
A2: Analog Malicious Hardware

Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, Dennis Sylvester
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI, USA

{kaiyuan, mdhicks, qingdong, austin, dmcs}@umich.edu

Abstract—While the move to smaller transistors has been a
boon for performance it has dramatically increased the cost to
fabricate chips using those smaller transistors. This forces the
vast majority of chip design companies to trust a third party—
often overseas—to fabricate their design. To guard against ship-
ping chips with errors (intentional or otherwise) chip design
companies rely on post-fabrication testing. Unfortunately, this
type of testing leaves the door open to malicious modifications
since attackers can craft attack triggers requiring a sequence
of unlikely events, which will never be encountered by even
the most diligent tester.

In this paper, we show how a fabrication-time attacker can
leverage analog circuits to create a hardware attack that is
small (i.e., requires as little as one gate) and stealthy (i.e.,
requires an unlikely trigger sequence before effecting a chip’s
functionality). In the open spaces of an already placed and
routed design, we construct a circuit that uses capacitors to
siphon charge from nearby wires as they transition between
digital values. When the capacitors fully charge, they deploy
an attack that forces a victim flip-flop to a desired value. We
weaponize this attack into a remotely-controllable privilege
escalation by attaching the capacitor to a wire controllable
and by selecting a victim flip-flop that holds the privilege bit
for our processor. We implement this attack in an OR1200
processor and fabricate a chip. Experimental results show that
our attacks work, show that our attacks elude activation by a
diverse set of benchmarks, and suggest that our attacks evade
known defenses.

Keywords-analog; attack; hardware; malicious; security;
Trojan;

I. INTRODUCTION

Hardware is the base of a system. All software executes
on top of a processor. That software must trust that the
hardware faithfully implements the specification. For many
types of hardware flaws, software has no way to check if
something went wrong [1], [2]. Even worse, if there is an
attack in hardware, it can contaminate all layers of a system
that depend on that hardware—violating high-level security
policies correctly implemented by software.

The trend of smaller transistors while beneficial for in-
creased performance and lower power, has made fabricating
a chip expensive. With every generation of transistor comes
the cost of retooling for that smaller transistor. For example,
it costs 15% more to setup the fabrication line for each
successive process node and by 2020 it is expected that
setting-up a fabrication line for the smallest transistor size

will require a $20,000,000,000 upfront investment [3]. To
amortize the cost of the initial tooling required to support
a given transistor size, most hardware companies outsource
fabrication.

Outsourcing of chip fabrication opens-up hardware to
attack. The most pernicious fabrication-time attack is the
dopant-level Trojan [4], [5]. Dopant-level Trojans convert
trusted circuitry into malicious circuitry by changing the
dopant ratio on the input pins to victim transistors. This
effectively ties the input of the victim transistors to a
logic level 0 or 1—a short circuit. Converting existing
circuits makes dopant-level Trojans very difficult to detect
since there are no added or removed gates or wires. In
fact, detecting dopant-level Trojans requires a complete
chip delayering and comprehensive imaging with a scan-
ning electron microscope [6]. Unfortunately, this elusiveness
comes at the cost of expressiveness. Dopant-level Trojans are
limited by existing circuits, making it difficult to implement
sophisticated attack triggers [5]. The lack of a sophisticated
trigger means that dopant-level Trojans are more detectable
by post-fabrication functional testing. Thus, dopant-level
Trojans represent an extreme on a tradeoff space between
detectability during physical inspection and detectability
during testing.

To defend against malicious hardware inserted during
fabrication, researchers have proposed two fundamental de-
fenses: 1) use side-channel information (e.g., power and
temperature) to characterize acceptable behavior in an effort
to detect anomalous (i.e., malicious) behavior [7]–[10] and
2) add sensors to the chip that measure and characterize fea-
tures of the chip’s behavior (e.g., signal propagation delay)
in order to identify dramatic changes in those features (pre-
sumably caused by activation of a malicious circuit) [11]–
[13]. Using side channels as a defense works well against
large Trojans added to purely combinational circuits where it
is possible to test all inputs and there exists a reference chip
to compare against. While this accurately describes most
existing fabrication-time attacks, we show that it is possible
to implement a stealthy and powerful processor attack using
only a single added gate. Adding sensors to the design would
seem to adapt the side-channel approach to more complex,
combinational circuits, but we design an attack that operates
in the analog domain until it directly modifies processor

state, without affecting features measured by existing on-
chip sensors.

We create a novel fabrication-time attack that is con-
trollable, stealthy, and small. To make our attack control-
lable and stealthy we borrow the idea of counter-based
triggers commonly used to hide design-time malicious hard-
ware [14], [15] and adapt it to fabrication-time. To make
our attack small, we replace the hundreds of gates required
by conventional counter-based triggers implemented using
digital logic with analog components—a capacitor and a
few transistors wrapped-up in a single gate. Our attack
works by siphoning charge from a target wire every time
it toggles and storing that charge in a capacitor. If the wire
toggles infrequently, the capacitor voltage stays near zero
volts due to natural charge leakage. When the wire toggles
frequently, charge accumulates on the capacitor—faster than
it leaks away, eventually fully charging the capacitor. When
the voltage on the capacitor rises above a threshold, it
deploys the payload—whose output is attached to a flip-flop
changing that victim flip-flop to any desired value.

To demonstrate that our attack works for real chips, we
implement a privilege escalation attack in the OR1200 [16]
open source processor. We attach our capacitor to a signal
that infrequently toggles with normal software, but toggles
at a high rate with specially-crafted, usermode trigger pro-
grams. For our victim flip-flop, we select the privilege bit
(i.e., user or supervisor mode). Because the attack taps into
both the digital layer and the analog layer, it is unable to
be simulated completely using existing tools that operate
at only a single layer. As such, we fabricate our malicious
processor to verify its end-to-end operation. Experiments
with our fabricated malicious processor show that it is trivial
for a knowing attacker to activate the attack and escalate the
privilege of their unprivileged process—all from usermode
code, without operating system intervention. Experiments
with an array of embedded systems benchmarks [17] show
that it is unlikely that arbitrary software will trigger our
attack.

This paper presents three contributions:
1) We design and implement the first fabrication-time

processor attack that mimics the triggered attacks often
added during design time. As a part of our imple-
mentation, we are the first to show how a fabrication-
time attacker can leverage the empty space common to
Application-Specific Integrated Circuit (ASIC) layouts
to implement malicious circuits.

2) We are the first to show how an analog attack can
be much smaller and more stealthy than its digital
counterpart. Our attack diverts charge from unlikely
signal transitions to implement its trigger, thus, it is
invisible to all known side-channel defenses. Addition-
ally, as an analog circuit, our attack is below the digital
layer and missed by functional verification performed
on the hardware description language. Moreover, our

RTL Design

VHDL/Verilog

Logic Verification

Logic Synthesis

structural netlist

Placement and
Routing

Layout

Post Layout Timing
Verification

LVS and DRC Check

Manufacture

Chip Verification

Timing Verification

Digital
Design
Phase

(Design
House)

Back-end
Design
Phase

(Design
House or

Third
Party)

Fabrication
(Foundry)

Third Party IPs(Third
Party)

(Design
House)

Design
Time

Attack

Fabrication
Time

Attack

Chips

Customers

Packaging

Figure 1: Typical IC design process with commonly-research
threat vectors highlighted in red. Thu blue text and brackets
highlights the party in control of the stage(s).

attack relies on a complex and unlikely analog trigger
sequence, thus, it is impractical to simulate at the
analog level—which motivated us to fabricate a chip
to verify that our attacks worked.

3) We fabricate the first openly malicious processor and
then evaluate the behavior of our fabricated attacks
across many chips and changes in environmental con-
ditions. We compare these results to SPICE simulation
models 1.

II. BACKGROUND

The focus of this paper is fabrication-time attacks that
leverage analog characteristics of integrated circuits as a
trigger. In this section, we start with an overview of the
integrated circuit (IC) design process and possible malicious
attacks at different phases. Then we discuss the threat model
of our proposed attack.

1We make both the software and hardware code pertaining to A2 publicly
available [18].

A. Integrated Circuit Design Process

Figure 1 shows the typical design process of integrated
circuits [19]. This process often involves collaboration be-
tween different parties all over the world and each step is
likely done by different teams even if they are in same
company, which makes it vulnerable to malicious attacks
by rogue engineers involved in any of the above steps.

B. Threat Model

It is possible to implement our attack at either the back-
end phase or at the fabrication phase. Since it is strictly more
challenging to implement attacks at the fabrication phase
due to limited information and ability to modify the design
compared to the back-end phase, we focus on that threat
model.

The attacker starts with a Graphic Database System II
(GDSII) file that is a polygon representation of the com-
pletely laid-out and routed circuit. This is a very restrictive
threat model as it means that the attacker can only modify
existing circuits or—as we are the first to show in this
paper—add attack circuits to open spaces in the laid-out
design. The attacker can not increase the dimensions of the
chip or move existing components around. This restrictive
threat model also means that the attacker must perform
some reverse engineering to select viable victim flip-flops
and wires to tap. As detailed in Section VI-C, a public
specification of the chip to be fabricated makes this pro-
cess easier. After the untrusted fabrication house completes
fabrication, it sends the fabricated chips off to a trusted party
for post-fabrication testing. Our threat model assumes that
the attacker has no knowledge of the test cases used for post-
fabrication testing, which dictates the use of a sophisticated
trigger to hide the attack.

Leading up to the attacker getting a GDSII file, our threat
model assumes that a design house correctly implements
the specification for the chip’s behavior in some hardware
description language (HDL). Once the specification is im-
plemented in an HDL and that implementation has been
verified, the design is passed to a back-end house. Our
threat model assumes that the back-end house—who places
and routes the circuit—is also trusted. This means that the
delivered GDSII file represents a perfect implementation—at
the digital level of abstraction—of the chip’s specification.
The attacker is free to modify the design at both the digital
level by adding, removing, or altering circuits and at the
analog level (e.g., increasing electromagnetic coupling of
wires through layout or adding analog components).

Note that the chip vendor is free to run any additional tests
on the fabricated chip. We assume that the attacker has no
knowledge or control about post-fabrication testing. We only
assume that testing is bound by the limits of practicality.

III. ATTACK METHODS

A hardware attack is composed of a trigger and a payload.
The trigger monitors wires and state within the design and
activates the attack payload under very rare conditions such
that the attack stays hidden during normal operation and test-
ing. Previous research has identified that evading detection
is a a critical property for hardware Trojans designers [20].
Evading detection involves more than just avoiding attack
activation during normal operation and testing though, it
includes hiding from visual/side-channel inspection. There is
a tradeoff at play between the two in that the more complex
the trigger (i.e., the better that it hides at run time), the larger
the impact that trigger has on the surrounding circuit (i.e.,
the worse that it hides from visual/side-channel inspection).

