk in the dark, armed only with a short-range flashlight, trying to spot “combinations”, i.e., forcing 
sequences that lead to capture. Perhaps the lack of positional concepts is merely due to insufficient experience 
with this game. Computers have established themselves as the only tool that allows us to get exact numerical 
answers to precise questions such as “who wins, how soon?” Will computers also help in discovering and 
formulating concepts that help humans develop an intuitive understanding of the nature of a position? 
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9. APPENDICES 
 
9.1 APPENDIX A: ADDITIONAL DATABASE STATISTICS 
 
Tables 5 to 9 contain the statistics of the databases S5 (4 goats captured) to S1 (0 goats captured). 
 

 Tigers to Move 
Outcome Tigers Wins Draw Goats Wins Total 

Tigers Wins 23,217,329 11,249 652 23,229,230 
Draw 6,584,426 1,459,852 1,509 8,045,787 

Goats Wins 667,879 98,308 146,966 913,153 G
oa

ts
 to

 
M

ov
e 

Total 30,469,634 159,409 149,127  
Table 5: Statistics of database S5 (4 goats captured). 

 
 Tigers to Move 

Outcome Tigers Wins Draw Goats Wins Total 
Tigers Wins 1,923,410 4,954 132 1,928,496 

Draw 3,879,335 2,342,280 4,743 6,226,358 
Goats Wins 457,474 570,870 286,767 1,315,111 G

oa
ts

 to
 

M
ov

e 

Total 6,260,219 2,918,104 291,642 9,469,965 
Table 6: Statistics of database S4 (3 goats captured). 

 
 Tigers to Move 

Outcome Tigers Wins Draw Goats Wins Total 
Tigers Wins 23,355 575 11 23,941 

Draw 354,808 838,197 6,226 1,199,231 
Goats Wins 87,558 515,197 279,768 882,523 G

oa
ts

 to
 

M
ov

e 

Total 465,721 1,353,969 286,005  
Table 7: Statistics of database S3 (2 goats captured). 
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 Tigers to Move 

Outcome Tigers Wins Draw Goats Wins Total 
Tigers Wins 63 25 0 88 

Draw 3,541 73,551 3,614 80,706 
Goats Wins 2,848 123,961 125,572 252,381 G

oa
ts

 to
 

M
ov

e 

Total 6,452 197,537 129,186  
Table 8: Statistics of database S2 (1 goat captured). 

 
 Tigers to Move 

Outcome Tigers Wins Draw Goats Wins Total 
Tigers Wins 35 21 4 60 

Draw 59 1,505 1,248 2,812 
Goats Wins 52 7,942 22,615 30,609 G

oa
ts

 to
 

M
ov

e 

Total 146 9,468 23,867  
Table 9: Statistics of database S1 (0 goats captured). 

 
 
9.2 APPENDIX B: THE MATHEMATICS OF COUNTING APPLIED TO TIGERS AND GOATS 
 
Consider the 5×5 Tigers and Goats board, with grid points numbered 1 to 25, and the 8 symmetry 
transformations that permute the set D = { 1 … 25 } as shown in  Figure 5. We identify a board position with a 
function  f : D →  { Tiger, Goat, Empty } = { T, G, E } that assigns to each grid point its status, subject to the 
constraint that there are exactly 4 tigers and a number of goats that varies from 16 to 20. We show how to 
compute the number of distinct board positions, modulo symmetry, for the case of 20 goats, which we 
abbreviate as 4T1E, i.e., 4 tigers and 1 empty spot.  

 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21
22 23 24 25

Π 1

Π2

Π3

Π4

 
Figure 5: Any symmetry permutation of the square board  

can be obtained by some sequence of flips around the axes shown. 
The shaded areas at right are used in the analysis of rotational symmetries. 

 
Let S = { f : D →  { T, G, E } |  f assumes 4 values T, 20 values G, 1 value E } 
Observation: the group G of permutations of the domain D induces permutations on the set S of functions. 
Definition: two functions f and g are equivalent  iff  there is a permutation P in G such that f = P(g). 
Definition: a function f is invariant under permutation P  iff  f = P(f). 
Definition: let I(P) be the number of functions f in S that are invariant under P. 
 
Burnside’s lemma: The number of equivalence classes of S under G is 
  1/ |G| • Σ 1 (P), where the sum is taken over all permutations P in G. 
 



Computing Tigers and Goats 141

In order to evaluate Burnside’s formula we investigate, for each of the 8 permutations of G, how many board 
positions remain invariant. 
 
Identity permutation, ‘1’. Any board position remains invariant. There are 25 possibilities to place the empty 
spot, multiplied by 24-choose-4 possibilities to place the 4 tigers, resulting in 265,650 board positions invariant 
under the identity permutation. 
 
Rotation by 90o or by 270o. The empty spot must be on the centre point 13, and each of the 4 tigers must be 
placed in “his own” 2 x 3 area (shaded in Figure 5, top right), such that the 4 chosen spots are symmetric under 
rotation (e.g., on spots 2, 10, 24, 16). Since the location of 1 tiger determines the place of the other 3 as well, 
there are 6 board positions invariant under rotations by ± 90o. 
 
Rotation by 180o. The empty spot must be on the centre point 13. Two tigers can be placed anywhere in the 
upper angular area consisting of 12 spots, shaded in Figure 5, bottom right. The location of the other two tigers 
is then determined by symmetry, resulting in  12-choose-2 = 66 invariant board positions. 
 
Flipping around the vertical or horizontal axis through the centre. The empty spot can be anywhere along the 
axis, i.e., in 5 different places. After the empty spot has been placed, three cases of tiger placements must be 
distinguished: 
a) four tigers located on the flipping axis: there is only 1 way to place them 
b) two tigers located on the flipping axis (4-choose-2 ways to place them), one tiger in each half of the 
remaining board (10 ways to place the first tiger, the other is determined by symmetry) 
c) two tigers in each half of the remaining board (10-choose-2 ways to place the first 2, the other 2 are 
determined by symmetry). 
In total we have 5 ×  ( 1 + 10 ×  4-choose-2 + 10-choose-2 ) = 530 invariant board positions. 
 
Flipping around either diagonal axis through the centre. This turns out to be the same as flipping around the 
vertical or horizontal axis, resulting in 530 invariant board positions. 
 
Summing up all these invariants and dividing by |G| yields: 
 

1 Identity 25  24-choose-4 =  265,650 
2 Rotations ± 90o 6 
1 Rotations 180o 12-choose-2 =           66 
4 Flips 530 
8 Permutations 267,848 

  
Number of equivalence classes =  
number of inequivalent board positions for 4 tigers and 20 goats = 267,848 / 8 = 33,481. 
 
The calculations for 16 to 19 Goats are similar but more complicated, resulting in the following numbers of 
inequivalent board positions: 
4T 20G 1E:         33,481    
4T 19G 2E:       333,175  
4T 18G 3E:    2,105,695 
4T 17G 4E:    9,469,965 
4T 16G 5E:  32,188,170    
 
In each case, the number of inequivalent board positions is roughly 1/8 of the number of distinct positions if 
symmetry is ignored. 


