
SNIFFER: A High-Accuracy Malware
Detector for Enterprise-Based Systems

Evan Chavis, Harrison Davis, Yijun Hou, Matthew Hicks,
Salessawi Ferede Yitbarek, Todd Austin, and Valeria Bertacco

Computer Science and Engineering, University of Michigan

Abstract—In the continual battle between malware attacks and
antivirus technologies, both sides strive to deploy their techniques
at always lower layers in the software system stack. The goal is
to monitor and control the software executing in the levels above
their own deployment, to detect attacks or to defeat defenses.
Recent antivirus solutions have gone even below the software,
by enlisting hardware support. However, so far, they have only
mimicked classic software techniques by monitoring software
clues of an attack. As a result, malware can easily defeat them
by employing metamorphic manifestation patterns.

With this work, we propose a hardware-monitoring solution,
SNIFFER, which tracks malware manifestations in system-level
behavior, rather than code patterns, and it thus cannot be
circumvented unless malware renounces its very nature, that is,
to attack. SNIFFER leverages in-hardware feature monitoring,
and uses machine learning to assess whether a system shows
signs of an attack. Experiments with a virtual SNIFFER im-
plementation, which supports 13 features and tests against five
common network-based malicious behaviors, show that SNIFFER
detects malware nearly 100% of the time, unless the malware
aggressively throttle its attack. Our experiments also highlight
the need for machine-learning classifiers employing a range of
diverse system features, as many of the tested malware require
multiple, seemingly disconnected, features for accurate detection.

I. INTRODUCTION

Over the past few decades, malware creators and antivirus
developers have been engaged in an arms race, each striving
to deploy their solution at a lower layer in the software stack
than the other side. The motivation behind this trend is that
lower software layers have full control and visibility over
upper layers. In the context of malware, this trend has led
all the way down to bootkits [1], and a similar downward
progression has taken place in antivirus technology.

To address the invasive nature of these attacks and pro-
tections, recent research has introduced the idea of enlisting
hardware support in providing malware protection [2], [3],
[4]. This idea is promising because it seems unlikely that
malware creators will be able to leverage hardware support in
their efforts. Unfortunately, initial proposals for incorporating
hardware-level features in antivirus tools are mere extensions
of their software-only counterparts, relying on code signature
detection of low-level instruction analysis [2], [3], [4]. As
such, many of these techniques share limitations with software
antivirus in that they cannot detect sophisticated metamorphic
malware, and by examining instructions they tend to be overly
myopic, leading to frequent false positives.

To address these deficiencies, we turn to behavioral moni-
toring as a key mechanism to reliably detect next-generation
malware. Specifically, we make the following contributions:
• We propose a hardware-assisted malware-detection ap-

proach based on a malware’s external behavior, which is
insensitive to the specific malware implementation.

• We show that our protections provide high detection accu-
racy (99.6%), and low false positive rates (<1% for idle
systems), even when malware attempts to hide itself by
curtailing its own malicious behaviors.

server infected
client

Training phase
server undergoes supervised learning

Trains on feature data
from activity and malware

feature data

server client

Enterprise use flow

feature data

SNIFFER regs Ctrl regs

NICSNIFFER logic

feature
collect

feature
analysis malware?

inspect
system/take

offline

no

yes

feature data - epoch 1

collect@client tx to
client

collect@client

Activity: idle, media streaming, typical use
Malware: DoS attacks, spammer

feature data - epoch 2

tx to
clienttime

Data flow timeline:

Server analysis:

Figure 1. SNIFFER overview. During the training phase, SNIFFER
leverages supervised machine learning (ML) algorithms to train its server-
bound ML classifiers on clients under malware attack. At runtime, feature
data is collected on a per-epoch basis, stored in dedicated SNIFFER secure
storage at the client side, and transferred via a secure channel to the server
at regular intervals for classification.

We combine these capabilities into a full system targeted
at enterprise networks, where there is a network operations
center including trusted servers. SNIFFER relies on continuous
hardware-assisted measurements at each client, which include
architecture-level (e.g., superuser time) and system-level (e.g.,
outgoing data packets) activity.