We propose A2, a fabrication-time attack that is small,
stealthy, and controllable. To achieve these outcomes, we
develop trigger circuits that operate in the analog domain;
circuits based on charge accumulating on a capacitor from
infrequent events inside the processor. If the charge-coupled
infrequent events occur frequently enough, the capacitor will
fully charge and the payload is activated, which deploys
a privilege escalation attack. We target the privilege bit
in a processor, as privilege escalation constitutes a simple
payload with maximum capability provided to the attacker.
Our analog trigger similar to the counter-based triggers often
used in digital triggers, except using the capacitor has the
advantage of a natural reset condition due to leakage.

We create the trigger using a custom analog circuit that
a fabrication-time attacker inserts after the entire design has
been placed and routed. Compared to traditional digitally
described hardware Trojans, our analog trigger maintains a
high level of stealth and controllability, while dramatically
reducing the impact on area, power, and timing due to
the attack. An added benefit of a fabrication-time attack
compared to a design time attack (when digital-only triggers
tend to get added) is that the fabrication-time attack has to
pass through few verification stages.

To highlight the design space of our analog trigger
technique, we show how an attacker can connect several
simple trigger circuits to create arbitrary trigger patterns
to improve secrecy and/or controllability. In addition to the
number of stages, we show how an attacker can tune several
design parameters to achieve trade-offs between the ease
of triggering the payload and its stealthiness, even to the
point of creating triggers that can only be expressed under
certain process variation and/or environmental conditions.
This trade-off space is only possible through the use of an
analog-based trigger.

In the following sections, we describe the design and
working principles of our analog trigger. We present the
designs of both a base single-stage trigger and a more
complex, but flexible, multi-stage trigger. We also describe
our privilege escalation attack which also has analog com-

Time

Trigger
Input

Cap
Voltage

Trigger
Output

Threshold

Trigger
Time

Retention
Time

Trigger
Circuits

Trigger
Input

Trigger
Output

Figure 2: Behavior model of proposed analog trigger circuit.

ponents. We conclude with an analysis of how an attacker,
bounded by our threat model, would go about attacking a
processor.

A. Single Stage Trigger Circuit

Based on our threat model, the high-level design objec-
tives of our analog trigger circuit are as follows:

1) Functionality: The trigger circuit must be able to detect
toggling events of a target victim wire similar to a
digital counter and the trigger circuit should be able
to reset itself if the trigger sequence is not completed
in a timely manner.

2) Small area: The trigger circuit should be small enough
to be inserted into the empty space of an arbitrary
chip layout after placement and routing of the entire
design. Small area overhead also implies better chance
to escape detection.

3) Low power: The trigger circuit is always actively
monitoring its target signals, therefore power con-
sumption of the design must be minimized to hide it
within the normal fluctuations of entire chip’s power
consumption.

4) Negligible timing perturbation: The added trigger cir-
cuit must not affect the timing constraints for common
case operation and timing perturbations should not
be easily separable from the noise common to path
delays.

5) Standard cell compatibility: Since all digital designs
are based on standard cells with fixed cell height,
our analog trigger circuit should be able to fit into
the standard cell height. In addition, typical standard
cells use only metal layer 1 2 for routing while higher

2Several layers of metal wires are used in modern CMOS technologies
to connect cells together, lower level metal wires are closer to transistors at
bottom and have smaller dimensions for dense but short interconnections,
while higher metal layers are used for global routing. The lowest layer of
metal is usually assigned as metal layer 1 and higher metal layers have
correspondingly larger numbers.

metal layers are reserved for connections between
cells, therefore it is desirable for the trigger circuit
to use only metal layer 1 for easier insertion into final
layout and detection more difficult.

To achieve these design objectives, we propose an attack
based on charge accumulation inside capacitors. A capacitor
acts as a counter which performs analog integration of
charge from a victim wire while at the same time being
able to reset itself through natural leakage of charge. A
behavior model of charge accumulation based trigger circuits
comprises 2 parts.

1) Charge accumulation: Every time the victim wire
that feeds the trigger circuit’s capacitor toggles (i.e.,
changes value), the capacitor increases in voltage by
some ∆V . After a number of toggles, the capacitor’s
voltage exceeds a predefined threshold voltage and
enables the trigger’s output—deploying the attack pay-
load. The time it takes to activate fully the trigger is
defined as trigger time as shown in Figure 2. Trigger
time equals toggling frequency of input victim wire
multiplied by the number of consecutive toggles to
fill the capacitor.

2) Charge leakage: A leakage current exists over all
time that dumps charge from the trigger circuit’s
capacitor, reducing the capacitor’s voltage. The at-
tacker systematically designs the capacitor’s leakage
and accumulation such that leakage is weaker than
charge accumulation, but just enough to meet some
desired trigger time. When the trigger input is inactive,
leakage gradually reduces the capacitor’s voltage even
eventually disabling an already activated trigger. This
mechanism ensures that the attack is not expressed
when no intentional attack happens. The time it takes
to reset trigger output after trigger input stops toggling
is defined as retention time as shown in Figure 2.

Because of leakage, a minimum toggling frequency must
be reached to successfully trigger the attack. At minimum
toggling frequency, charge added in each cycle equals
charge leaked away. trigger time is dependent on toggling
frequency, lower toggling rate requires more cycles to
trigger because more charge is leaked away each cycle,
meaning less charge accumulated on the capacitor each
cycle. retention time is only dependent on the strength of
leakage current. Trigger time and retention time are the
two main design parameters in our proposed analog trigger
attack circuits that we can make use of to create flexible
trigger conditions and more complicated trigger pattern as
discussed in Section III-B. A stricter triggering condition
(i.e., faster toggling rate and more toggling cycles) reduces
the probability of a false trigger during normal operation
or post-fabrication testing, but non-idealities in circuits and
process, temperature and voltage variations (PVT variations)
can cause the attack to fail—impossible to trigger or trivial

VDD

Cap

Clk

Reference
Current

Vout

Clk

Time

Figure 3: Concepts of conventional charge pump design and
waveform.

to accidentally trigger—for some chips. As a result, a
trade-off should be made here between a reliable attack
that can be expressed in every manufactured chip under
varying environmental conditions and a more stealthy attack
that can only be triggered for certain chips, under certain
environmental conditions, and/or very fast toggling rate of
trigger inputs generated by software.

To find a physical implementation of the function de-
scribed previously, we first try a charge pump widely used
in phase locked loop (PLL) designs as shown in Figure 3.
Clk in the figure represents some toggling wire that adds
charge to Cap capacitor during positive phase of Clk. The
voltage step added to Cap during one positive phase can be
calculated as,

∆V =
Iref × Tpositive

Cap
(1)

This implies that the voltage on the cap can exceed a
threshold in Vthreshold/∆V cycles. Due to our area and
power requirements, we need to minimize Iref and Cap size
while maintaining an acceptable number of cycles to trigger
the attack. There are 3 common methods to implement
capacitors in CMOS technology: transistor gate oxide cap
(MOS cap), metal-insulator-metal cap (MIM cap) and metal-
oxide-metal (MOM cap). The other 2 options require higher
metal layers and have less capacitance density, therefore we
select the MOS cap option. Given the area constraints, our
MOS cap can be at most tens of fF , which means the
current reference should be in nA range. Such a current
reference is nontrivial to design and varies greatly across
process, temperature, and voltage variations. Therefore, we
need a new circuit design to solve these problems for a more
reliable and stealthy attack. However, the circuit in Figure 3
is useful for attacks that wish to impact only a subset of
manufactured chips or for scenarios where the attacker can
cause the victim wire to toggle at a high rate for hundreds
of cycles.

A new charge pump circuit specifically designed for
the attack purpose is shown in Figure 4. Instead of using

VDD

Cunit Cmain

Clk
Clk

Time

VDD

Clk

Cap
Voltages

Cunit

Cmain

Figure 4: Design concepts of analog trigger circuit based on
capacitor charge sharing.

reference current and positive phase period of Clk to control
∆V , the new scheme uses one additional small unit capacitor
Cunit to better control the amount of charge dumped on
main capacitor each time. During the negative phase of Clk,
Cunit is charged to V DD. Then during positive phase of
Clk, the two capacitors are shorted together, causing the
two capacitors to share charges. After charge sharing, final
voltage of the two capacitors is the same and ∆V on Cmain
is as,

∆V =
Cunit× (V DD − V0))

Cunit+ Cmain
(2)

where V0 is initial voltage on Cmain before the transition
happens. As can be seen, ∆V is decreasing as the voltage
ramps up and the step size solely depends on the ratio of the
capacitance of the two capacitors. We can achieve different
trigger time values by sizing the two capacitors. Compared
to the design in Figure 3, the new scheme is edge triggered
rather than level triggered so that there is no requirement on
the duty cycle of trigger inputs, making it more universal.
The capacitor keeps leaking over time and finally ∆V equals
the voltage drop due to leakage, which sets the maximum
capacitor voltage.

A transistor level schematic of the proposed analog trigger
circuit is shown in Figure 5. Cunit and Cmain are imple-
mented with MOS caps. M0 and M1 are the 2 switches in
Figure 4. A detector is used to compare cap voltage with
a threshold voltage and can be implemented in two simple
ways as shown in Figure 6. One option is an inverter, which
has a switching voltage depending on sizing of the two
transistors and when the capacitor voltage is higher than
the switching voltage, the output is 0; otherwise, the output
is 1. The other option is a Schmitt trigger, which is a simple
comparator with hysteresis. It has a large threshold when
input goes from low to high and a small threshold when
input goes from high to low. The hysteresis is beneficial for
our attack, because it extends both trigger time and retention
time.

In practice, all transistors have leakage currents even in
their off state and our capacitors are very small, therefore
the cap voltage is affected by leakage currents as well.

Cunit

Switch
leakage

Trigger
Inputs

Detector

VDD

Cap
leakage

Drain
leakage

Trigger
Output

Cmain

M2

M0

M1

Figure 5: Transistor level schematic of analog trigger circuit.

Skewed Inverter

VDD

VDD

OUT

VDD

Schmitt Trigger

IN OUTIN

Figure 6: Schematics of detector circuits.

To balance the leakage current through M0 and M1, an
additional leakage path to ground (NMOS M2 in Figure 5)
is added to the design. An attacker must carefully calculate
all leakage paths flowing to and out of the capacitor node in
order to balance their effects to achieve the trigger time and
retention time targets. There are three major leakage paths
in our analog trigger design: sub-threshold leakage current
through switch M1, transistor M2, and gate tunneling leak-
age current (as shown in Figure 5). Because leakage currents
are sensitive to process, voltage and temperature variations,
balancing all the leakage paths is the most challenging part
in the implementation of a reliable trigger analog trigger.

For the trigger circuit to work, capacitor voltage without
any toggling on its input wire should be low enough to not,
in any manufacturing or environmental corner case, be self-
triggering. Also, the maximum voltage under the fastest rate
of toggling by the victim wire that the attacker can produce
must be enough to have a good margin for successful attack,
allowing a wider range of acceptable toggling rates that
will eventually trigger the attack. These conditions should
be met under all PVT variations for a reliable attack, or
under certain conditions if attacker only want the attack to
be successful under these conditions. No matter what the
design target is, minimum voltage should always be kept
lower than threshold voltage to avoid exposing the attack in
normal use.

0

1

0

1

V
ol
ta
ge

Retention Time
(0.8us)

Trigger Time
(240ns)

Trigger
input

Trigger
output

Cap
Voltage

V
ol
ta
ge

Figure 7: SPICE simulation waveform of analog trigger
circuit.

A SPICE simulation waveform is shown in Figure 7 to
illustrate the desired operation of our analog trigger circuit
after optimization. The operation is same as the behavioral
model that we proposed in Figure 2, indicating that we can
use the behavior model for system-level attack design.

B. Multi-stage Trigger Circuit

The one-stage trigger circuit described in the previous
section takes only one victim wire as an input. Using only
one trigger input limits the attacker in two ways:

1) False trigger activations: Because fast toggling of one
signal for tens of cycles triggers the single stage attack,
there is still a chance that normal operations or certain
benchmarks can expose the attack. We can imagine
cases where there is only a moderately controllable
wire available. A single-stage trigger might be prone
to false activations in such a scenario, but a multi-stage
trigger could use wires that normally have mutually-
exclusive toggle rates as inputs, making it stealthy and
controllable.

2) Software flexibility: Certain instructions are required
to cause fast toggling of the trigger input and there is
not much room for flexible and stealthy implementa-
tion of the attack program. For example, some types
of multi-stage triggers could support a wide range
of attack programs. This would allow the attacker to
repeatedly compromised a victim system.

To make the attack even more stealthy, we note that
an attacker can make a logical combination of two or
more single-stage trigger outputs to create a variety of
more flexible multi-stage analog trigger. Basic operations to
combine two triggers together are shown in Figure 8. When
analyzing the behavior of logic operations on single stage
trigger output, it should be noted that the single-stage trigger
outputs 0 when trigger condition is met. Thus, for AND
operation, the final trigger is activated when either A or B
triggers fire. For OR operation, the final trigger is activated
when both A and B triggers fire. It is possible for an attacker
to combine these simple AND and OR-connected single-
stages triggers into an arbitrarily complex multi-level multi-
stage trigger. Figure 8 show what such a trigger could look

Single stage
trigger

Single stage
trigger

Single stage
trigger

Single stage
trigger

Final
Trigger

Final
Trigger

A

B

A

B Final
Trigger

Final Trigger = OA & OB
Either A or B triggers

OA

OB

OA

OB
Single stage

trigger
C OC

Final Trigger = OA | OB
Both A and B trigger

Final Trigger = (OA & OB) | OC
One of A and B trigger, C trigger

Single stage
trigger

Single stage
trigger

A

B

OA

OB

Figure 8: Basic ways of connecting single-stage triggers to form a multi-stage trigger.

like, creating a two level multi-stage trigger with the logical
expression (OA&OB)|OC. This third trigger fires when
trigger C and one of triggers A or B fire. Lastly, it is
important to note that not only can the inputs A, B, and
C be different, but the internal circuit parameters for each
single-stage trigger can also be different (even though we
treat them as identical for simplicity).

Due to the analog characteristics of the trigger circuits,
timing constraints limit the construction of multi-stage trig-
gers, but also make accidental trigger probability vanishingly
rare. A single-stage trigger circuit has two timing parame-
ters, trigger time and retention time. For AND operation,
the timing constraint is same as for a single-stage trigger,
because only one of the triggers must activate. For OR
operation, there are two methods to trigger the attack: 1)
alternatively run the instructions to toggle victim wires A
and B or 2) run the instructions to toggle A first for enough
cycles to activate the trigger and then run the instructions
to trigger B. For the first method, the timing constraint
is minimum toggling frequency, because adding n stages
reduces the toggling frequency for each trigger circuit by n
times. For the second method, the timing constraint is that
retention time of the stage n should be larger than the total
trigger time of the following stages stages.

C. Triggering the Attack

Once the trigger circuit is activated, payload circuits
activate hidden state machines or overwrite digital values
directly to cause failure or assist system-level attacks. The
payload can also be extra delay or power consumption of
target wires to leak information or cause failure. For A2, the
payload design is independent of the trigger mechanism, so
our proposed analog trigger is suitable for various payload
designs to achieve different attacks. Since the goal of this
work is to achieve a Trojan that is nearly invisible while
providing a powerful foothold for a software-level attacker,
we couple our analog triggers to a privilege escalation
attack [21]. We propose a simple design to overwrite se-
curity critical registers directly as shown in Figure 9. In
any practical chip design, registers have asynchronous set
or/and reset pins for system reset. These reset signals are

D

CK
Q

RN

rst
trigger

D

CK
Q

S

rst
trigger

Figure 9: Design of payload to overwrite register value.
Gates in blue lines are inserted for attack.

asynchronous with no timing constraints so that adding one
gate into the reset signal of one register does not affect
functionality or timing constraints of the design. Since the
analog trigger circuit output is 0 when activated, we insert
an AND gate between the existing reset wire and our victim
flip-flop for active-low reset flops and we insert a NOR gate
for for active-high set flops. Moreover, because there are
no timing constraints on asynchronous inputs, the payload
circuit can be inserted manually after final placement and
routing together with the analog trigger circuits in a manner
consistent with our threat model.

D. Selecting Victims

It is important that the attacker validate their choice of
victim signal; this requires showing that the victim wire has
low baseline activity and its activity level is controllable
given the expected level of access of the attacker. To validate
that the victim wire used in A2 has a low background
activity, we use benchmarks from the MiBench embedded
systems benchmark suite. We select these benchmarks due
to their diverse set of workload characteristics and because
they run on our resource-limited implementation. We expect
that in a real-world attack scenario, the attacker will validate
using software and inputs that are representative of the
common case given the end use for the attacked processor.
For cases where the attacker does not have access to such
software or the attacked processor will see a wide range of
use, the attacker can follow A2’s example and use a multi-
stage trigger with wires that toggle in a mutually-exclusive

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.05 0.1 0.15 0.2 0.25

P
ro

p
o
rt

io
n
 o

f
S

ig
n
al

s

Toggle Rate

Figure 10: Distribution of paths toggling rate when running
a benchmark program.

fashion and require inputs that are unlikely to be produced
using off-the-shelf tools (e.g., GCC).

Validating that the victim wire is controllable requires
that the attacker reason about their expected level of access
to the end user system for the attacked processor. In A2,
we assume that the attacker can load and execute any un-
privileged instruction. This allows us to create hand-crafted
assembly sequences that activate the attack—remember that
we selected victim wires that off-the-shelf tools will not
produce code significantly activates. While this model works
for attackers that have an account on the system, attackers in
a virtual machine, or even attackers that can convince users
to load code, we did not explore the challenges of less con-
trollable attack scenarios. Two examples are triggering the
attack from Javascript and triggering the attack situationally
(e.g., radar containing the attacked chip senses a certain type
of plane). We expect that our attack supports such triggering
scenarios as there is no fundamental difference from running
handcrafted unprivileged code: executable code contains a
multitude of different instructions and different instructions
activate different sets of wires in the processor. The dif-
ference is just an extra layer of abstraction. One challenge
that we anticipate is the extra layer of abstraction will likely
reduce the range of activity on potential victim wires. Our
experimental results show that the attacker can deal with
this by changing parameters of the analog trigger or even
through careful use of a multi-stage trigger.

IV. IMPLEMENTATION

To experimentally verify A2, we implement and fabricate
it inside an open source processor with the proposed analog
Trojans inserted in 65nm General Purpose (GP) CMOS
technology. Because of the time and monetary cost of
hardware fabrication, we include multiple attacks in each
chip. One set of attacks are Trojans aimed at exposing

A2’s end-to-end operation, while the other set of attacks
are implemented outside the processor, directly connected to
IO pins so that we can investigate trigger behavior directly.
In this section, we detail the selection of the trigger and
attack payload in an OR1200 processor, the activity trigger
insertion flow, and analog trigger testing structures.

A. Attacking a Real Processor

We implemented a complete open source OR1200 pro-
cessor [16] to verify our complete attack including software
triggers, analog triggers and payload. The OR1200 CPU
is an implementation of the 32-bit OR1K instruction set
with 5-stage pipeline. The implemented system in silicon
consists of OR1200 core with 128B instruction cache and an
embedded 128KB main program memory connected through
a Wishbone bus. Standard JTAG interface and custom scan
chain are implemented to load program, control and monitor
the processor.

The OR1K instruction set specifies the existence of a
privileged register called the Supervision Register (SR). The
SR contains bits that control how the processor operates
(e.g., MMUs and caches enabled) and flags (e.g., carry flag).
One particular bit is interesting for security purposes; SR[0]
controls the privilege mode of user, with 0 denoting user
mode and 1 denoting supervisor mode. By overwriting the
value of this register, an attacker can escalate a usermode
process to supervisor mode as a backdoor to deploy various
high-level attacks [20], [21]. Therefore, we make the payload
of our attack setting this bit in the SR to 1 to give a usermode
process full control over the processor. In order to evaluate
both the one-stage and two-stage triggers described earlier,
we have our two-stage triggered attack target SR[1]. Nor-
mally, this register bit controls whether timer-tick exceptions
are enabled, but since our system does not use the timer and
it SR[1] requires privileged software to change its value, it
is a simple way to know if our two-stage attack works.

Our analog trigger circuits require trigger inputs that
can have a high switching activity under certain (attacker)
programs, but are almost inactive during testing or common
case operation so that the Trojan is not exposed 3. To search
for suitable victim wires to serve as trigger inputs, we run
a series of programs on the target processor in a HDL
simulator, capturing the toggling rates of all wire. Figure 10
shows a histogram of wire toggling rates for the basicmath
benchmark from MiBench (see Section V). As the figure
shows, approximately 3% of total wires in the OR1200
have nearly zero activity rate, which provides a wide range
of options for an attacker. The target signals must also be
easy to control by attack programs. To find filter the low
activity wires for attacker controllability, we simulate our

3Exposing the attack during normal operation may be acceptable as non-
malicious software does not attempt to access privileged processor state.
Additionally, current operating systems blindly trust the processor, so they
are likely to miss sporadic privilege escalations.

{r0 is a non-zero register but reads as zero in user mode}
Initialize SR[0]=0 {initialize to user mode}
while Attack Success==0 do
i← 0
while i < 500 do
z ← 1/0
i← i+ 1

end while
if read(special register r0) 6= 0 then
Attack Success← 1

end if
end while

Figure 11: Program that activates the single-stage attack.

attack program in the same setup and identify the wires
whose toggle rates increased dramatically. In our attack,
we select divide by zero flag signal as the trigger for one-
stage attack, because it is unlikely for normal programs to
continuously perform division-by-zero while it is simple for
an attacker to deliberately perform such operations in a tight
loop. Fortunately, the OR1200 processor only sets a flag in
the SR when a division-by-zero occurs. For the two-stage
trigger, we select wires that report whether the division was
signed or unsigned as trigger inputs. The attack program
alternatively switches the two wires by performing signed,
then unsigned division, until both analog trigger circuits are
activated, deploying the attack payload. Pseudo codes for
both the one-stage and two-stage attack triggering software
sequences are shown in Figure 11 and Figure 12.

Triggering the attack in usermode-only code that does not
alert the operating system is only the first part of a successful
attack. For the second part, the attacker must be able to
verify that there triggering software worked—without risk of
alerting the operating system. To check whether the attack
is successful, we take advantage of a special feature of some
registers on the OR1200: some privileged registers are able
to be read by usermode code, but the value reported has
some bits redacted. We use this privilege-dependent read
behavior as a side-channel to let the attacker’s code know
whether it has privileged access to the processor or not.

B. Analog Activity Trigger

Here we cover the implementation details of our analog
triggers. To verify the first-order behavior of our analog
trigger circuits, we implement, optimize, and simulate them
using a SPICE simulator. Once we achieve the desired
trigger behavior in simulation, we implement both the one-
stage and two-stage trigger circuits in 65nm GP CMOS
technology. Both trigger circuits are inserted into the proces-
sor to demonstrate our proposed attack. To fully characterize
the performance of the trigger circuits, standalone testing
structures are added to the test chip.

{r0 is a non-zero register but reads as zero in user mode}
Initialize SR[0]=0 {initialize to user mode}
while Attack Success==0 do
i← 0
while i < 500 do
z ← a/b {signed division}
z ← c/d {unsigned division}
i← i+ 1

end while
if read(special register r0) 6= 0 then
Attack Success← 1

end if
end while

Figure 12: Program that activates the two-stage attack.

1) Implementation in 65nm GP technology: For proto-
type purposes, we optimize the trigger circuit towards a
reliable version because we can only get a limited number of
chips for measurement with no control of process variation
and building a reliable circuit under process, temperature,
and voltage (PVT) variations is always more challenging
than only optimizing for a certain PVT range—i.e., we
construct our attacks so that they work in all fabricated
processors at all corner-case environments. For robustness,
the Schmitt trigger shown in Figure 6 is used as detector
circuit. Out of the three leakage paths shown in Figure 5,
gate leakage causes most trouble because it has an exponen-
tial dependence on gate voltage, making the leakage much
stronger when capacitor voltage ramps up. The gate leakage
also has exponential dependence on gate oxide thickness of
the fabrication technology, because gate leakage is physi-
cally quantum tunneling through gate oxide. Unfortunately,
65nm CMOS technology is not a favorable technology for
our attack, because the gate oxide is thinner than older
technologies due to dimension scaling and also thinner than
latest technologies because high-κ metal gate techniques
now being employed to reduce gate leakage (we use 65nm
due to its cost savings and it is still a popular process node).
Through careful sizing, it’s still possible to design a circuit
robust across PVT variations, but this requires trading-off
trigger time and retention time as shown in in the simulation
waveform of our analog activity trigger depicted in Figure 7.

To reduce gate leakage, another solution is to use thick
oxide transistors commonly used in IO cells as the MOS
cap for Cmain, which shows negligible gate leakage. This
option provides larger space for configuration of trigger time
and retention time, but requires larger area due to design
rules. SPICE simulation results of the trigger circuits are
shown in Figure 13. A zoomed waveform of the trigger
operation is shown in the upper waveform, while the entire
operation, including trigger and decay, is shown in the lower

Trigger
input

Trigger
output

Cap
Voltage

Trigger
input

Trigger
output

Cap
Voltage

Zoom in

Trigger
Time

(300ns)

Retention
Time

(25us)

Figure 13: SPICE simulation waveform of analog trigger
circuit using IO devices in 65nm CMOS.

plot. A trigger time of 300ns and retention time of 25µs are
marked on the waveforms. Trigger circuit using IO device
is implemented for two-stage attack and the one without IO
device is used for one-stage attack in the system.

We also performed exploratory simulations of our trigger
circuits in 65nm Low Power technology, which has signif-
icantly less leakage current which is better suited for low
power applications. In Low Power technology, no IO device
is needed to achieve robust trigger circuits with large trigger
time and retention time. Thus, from an attackers perspective,
Low Power technology makes implementing A2 easier and,
as detailed in Section V-C, harder to detect.

2) Inserting A2 into existing chip layouts: Since A2’s
analog trigger circuit is designed to follow sizing and routing
constraints of standard cells and have occupy the area
comparable to a single standard cell, inserting the trigger
circuit to the layout at fabrication time is not complicated.
All digital designs nowadays are based on standard cells
and standard cells are placed in predefined rows. In typical
placement and routing cases, around 60% to 70% of total
area is used for standard cells, otherwise routing can not
complete due to routing congestion (our chip is more chal-
lenging to attack as it has 80% area utilization). Therefore,
in any layout of digital designs, empty space exists. This
empty space presents an opportunity for attackers as they
can occupy the free space with their own malicious circuit.
In our case, we requires as little space as one cell. There
are 4 steps to insert a trigger into layout of a design:

1) The first step is to locate the signals chosen as trigger
inputs and the target registers to attack. The insertion
of A2 attack can be done at both back-end placement

and routing stage and fabrication stage. Our attack
model focuses on the fabrication stage because it
is significantly more challenging and more stealthy
compared to attack at back-end stage. The back-end
stage attacker has access to the netlist of the design,
so locating the desired signal is trivial. But an attack
inserted at back-end stage can still be discovered
by SPICE simulation and layout checks, though the
chance is extremely low if no knowledge about the
attack exists and given the limits of current SPICE
simulators. In contrast, fabrication time attacks can
only be discovered by post-silicon testing, which is
believed to be very expensive and difficult to find small
Trojans. To insert an attack at during chip fabrication,
some insights about the design are needed, which can
be extracted from layout or from a co-conspirator
involved in design phase, even split manufacturing
technique may not prevent the attacker from finding
the target wires, as discussed in Section VI-C.

2) Once the attacker finds acceptable victim wires for
trigger inputs and attack payload target registers, the
next step is to find empty space around the victim
wire and insert the analog trigger circuit. Unused
space is usually automatically filled with filler cells
or capacitor cells by placement and routing tools.
Removing these cells will not affect the functionality
or timing, because they are inserted as the last step
after all connectivity and timing checks. Because the
layout of trigger circuit only uses metal 1, inserting it
to unused space will not block routed signals because
metal 1 is barely used for global routing.

3) To insert the attack payload circuit, the reset wire
needs to be cut as discussed in Section III-C. It has
been shown that timing of reset signal is flexible,
so the AND or OR gate only need to be placed
somewhere close to the reset signal. Because the added
gates can be a minimum strength cell, their area is
small and finding space for them is trivial.

4) The last step is to manually do the routing from trigger
input wires to analog trigger circuit and then to the
payload circuits. There is no timing requirement on
this path so that the routing can go around existing
wires at same metal layer (jogging) or jump over
existing wires by going to another metal layer (jump-
ing), in order to ensure connection without shorting
or design rule violation. If long and high metal wires
become a concern of the attacker due to potential
easier detection, repeaters (buffers) can be added to
break long wire into small sections. Adding repeaters
also reduces loading on the trigger input wire so that
impacts on timing of original design is minimized.
Furthermore, it is also possible that the attacker can
choose different trigger input wires and/or payload
according to the existing layout of the target design.

Function Drive Strength Width† AC Power† Standby Power†
NAND2 X1 1 1 1
NAND2 X4 3 3.7 4.1
NAND2 X8 5.75 7.6 8.1
DFF with Async Set X1 6.25 12.7 2.9
DFF with Async Set X4 7.25 21.8 6.8
DFF with Async Reset X1 6 12.7 2.6
DFF with Async Reset X4 7.75 21.8 7.2
DFF with Async Set and Reset X1 7.5 14.5 3.3
DFF with Async Set and Reset X4 8.75 23.6 8.1
Trigger w/o IO device - 8 7.7 2.2
Trigger w/ IO device - 13.5 0.08 0.08
* DFF stands for D Flip Flop. † Normalized values

Table I: Comparison of area and power between our implemented analog trigger circuits and commercial standard cells in
65nm GP CMOS technology.

This is possible because the proposed attack can be
used to build variants of system level attacks.

In our OR1200 implementation, finding free space to
insert the charge pump is trivial, even with the design’s 80%
area utilization, because the charge pump is small and there
is no timing requirement on the attack circuits, affording
us the freedom to distribute our attack components over a
wide area of the chip. In our implementation, the distance
between trigger and victim flip-flop is in near the mean of
all interconnects. Connecting our attack components does
require some jogging and jumping for the connections, but
this is a common routing technique in commercial settings,
so the information leaked by such wires is limited.

In A2, we select the victim processor and we also synthe-
size the chip. This means that we can bridge the semantic
gap between names (and by extension functionality) at the
hardware description level and traces in the mask. This level
of information is representative of what back-end design
house attackers would have. We also expect that it is possible
for a foundry-level attacker to implement A2. This is more
difficulty because a foundry-level attacker only has access to
the chip layout. To accomplish the attack, the attacker must
be able to identify a victim wire and to identify the victim
flip-flop. Viable victim wires must have a low baseline rate
of activity (given the expected use of the processor) and be
controllable by the attacker to have a high enough activity
to fill the trigger’s capacitor. We observe that for processors,
the existence of such a wire is not an issue. For the attacker
to identify the wire, they must convert the chip layout
back in to a purely digital representation, i.e., the structural
netlist. Fortunately, this is an existing part of the back-end
house design process known as Physical Verification. Thus,
a foundry-level attacker can also use such a tool to obtain
a netlist of the chip suitable for digital simulation. Once an
attacker can simulate a chip, finding a suitable victim wire
is a matter of simulating the expected workload and possible
attack triggers; this is how we found viable victims for

A2. Identifying the desired victim flip-flop in the generated
netlist is challenging due to the lack of meaningful names.
For A2, we are able to identify the victim flip-flop in a netlist
with no meaningful names by writing test cases that expose
the flip-flop by making it change value at a series of specific
clock cycles.

3) Side-channel information: For the attack to be stealthy
and defeat existing protections, the area, power and timing
overhead of the analog trigger circuit should be minimized.
High accuracy SPICE simulation is used to characterize
power and timing overhead of implemented trigger cir-
cuits. Comparisons with several variants of NAND2 and
Dflip − flop standard cells from commercial libraries are
summarized in Table I. The area of the trigger circuit not
using IO device is similar to a X4 strength Dflip − flop.
Using an IO device increases trigger circuit size significantly,
but area is still similar to the area of 2 standard cells,
which ensures it can be inserted to empty space in final
design layout. AC power is the total energy consumed by
the circuits when input changes, the power numbers are
simulated by doing SPICE simulation on a netlist with
extracted parasitics from our chip layout. Standby power is
the power consumption of the circuits when inputs are static
and comes from leakage current of CMOS devices.

In A2, the analog trigger circuit is directly feeds off of the
victim wire, which is the only part in the attack that creates
a timing disturbance to the original design. Before and after
inserting the A2, we extract parasitics from the layouts to do
high accuracy simulation of the victim wire’s delay. Results
show that rising and falling delay before trigger insertion are
19.76ps and 17.18ps while those after trigger insertion are
20.66ps and 18.45ps. Extra delay is 1.2ps on average, which
is the timing overhead of the attack. 1.2ps is only 0.33%
of 4ns clock period and well below the process variation
and noise range. Besides, in practical measurement, 1.2ps
is nearly impossible to measure. unless high resolution time
to digital converter is included on chip, which is impractical

Single stage
triggerCLK

CLK divider and duty
cycle controller

COUNTER

To Scan
Chain

Parameters From
Scan Chain

To Scan
Chain

Figure 14: Testing structure to characterize the trigger time
and retention time of implemented analog trigger circuits.

due to its large area and power overhead.
4) Comparison to digital-only attacks: If we look at a

previously proposed, digital only and smallest implemen-
tation of a privilege escalation attack [20], it requires 25
gates and 80µm2 while our analog attack requires as little
as one gate for the same effect. Our attack is also much
more stealthy as it requires dozens of consecutive rare
events, where the other attack only requires two. We also
implement a digital only, counter-based attack that aims to
mimic our A2. The digital version of A2 requires 91 cells
and 382µm2, almost two orders-of-magnitude more than the
analog counterpart. These results demonstrate how analog
attacks can provide attackers the same power, control, and
more stealthiness as existing digital attacks, but at a much
lower cost.

5) Trigger characterization: To fully characterize the fab-
ricated trigger circuit, a standalone testing structure as shown
in Figure 14 is included in the test chip. A digital clock
divider and duty cycle controller takes parameters from the
scan chain to generate a simulated victim wire for the trigger.
A feedback loop connected to an AND gate is used to
stop the trigger input when the trigger output is activated. A
counter counts the number of transitions of the trigger input.
It stops when the trigger output is activated. The counter
value is read out using the scan chain. Combining the count,
clock frequency and clock divider ratio (i.e., the toggle rate
of the victim wire), we can calculate the trigger time. After
the trigger activates and victim wire stops toggling due to
the AND gate, the capacitor voltage will slowly leak away
until the trigger is deactivated. Once it is deactivated, the
counter will restart. By taking readings fast, we can roughly
measure the time interval between counter stops and restarts,
which is the retention time of the trigger circuit.

V. EVALUATION

We perform all experiments with our fabricated malicious
OR1200 processor. We implement the processor using 65nm
CMOS technology in an area of 2.1mm2. Figure 15 shows
this processor, including where the different functional
blocks are located within the processor. Figure 15 also shows
where we add A2, with two levels of zoom to aide in
understanding the challenge of identifying A2 in a sea of
non-malicious logic. In fact, A2 occupies less than 0.08%

Main Memory
128KB SRAM

OR1200
Core

I$ Testing
Structure

Scan
chain

IO Drivers and Pads

CLK

1.4 mm

1
.5 m

m

6.4 µm

2
 µ

m

A2 Trigger

Metal 3

Metal 2

Via

Figure 15: Die micrograph of analog malicious hardware
test chip with a zoom-in layout of inserted A2 trigger.

Temperature
Chamber

Labview

Power supply and
source meter

Testing PCB

Packaged
test chip

Digital IO

Figure 16: Testing setup for test chip measurement.

of the chip’s area. Our fabricated chip actually contains two
sets of attacks: the first set of attacks are one and two-stage
triggers baked-in to the processor that we use to assess the
end-to-end impact of A2. The second set of attacks exist
outside of the processor and are used to fully characterize
A2’s operation.

We use the testing setup shown in Figure 16 to evaluate
our attacks’ response to changing environmental conditions
and a variety of software benchmarks. The chip is packaged
and mounted on a custom testing PCB to interface with
personal computer. We use the LabVIEW program to control
a digital interface card that reads and writes from the chip
through a custom scan chain interface. The scan chain
interface enables us to load programs to the processor’s
memory and also to check the values of the processor’s
registers. The testing board is kept in a temperature chamber
to evaluate our attacks under temperature variations. To
clock the processor, we use an on-chip clock generator that
generates a 240MHz clock at the nominal condition (1V
supply voltage and 25◦C). We use a programmable clock
divider to convert the 240MHz clock into the desired clock
frequency for a given experiment.

10 12 14 16
0

1

2

3

4

5

6

7
Retention Time

N
um

be
r o

f C
hi

ps

Cycles

120MHz

10 12 14 16
0

1

2

3

4

5

6

7

Cycles

9.23MHz

12 14 16 18
0

1

2

3

4

5

6

7

Cycles

1.875MHz

4 6 8 10 12
0

1

2

3

4

5

6

7

Retention Time (us)

(a) Distribution of analog trigger circuit using IO device

4 6 8 10
0

1

2

3

4

5

6

7

N
um

be
r o

f C
hi

ps

Cycles

120MHz

6 8 10 12
0

1

2

3

4

5

6

7

Cycles

34.3MHz

10 12 14 16
0

1

2

3

4

5

6

7

* 2 chips cannot
 trigger at this
 switching activity

Retention Time

Cycles

10.9MHz

0.6 0.8 1.0 1.2
0

1

2

3

4

5

6

7

Retention Time (us)

(b) Distribution of analog trigger circuit using only core device

Figure 17: Measured distribution of retention time and
trigger cycles under different trigger input divider ratios
across 10 chips at nominal 1V supply voltage and 25◦C.

A. Does the Attack Work?

To prove the effectiveness of A2, we evaluate it from
two perspectives. One is a system evaluation that explores
the end-to-end behavior of our attack by loading attack-
triggering programs on the processor, executing them in
usermode, and verifying that after executing the trigger
sequence, they have escalated privilege on the processor.
The other perspective seeks to explore the behavior of our
attacks by directly measuring the performance of the analog
trigger circuit, the most important component in our attack,
but also the most difficult aspect of our attack to verify using
simulation. To evaluate the former, we use the in-processor
attacks and for the later, we use the attacks implement
outside the processor with taps directly connected to IO pins.

1) System attack: Malicious programs described in Sec-
tion IV-A are loaded to the processor and then we check the
target register values. In the program, we initialize the target
registers SR[0] (the mode bit) to user mode (i.e., 0) and
SR[1] (a free register bit that we can use to test the two-stage
trigger) to 1. When the respective triggers deploys the attack,
the single-stage attack will cause SR[0] to suddenly have a
1 value, while the two-stage trigger will cause SR[1] to
have a 0 value—the opposite of their initial values. Because
our attack relies on analog circuits, environmental aspects
dictate the performance of our attack. Therefore, we test the
chip at 6 temperatures from −25◦C to 100◦C to evaluate
the robustness of our attack. Measurement results confirm
that both the one-stage and two-stage attacks in all 10

Trigger
Circuit

Toggle
Rate (MHz)

Measured
(10 chip avg)

Simulated
(Typical corner)

w/o IO device 120.00 7.4 7
w/o IO device 34.29 8.4 8
w/o IO device 10.91 11.6 10
w/ IO device 120.00 12.6 14
w/ IO device 9.23 11.6 13
w/ IO device 1.88 13.5 12

Table II: Comparison of how many cycles it takes to activate
fully the trigger for our fabricated chip (Measured) and for
HSPICE (Simulated) versions of our analog trigger circuit.

tested chips successfully overwrite the target registers at all
temperatures.

2) Analog trigger circuit measurement results: Using the
standalone testing structure shown in Figure 14, number of
cycles until trigger and retention time can be characterized.
We use the 240MHz on-chip clock to simulate the toggling
of a victim wire that feeds the trigger circuits under test. To
show how our attack triggers respond to a range of victim
activity levels, we systematically sweep clock division ratios
which simulates a similar range of victim wire activities.

Figure 17 shows the measured distribution of retention
time and trigger cycles at 3 different trigger toggle fre-
quencies across 10 chips. The results show that our trigger
circuits have a regular behavior in the presence of real-
world manufacturing variances, confirming SPICE simula-
tion results. retention time at the nominal condition (1V
supply voltage and 25◦C) is around 1µs for trigger with
only core devices and 5µs for attacks constructed using IO
devices. Compared to SPICE simulation results, in Figure 7
and Figure 13, trigger without IO devices has close results
while trigger with IO device shows 4 times smaller retention
time than simulations suggest. This is reasonable because
gate leakage of IO devices is negligible in almost any
designs and the SPICE model is a rough estimation. Table II
provides the number of cycles until triggering for both
trigger circuits (i.e., with and without IO devices) from
fabricated chip measurements and SPICE simulations to
validate the accuracy of simulation. An attacker wants the
simulator to be as accurate as possible as the cost and time
requirement of fabricating test chips make it impractical to
design analog attacks without a reliable simulator. Fortu-
nately, our results indicate that SPICE is capable at providing
results of sufficient accuracy for these unusual circuits based
on leakage currents.

To verify the implemented trigger circuits are robust
across voltage and temperature variations (as SPICE sim-
ulation suggests), we characterize each trigger circuit un-
der different supply voltage and temperature conditions.
Figure 18 and Figure 19 show how many cycles it takes
(on average) for each trigger circuit to activate fully when
the simulated victim wires toggles between .46MHZ and

1 2 4 8 16 32 64 128

12

14

16

18

20

22

24

Tr
ig

ge
r C

yc
le

s

Toggling Frequency (MHz)

 0.8V
 0.9V
 1.0V
 1.1V
 1.2V

(a) Analog trigger circuit with IO device

8 16 32 64 128
6

8

10

12

14

16

18

Tr
ig

ge
r C

yc
le

s

Toggling Frequency (MHz)

 0.8V
 0.9V
 1.0V
 1.1V
 1.2V

(b) Analog trigger circuit with only core device

Figure 18: Measured trigger cycles under different input
frequency at different supply voltages.

120MHz, when the supply voltage varies between 0.8V
and 1.2V , and when the ambient temperature varies between
−25◦C and 100◦C.

As expected, different conditions yield different minimum
toggling rates to activate the trigger. It can be seen that tem-
perature has a stronger impact on our trigger circuit’s perfor-
mance because of leakage current’s exponential dependence
on temperature. At higher temperature, more cycles are
required to trigger and higher switching activity is required
because leakage from capacitor is larger. The exception to
this happens with the trigger constructed using IO devices,
at very low temperature. In this case, leakage currents are
so small that the change in trigger cycles comes mainly
from the setup time of Schmitt trigger, higher toggling inputs
spend more cycles during the setup time. SPICE simulation
predicts these results as well.

Lastly, once the trigger activates, it will only remain in
the activated state for so long, barring continued toggling
from the victim wire. The window of time that a trigger

0.5 1 2 4 8 16 32 64 128

10

15

20

25

30

35

Tr
ig

ge
r C

yc
le

s

Toggling Frequency (MHz)

 -25oC
 25oC
 75oC
 100oC

(a) Analog trigger circuit with IO device

4 8 16 32 64 128
6

9

12

15

18

21

24

Tr
ig

ge
r C

yc
le

s

Toggling Frequency (MHz)

 -25oC
 25oC
 75oC
 100oC

(b) Analog trigger circuit with only core device

Figure 19: Measured trigger cycles under different input
frequency at different ambient temperatures.

stays activated is critically important for series-connected
multi-stage trigger circuits. This window is also controlled
by manufacturing variances and environmental conditions.
Variation of retention time across −25◦C to 100◦C is
plotted in Figure 20, which shows that the retention time
of both trigger circuits is long enough to finish the attack
across wide temperature range. Trigger circuits constructed
with IO devices have a larger dependence on temperature
because of different temperature dependencies for different
types of devices. The variation of cycles until triggering and
retention time across PVT variations implies the possibility
that an attacker can include the environmental condition as
part of the trigger. For example, a low activity trigger input
can only trigger the attack at low temperatures according to
the measurement results; great news if you want your attack
to work in the North Pole, but not the tropics. Attackers can
also tune the circuits towards stricter requirement to trigger
so that the attack is never exposed at higher temperatures to
further avoid detections.

-25 0 25 50 75 100

0

5

10

15

20 With IO device
 Without IO device

R
et

en
tio

n
Ti

m
e

(
s)

Temperature (°C)
Figure 20: Measured retention time of analog trigger circuits
across temperatures.

B. Is the Attack Triggered by Non-malicious Benchmarks?

Another important property for any hardware Trojan is
not exposing itself under normal operations. Because A2’s
trigger circuit is only connected to the trigger input signal,
digital simulation of the design is enough to acquire the
activity of the signals. However, since we make use of
analog characteristics to attack, analog effects should also
be considered as potential effects to accidentally trigger the
attack. Therefore, we ran 5 selected programs from the
MiBench embedded systems benchmark suite. We select
MiBench [17] because it targets the class of processor that
best fits the OR1200 and it consists of a set of well-
understood applications that are popular system performance
benchmarks in both academia and in industry. MiBench
consists of 31 applications, spread across 6 resource-usage-
based classes. To validate that A2’s trigger avoids spurious
activations from a wide variety of software, we select 5
benchmark applications from MiBench, each from a differ-
ent class. This ensures that we thoroughly test all subsystems
of the processor—exposing likely activity rates for the wires
in the processor. Again, in all programs, the victim registers
are initialized to opposite states that A2 puts them in when
its attack is deployed. The processor runs all 5 programs at 6
different temperatures from −25◦C to 100◦C. Results prove
that neither the one-stage nor the two-stage trigger circuit is
exposed when running these benchmarks across such wide
temperature range.

C. Existing Protections

Existing protections against fabrication-time attacks are
mostly based on side-channel information, e.g., power, tem-
perature, and delay. In A2, we only add one gate in the trig-
ger, thus minimizing power and temperature perturbations
caused by the attack.

Table III summarizes the total power consumption mea-
sured when the processor runs our five benchmark programs,

at the nominal condition (1V supply voltage and 25◦C). A
Keithley 2400 sourcemeter is used to measure the power
consumption of the processor, which can measure down to
1µA in our measurement range. All the values in Table III
are average values across the entire program execution. The
variation of power consumption in all cases are limited to
±3µW . Direct measurement of trigger circuit power is in-
feasible in our setup, so simulation is used as an estimation.
It was shown earlier that SPICE model matches measure-
ment results in terms of trigger performance. Simulated
trigger power consumption in Table I translates to 5.3nW
and 0.5µW for trigger circuits constructed with and without
IO devices. These numbers are based on the assumption that
trigger inputs keep toggling at 1/4 of the clock frequency of
240MHz, which is the maximum switching activity that our
attack program can achieve on the selected victim wire. In
the common case of non-attacking software, the switching
activity is much lower—approaching zero—and only lasts
a few cycles so that the extra power due to our trigger
circuit is even smaller. In our experiments, the power of
the attack circuit is orders-of-magnitude less than the normal
power fluctuations that occur in a processor while it executes
different instructions.

Besides side-channel information leaked by attack cir-
cuit itself, parasitic impacts of attack circuits on original
design should also be considered. Adding new transistors
around existing ones introduces negligible differences to the
existing devices, because manufacturing steps like doping,
lithography, and planarization are well controlled in mod-
ern CMOS IC manufacturing through the use of dummy
doping/poly/metal fill. This fill maintains a high density of
materials over large windows. The tiny inserted A2 trigger
will not significantly change the overall density in a window
and therefore does not cause systematic device variations.
Besides, isolation between transistors avoids their coupling.

Coupling between malicious and original wires may cause
cross-talk and more delay to the original wires. However, in
CMOS manufacturing, the metal fill step adds floating metal
pieces to empty spaces in the chip layout so that the unit
parasitic capacitance of all wires are similar. An attacker can
limit cross-talk effects through careful routing to avoid long
parallel wires.

VI. DISCUSSION

Now that we know A2 is an effective and stealthy
fabrication-time attack, we look forward to possible de-
fenses, including a discussion of the impact of split man-
ufacturing and 3D-IC on our attacks. Before delving into
defending against A2, we qualitatively address the challenge
of implementing an A2-like attack in x86 processors.

A. Extending A2 to x86

We implement A2 on the OR1200 processor because it is
open source. While the OR1200 processor is capable enough

Program Power (mW)
Standby 6.210
Basic math 23.703
Dijkstra 16.550
FFT 18.120
SHA 18.032
Search 21.960
Single-stage Attack 19.505
Two-stage Attack 22.575
Unsigned Division 23.206

Table III: Power consumption of our test Chip running a
variety of benchmark programs.

to run Linux, its complexity is closer to a mid-range ARM
part, far below that of modern x86 processors from Intel and
AMD. A natural question is if our attack technique applies to
x86 processors and, if so, how does the attack’s complexity
scale with processor complexity.

We expect a A2-like attack in x86 processors to be much
harder to detect and easier to implement than its OR1200
counterpart. While there are more viable victim registers
in x86, A2 still only needs to target a single register to
be effective. Also, A2’s overhead comes primarily from its
trigger circuit, but the complexity of the trigger is much
more dependent on how “hidden” the attacker wants the
attack to be than on the complexity of the processor. In
fact, we expect that there are far more viable victim wires
(highly-variable and controllable activity) due to the internal
structure of complex, out-of-order processors like the x86.
The only aspect of scaling to an x86-class processor that
we anticipate as a challenge is maintaining controllability
as there are many redundant functional units inside an x86,
so a trigger would either need to tap equivalent wires in all
functional units or be open to some probabilistic effects.

B. Possible Defenses

There are a few properties that make our attacks hard
to detect: 1) we require adding as little as a single gate
2) our attack has a sophisticated trigger and 3) our trigger
works in the analog domain, gradually building charge until
it finally impacts the digital domain. Given these properties,
defenses that measure side-channel information (e.g., current
and temperature) have little hope of detecting the impact of
a single gate in a sea of 100,000 gates. The same holds true
for defenses that rely on visual inspection. Even if a defender
were to delayer a chip and image it with a scanning electron
microscope, our malicious gate is almost identical to all the
other gates in a design. One option might be to focus the
search on the area of the chip near security-critical state
holding flip-flops.

If it is impractical to expect defenders to visually identify
our attacks or to be able to detect them through measuring
current or temperature, what about testing? One of the
novel features of A2 is the trigger. In our implementation
(Section IV), we carefully design the trigger to make it
extremely unlikely for unknowing software—including vali-
dation tests—to trigger the attack. In fact, we built a trigger
so immune to unintended activations that we had to employ
sleds of inline assembly to get an activity ratio high enough
to trigger our attack. This indicates that anything short of
comprehensive testing is unlikely to expose the trigger 4.

Given that post-fabrication testing is unlikely to expose
our attack and our attack’s impact on known side-channels
is buried within the noise of a circuit, we believe that a new
type of defense is required: we believe that the best method
for detecting our attack is some form of runtime verification
that monitors a chip’s behavior in the digital domain.

C. Split Manufacturing

One promising future defense to malicious circuits in-
serted during fabrication is split manufacturing [22]–[25]
and 3D-IC [26]. The idea behind defenses incorporating split
manufacturing is to divide a chip into two parts, with one
part being fabricated by a cheap, but untrusted, fabrication
house, while the other part gets fabricated by an expensive,
but trusted, fabrication house (that is also responsible for
putting the two parts together in a single chip). The challenge
is determining how to divide the chip into two parts.

One common method is to divide the chip into gates and
wires [26]. The idea behind this strategy is that by only
moving a subset of wires to the trusted portion of the chip,
it will be cheaper to fabricate at the trusted fabrication
house, while serving to obfuscate the functionality from
the untrusted fabrication house. This obfuscation makes it
difficult for an attacker to determine which gates and wires
(of the ones they have access to) to corrupt.

From this description, it might seem as if current split
manufacturing-based defenses are a viable approach to stop-
ping A2. This is not the case as A2 changes the state in a
flip-flop, but only wires are sent to the trusted fabrication
house. Future split manufacturing approaches could move a
subset of flip-flops to the trusted part of the chip along with a
subset of wires, but that increases the cost of an already pro-
hibitively expensive defense. Additionally, recent research
shows that even when a subset of wires are missing, it is
possible to reverse engineer up to 96% of the missing wires
using knowledge of the algorithms used in floor-planning,
placement, and layout tools [22]. In fact, we already take
advantage of some of this information in identifying the
victim wire that drives our trigger circuit and in identifying
the victim flip-flop.

4Even if test cases somehow activated our attack, the onus is on the
testing routines to catch our malicious state change. Observe that most
non-malicious software runs the same regardless of privilege level.

Previous works [23], [24] also proposed splitting man-
ufacturing at low-level metal layers, even down to lowest
metal layer. Splitting at metal 1 is a potentially effective
method to defend against A2 attack if carried out by
untrusted manufacturer. However, this approach introduces
an extremely challenging manufacturing problem due to the
small dimension of low-level metal layers and tremendous
amount of connections to make between two parts, not
to mention the expense to develop a trusted fabrication
house with such capabilities. There has been no fabricated
chips demonstrating that such a scheme works given the
constraints of existing manufacturers.

VII. RELATED WORK

A2 is a fabrication-time attack. There is almost 10 years
of previous work on fabrication-time attacks and defenses.
In this section, we document the progression of fabrication-
time attacks from 100-gate circuits targeted at single-
function cryptographic chips, aimed at leaking encryption
keys to attacks that work by corrupting existing gates aimed
at more general functionality. The historical progression
of fabrication-time attacks highlights the need for a small,
triggered, and general-purpose attack like A2.

Likewise, for fabrication-time defenses, we document the
progression of defenses from complete chip characterization
with a heavy reliance on a golden reference chip to defenses
that employ self-referencing techniques and advance signal
recovery (removing the requirement of a golden chip). We
conclude with defenses that move beyond side-channels, into
the real of on-chip sensors aimed at detecting anomalous
perturbations in circuit performance presumably due to
malicious circuits. The historical progression of fabrication-
time attack defenses shows that while they may be effective
against some known attacks, there is a need for a new type
of defense that operates with more semantic information.

A. Fabrication-time Attacks

The first fabrication-time hardware attack was the addition
of 100 gates to an AES cryptographic circuit aimed at
creating a side-channel that slowly leaks the private key [27].
The attack circuit works by modulating its switching activity
(i.e., increasing or decreasing the attack’s current consump-
tion) in a way that encodes the secret key on the current
consumed by the chip as a whole. This method of attack
has four disadvantages: 1) the attack has limited scope 2)
the attacker must have physical access to the victim device
and 3) the attack is always-on, making it more detectable and
uncontrollable. To mute their attack’s effect on the circuit,
the authors employ a spread-spectrum technique to encode
single bits of the key on many clock cycles worth of the
power trace of the device. This technique helps conceal
the attack from known, side-channel based, fabrication-time
defenses at the cost of increased key recovery time.

Another fabrication-time method for creating malicious
circuits is to modify the fabrication process so that natural
process variation is shifted outside the specified tolerances.
Process reliability Trojans [28] show how an attacker can
cause reductions in reliability by accelerating the wearing
out mechanisms for CMOS transistors, such as Negative
Bias Temperature Instability (NBTI) or Hot Carrier Injection
(HCI). Process reliability Trojans affect an entire chip and
affect some chips more than others (the effect is randomly
distributed the same way as process variation); the goal
is to cause the entire chip to fail early. While the paper
does not implement a process Trojan, the authors explore
the knobs available for implementing a process reliability
Trojan and discuss the theory behind them. The value of
this attack is that it is very difficult to detect as a defender
would have to destructively measure many chips to reverse-
engineer the fabrication parameters. A2 represents a different
design point: a targeted attack that is controllable by a
remote attacker.

A targeted version of a process reliability Trojan is the
dopant-level Trojan [4]. Instead of adding additional cir-
cuitry to the chip (e.g., the side-channel Trojan) or changing
the properties of the entire chip (e.g., the process reliability
Trojan), dopant-level Trojans change the behavior of existing
circuits by tying the inputs of logic gates to logic level
0 or logic level 1. By carefully selecting the logic value
and the gates attacked, it is possible to mutate arbitrary
circuits into a malicious circuit. This approach is incredibly
stealthy because there are no extra gates or wires, but comes
with limitations. First, while there are no extra gates or
wires added for the attack, more recent work shows that
removing additional layers (down to the contact layers) of
the chip reveals the added connections to logic 0 and logic
1 [6]. Note that removing these extra layers and imaging the
lower layers is estimated to be 16-times more expensive that
stopping at the metal layers. A second limitation is that the
attacker can only modify existing circuits to implement their
attack. This makes it difficult to construct attack triggers
resulting in an exposed attack payload—making detection
more likely. Recent defenses seek to prevent dopant-level
attacks by obfuscating the circuit and using split manufactur-
ing [26]. A2 trades-off some detectability in the metal layers
of the chip for less detectability by testing. The observation
driving this is that every chip has its functionality tested after
fabrication, but it is prohibitively expensive to delayer a chip
and image it with a scanning electron microscope. By using
analog circuits, A2 makes it possible to implement complex
attack triggers with minimal perturbations to the original
circuit.

The most recent fabrication-time attack is the parametric
Trojans for fault injection [5]. Parametric Trojans build on
dopant-level Trojan by adding some amount of controllabil-
ity to the attack. Parametric Trojans rely on power supply
voltage fluctuations as a trigger. For example, imagine a

dopant-level attack that only drives the input of a logic
gate to 1 or 0 when there is a dip in the supply voltage.
Because this requires that the attacker has access to the
power supply of a device, the goal is to facilitate fault-
injection attacks (e.g., erroneous result leaks part of the key
as in RSA attacks [29]).

B. Fabrication-time Defenses

There are three fundamental approaches to defend against
fabrication-time malicious circuits: 1) side-channel-based
characterization 2) adding on-chip sensors and 3) architec-
tural defenses. This section covers example defenses that
use each approach and qualitatively analyze how A2 fares
against them.

1) Side-channels and chip characterization: IC finger-
printing [7] is the first attempt to detect malicious circuits
added during chip fabrication. IC fingerprinting uses side-
channel information such as power, temperature, and elec-
tromagnetic measurements to model the run time behavior
of a golden (i.e., trusted) chip. To clear untrusted chips of
possible malice, the same inputs are run on the suspect
chip and the same side-channel measurements collected.
The two sets of measurements are then compared, with a
difference above a noise threshold causing the chip to be
labeled as malicious. The more golden chips available, the
better the noise modeling. IC fingerprinting works well when
there are a set of trusted chips, the chip’s logic is purely
combinational, and it is possible to exercise the chip with
all possible inputs. The authors also point out that their
approach requires that Trojans be at least .01% of the circuit;
in A2 the Trojan is an order of magnitude smaller than that—
not to mention that we attack a processor.

Another side-channel-based approach is to create a path
delay fingerprint [8]. This is very similar to IC fingerprinting,
except with a heavier reliance on the chip being purely
combinational. To create a path delay fingerprint, testers
exercise the chip with all possible test cases, recording the
input-to-output time. The observation is that only malicious
chips will have a path delay outside of some range (the
range depends on environmental and manufacturing vari-
ances). Even if it is possible to extend this approach to
sequential circuits and to meaningfully train the classifier
where comprehensive testing is impractical, A2 minimizes
the impacts on the delay of the surrounding circuit to hide
into environmental variation and noise (Section IV-B3) and
the attack modifies state directly.

Building from the previous two defenses is gate-level
characterization [9]. Gate-level characterization is a tech-
nique that aims to derive characteristics of the gates in
a chip in terms of current, switching activity, and delay.
Being a multi-dimensional problem, the authors utilize linear
programming to solve a system of equations created using
non-destructive measurements of several side-channels. A2
evades this defense because it operates in the analog domain.

Electromagnetic fingerprinting combined with statistical
analysis provides a easier approach to measure local side-
channel information from small parts of a chip and suppress
environmental impacts [30]. Because EM radiation from A2
only occurs when the attack is triggered, it evades defenses
that assume EM signals are different in attacked designs
even if the Trojan is dormant.

One major limitation of characterization-based defenses
is the reliance on a golden reference chip. TeSR [10] seeks
to replace a golden chip with self-referencing comparisons.
TeSR avoids the requirement of a golden chip by comparing
a chip’s transient current signature with itself, but across
different time windows. Besides eliminating the need for a
golden chip, TeSR also enables side-channel techniques to
apply to more complex, sequential circuits. Unfortunately,
TeSR requires finding test cases that activate the malicious
circuit to be able to detect it. While TeSR may work
well against dopant-level Trojans, we include a complex
trigger in A2 that avoids accidental activations. Additionally,
results in Section IV suggest that the assumption underlying
TeSR—that malicious and non-malicious side-channel mea-
surements are separable—is not true for A2-like attacks.

2) Adding on-chip sensors: As mentioned, using side-
channel information to characterize chip delay is limited
to combinational circuits. One defense suggests measuring
delay locally through the addition of on-chip sensors [11].
The proposed technique is able to measure precisely the
delay of a group of combinational paths—these paths could
be between registers in a sequential circuit. Much like in the
side-channel version, the sensors attempt to characterize the
delay of the monitored paths and detect delays outside an
acceptable range as potential malice. The increased accuracy
and control over the side-channel version comes at the
cost of added hardware: requires the addition of a shadow
register for every monitored combinational path in the chip
and a shadow clock that is a phase offset version of the
main clock. A comparator compares the main register and
the shadow register, with a difference indicating that the
combinational delay feeding the main register has violated
its setup requirement. This approach is similar to Razor [31],
but here the phase shift of the shadow clock is gradually
adjusted to expose changes in delay. A2 avoids this defense
because it modifies processor state directly, not affecting
combinational delays.

Adding to the list of tell tale features is Temperature
Tracking [12]. Temperature Tracking uses on-chip tempera-
ture sensors to look for temperature spikes. The intuition is
that when malicious hardware activates, it will do so with
an unusually high (and moderate duration) burst of activity.
The activity will increase current consumption, that then
produces temperature increases. Unfortunately, results from
Section V show that this intuition is invalid for our malicious
processor. A2 is a single gate in a sea of 100,000 gates, so its
current consumption is muted. Also, A2’s trigger gradually

builds charge and the payload lasts for a very short duration
not able to be capture at the slow rate of thermal variation. In
general, it is possible for other attackers to hide their attacks
from this approach by placing their malicious circuits in an
active area of the chip, or by making their attack infrequently
active and active for short durations.

The most recent on-chip sensor proposal targeted at de-
tection malicious circuits added during fabrications hearkens
back to IC fingerprinting in that the goal is to monitor the
power rails of the chip [13]. The authors propose adding
power supply monitoring sensors that detect fluctuations
in a supply’s characteristic frequencies. As has been noted
with previous approaches, our results show that there are
cases where there is no difference in power supply activity
between the case where the malicious circuit is active versus
inactive.

A2 defeats defenses that rely on characterizing device
behavior through power, temperature, and delay measure-
ments by requiring as few as one additional gate and by
having a trigger that does not create or destroy charge,
but redirects small amounts of charge. In addition, A2’s
analog behavior means that cycle-to-cycle changes are small,
eventually accumulating to a meaningful digital change.

3) Eliminating unused space: BISA [32] is a promising
defense against fabrication-time attacks that seeks to prevent
attackers from adding components to a design by eliminating
all empty space that could be used to to insert attack logic.
A perfect deployment of BISA does indeed make imple-
menting A2 more challenging. Unfortunately, the small area
of A2 presents a challenging problem to any BISA imple-
mentation, because all empty space must be filled by BISA
cells with no redundant logic or buffers—as an attacker can
replace these with their attack circuit and the behavior of
the design remains. Also, a perfect BISA implementation
requires 100% test coverage—an impractical requirement,
otherwise an attacker can replace logic not covered in the
tests. In addition, implementing BISA significantly reduces
routing space of the original design and prevents designers
from doing iterative place and route. Limiting designers in
this way results in performance degradation and possibly an
unroutable design. All of these requirements dramatically
increase the cost of chip fabrication and time-to-market.

VIII. CONCLUSION

Experimental results with our fabricated malicious pro-
cessor show that a new style of fabrication-time attack is
possible; a fabrication-time attack that applies to a wide
range of hardware, spans the digital and analog domains,
and affords control to a remote attacker. Experimental results
also show that A2 is effective at reducing the security
of existing software, enabling unprivileged software full
control over the processor. Finally, the experimental results
demonstrate the elusive nature of A2: 1) A2 is as small as a

single gate—two orders of magnitude smaller than a digital-
only equivalent 2) attackers can add A2 to an existing circuit
layout without perturbing the rest of the circuit 3) a diverse
set of benchmarks fail to activate A2 and 4) A2 has little
impact on circuit power, frequency, or delay.

Our results expose two weaknesses in current malicious
hardware defenses. First, existing defenses analyze the dig-
ital behavior of a circuit using functional simulation or
the analog behavior of a circuit using circuit simulation.
Functional simulation is unable to capture the analog prop-
erties of an attack, while it is impractical to simulate an
entire processor for thousands of clock cycles in a circuit
simulator—this is why we had to fabricate A2 to verify
that it worked. Second, the minimal impact on the run-
time properties of a circuit (e.g., power, temperature, and
delay) due to A2 suggests that it is an extremely challenging
task for side-channel analysis techniques to detect this new
class of attacks. We believe that our results motivate a
different type of defense; a defense where trusted circuits
monitor the execution of untrusted circuits, looking for out-
of-specification behavior in the digital domain.

ACKNOWLEDGMENT

We thank our shepherd Eran Tromer for his guidance and
the anonymous reviewers for their feedback and suggestions.
This work was supported in part by C-FAR, one of the
six SRC STARnet Centers, sponsored by MARCO and
DARPA. This work was also partially funded by the National
Science Foundation. Any opinions, findings, conclusions,
and recommendations expressed in this paper are solely
those of the authors.

REFERENCES

[1] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve,
V. S. Adve, and Y. Zhou, “Understanding the Propagation
of Hard Errors to Software and Implications for Resilient
System Design,” in International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS. Seattle, WA: ACM, Mar. 2008, pp. 265–276.

[2] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “Specs:
A lightweight runtime mechanism for protecting software
from security-critical processor bugs,” in Proceedings of the
Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS. Istanbul, Turkey: ACM, 2015, pp. 517–529.

[3] S. S. Technology. (2012, Oct.) Why node
shrinks are no longer offsetting equipment costs.
[Online]. Available: http://electroiq.com/blog/2012/10/
why-node-shrinks-are-no-longer-offsetting-equipment-costs/

[4] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson,
“Stealthy Dopant-level Hardware Trojans,” in International
Conference on Cryptographic Hardware and Embedded
Systems, ser. CHES. Berlin, Heidelberg: Springer-Verlag,
2013, pp. 197–214.

[5] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian, “Para-
metric Trojans for Fault-Injection Attacks on Cryptographic
Hardware,” in Workshop on Fault Diagnosis and Tolerance
in Cryptography, ser. FDT, 2014, pp. 18–28.

[6] T. Sugawara, D. Suzuki, R. Fujii, S. Tawa, R. Hori,
M. Shiozaki, and T. Fujino, “Reversing Stealthy Dopant-Level
Circuits,” in International Conference on Cryptographic
Hardware and Embedded Systems, ser. CHES. New York,
NY: Springer-Verlag, 2014, pp. 112–126.

[7] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and
B. Sunar, “Trojan Detection Using IC Fingerprinting,” in
Symposium on Security and Privacy, ser. S&P. Washington,
DC: IEEE Computer Society, 2007, pp. 296–310.

[8] Y. Jin and Y. Makris, “Hardware Trojan Detection Using
Path Delay Fingerprint,” in Hardware-Oriented Security
and Trust, ser. HOST. Washington, DC: IEEE Computer
Society, 2008, pp. 51–57.

[9] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey,
“Hardware Trojan horse detection using gate-level character-
ization,” in Design Automation Conference, ser. DAC, vol. 46,
2009, pp. 688–693.

[10] S. Narasimhan, X. Wang, D. Du, R. S. Chakraborty, and
S. Bhunia, “TeSR: A Robust Temporal Self-Referencing
Approach for Hardware Trojan Detection,” in Hardware-
Oriented Security and Trust, ser. HOST. San Diego, CA:
IEEE Computer Society, Jun. 2011, pp. 71–74.

[11] J. Li and J. Lach, “At-speed Delay Characterization for IC
Authentication and Trojan Horse Detection,” in Hardware-
Oriented Security and Trust, ser. HOST. Washington, DC:
IEEE Computer Society, 2008, pp. 8–14.

[12] D. Forte, C. Bao, and A. Srivastava, “Temperature Tracking:
An Innovative Run-time Approach for Hardware Trojan
Detection,” in International Conference on Computer-Aided
Design, ser. ICCAD. IEEE, 2013, pp. 532–539.

[13] S. Kelly, X. Zhang, M. Tehranipoor, and A. Ferraiuolo,
“Detecting Hardware Trojans Using On-chip Sensors in an
ASIC Design,” Journal of Electronic Testing, vol. 31, no. 1,
pp. 11–26, Feb. 2015.

[14] A. Waksman and S. Sethumadhavan, “Silencing Hardware
Backdoors,” in IEEE Security and Privacy, ser. S&P.
Oakland, CA: IEEE Computer Society, May 2011.

[15] X. Wang, S. Narasimhan, A. Krishna, T. Mal-Sarkar, and
S. Bhunia, “Sequential hardware trojan: Side-channel aware
design and placement,” in Computer Design (ICCD), 2011
IEEE 29th International Conference on, Oct 2011, pp. 297–
300.

[16] OpenCores.org. OpenRISC OR1200 processor. [Online].
Available: http://opencores.org/or1k/OR1200\ OpenRISC\
Processor

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown, “MiBench: A free,
commercially representative embedded benchmark suite,” in
Workshop on Workload Characterization. Washington, DC:
IEEE Computer Society, 2001, pp. 3–14.

[18] K. Yang, M. Hicks, Q. Dong, T. Austin, and
D. Sylvester, “A2: Analog malicious hardware,”
https://github.com/impedimentToProgress/A2, 2016.

[19] M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri,
“Hardware security: Threat models and metrics,” in
Proceedings of the International Conference on Computer-
Aided Design, ser. ICCAD ’13. San Jose, CA: IEEE Press,
2013, pp. 819–823.

[20] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and
J. M. Smith, “Overcoming an Untrusted Computing Base:
Detecting and Removing Malicious Hardware Automatically,”
USENIX ;login, vol. 35, no. 6, pp. 31–41, Dec. 2010.

[21] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. n. Jiang, and
Y. Zhou, “Designing and implementing malicious hardware,”
in Workshop on Large-Scale Exploits and Emergent Threats,

ser. LEET, vol. 1, Apr. 2008.
[22] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufac-

turing secure?” in Design, Automation and Test in Europe,
ser. DATE, 2013, pp. 1259–1264.

[23] K. Vaidyanathan, B. Das, and L. Pileggi, “Detecting reliability
attacks during split fabrication using test-only BEOL stack,”
in Design Automation Conference, ser. DAC, vol. 51. IEEE,
Jun. 2014, pp. 1–6.

[24] K. Vaidyanathan, B. Das, E. Sumbul, R. Liu, and L. Pileggi,
“Building trusted ICs using split fabrication,” in International
Symposium on Hardware-Oriented Security and Trust, ser.
HOST. IEEE Computer Society, 2014, pp. 1–6.

[25] K. Vaidyanathan, R. Liu, E. Sumbul, Q. Zhu, F. Franchetti,
and L. Pileggi, “Efficient and secure intellectual property (IP)
design with split fabrication,” in International Symposium on
Hardware-Oriented Security and Trust, ser. HOST. IEEE
Computer Society, 2014, pp. 13–18.

[26] F. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara,
“Securing Computer Hardware Using 3d Integrated Circuit
(IC) Technology and Split Manufacturing for Obfuscation,” in
Conference on Security, ser. Security. USENIX Association,
2013, pp. 495–510.

[27] L. Lin, M. Kasper, T. Gneysu, C. Paar, and W. Burleson,
“Trojan Side-Channels: Lightweight Hardware Trojans
Through Side-Channel Engineering,” in International
Workshop on Cryptographic Hardware and Embedded
Systems, ser. CHES, vol. 11. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 382–395.

[28] Y. Shiyanovskii, F. Wolff, A. Rajendran, C. Papachristou,
D. Weyer, and W. Clay, “Process reliability based trojans
through NBTI and HCI effects,” in Conference on Adaptive
Hardware and Systems, ser. AHS, 2010, pp. 215–222.

[29] A. Pellegrini, V. Bertacco, and T. Austin, “Fault-based attack
of rsa authentication,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, March 2010, pp. 855–
860.

[30] J. Balasch, B. Gierlichs, and I. Verbauwhede, “Electromag-
netic circuit fingerprints for hardware trojan detection,” in
Electromagnetic Compatibility (EMC), 2015 IEEE Interna-
tional Symposium on, Aug 2015, pp. 246–251.

[31] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge,
“Razor: a low-power pipeline based on circuit-level timing
speculation,” in Microarchitecture, 2003. MICRO-36. Pro-
ceedings. 36th Annual IEEE/ACM International Symposium
on, Dec 2003, pp. 7–18.

[32] K. Xiao, D. Forte, and M. Tehranipoor, “A novel built-in
self-authentication technique to prevent inserting hardware
trojans,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 33, no. 12, pp. 1778–
1791, Dec 2014.