Before SNIFFER can be deployed, the monitoring servers
must be trained using multiple supervised learning algorithms,
up to one per malware class. During this phase the machine
learning (ML) algorithms at the server end classify feature data
gathered on a per-epoch basis from a client used for training.
The client is operated under both no-malware conditions and
while infected, for each of the malware classes to be detected.

Once the server is trained, SNIFFER can reliably detect
malware in its training set. The lower portion of Figure 1
presents this execution flow. Client measurements are parti-
tioned into equal-length epochs, during which metrics relevant
for malware detection are collected into dedicated SNIFFER
secure storage; the collected measurements are transferred to
the server at the network operations center at regular intervals
via a secure network channel. The trusted server analyzes the
data based on the training dataset to determine if the incoming
features show malware. In the event that the classifier identifies
an infected host, it alerts a network engineer to respond.

We evaluated the effectiveness of the ML classifiers by col-
lecting feature data on both clean and infected Windows virtual
machines and then analyzed SNIFFER’s detection capabilities
on it. Additionally, we measured bandwidth and measurement
overheads entailed by the analysis: we found that SNIFFER is

able to identify malware 99.6% of the time with a false-alarm
rate of <1% for idle machines and <13% for heavily loaded
machines. Moreover, we show that we are able to successfully
detect metamorphic malware from varied implementations and
we can always provide SNIFFER’s accuracy, unless the mal-
ware throttles down its malicious activity aggressively.

II. BACKGROUND, MOTIVATION, AND RELATED WORK

Commercial malware detection. Static code analysis is fun-
damentally limited by the immense volume of malware codes;
some commercial antivirus tools miss as much as 20% of
known malware [5]. Two main reasons for these failures are
that millions of previously unseen malware binaries are re-
leased daily [6] making it impractical to maintain an up-to-date
signature database and that attackers employ code obfuscation
and transformation tools to create numerous distinct versions
of a single malware [7].
Behavioral malware detection. To achieve better detection
results against malware with obfuscated code, researchers
propose incorporating dynamic program information into de-
tection through behavioral analysis. This new family of ap-
proaches provides a modest improvement in detection ac-
curacy and shows success at preventing zero-day payloads.
The key insight driving behavioral malware analysis is that
there are only a handful of payloads (even if there are a
myriad of ways to implement them) and by focusing on the
attack behavior, detectors become robust against polymorphic
and metamorphic malware. However, the key challenge for
this approach is in reducing the cost of dynamic analysis,
which must be run frequently. SNIFFER explores the idea
of behavioral malware analysis further by pushing program
monitoring completely down into hardware layers and adding
more carefully selected features. Combined with moving clas-
sification of the malware behavior to a trusted computer, the
SNIFFER’s architecture presents security, accuracy, and per-
formance advantages over prior work. A key to SNIFFER’s
benefits is its focus on malice as opposed to anomalous
behavior, as in prior work [2], [3].
Hardware-assisted antivirus. Ozsoy, et al., propose adding
custom counters to processors in malware-aware processors [8]
to overcome some of the shortcomings of using only existing
performance counters, as was the case in previous propos-
als [2], [3]. malware-aware processors demonstrate that low-
level features, such as program instruction mix and memory
access traces are useful in identifying malware execution.
While malware-aware processors show promise, several down-
sides of this approach are: 1) that the proposed systems
still rely on software-level antivirus assistance, which has
the same defect rate as normal software [9], [10], and it is
vulnerable to attacks while reading the in-hardware counters
and classifying the results, and 2) all software must halt
during this classification period. Another work in this space
[11] performs instruction signature detection using a trusted
server for signature matching; to reduce network bandwidth
requirements, they employ compressive sensing. While this
work also performs analysis on a remote trusted server, our
collected data represents high-level behavioral features, which
provides significant insight into a program’s intentions and
reduced bandwidth requirements.

SNIFFER extends and improves the idea behind Malware-
aware processors by removing all antivirus software compo-
nents from the untrusted system—pushing the classification to

trusted servers inside the network operations center (NOC).
Besides protecting the antivirus from attack, pushing the bur-
den of classification to servers in the NOC has the benefit of
removing all run-time overhead from the monitored machines.
Having a centralized management scheme also allows network
engineers to select which malware they check for in the
field. Finally, our solution is orthogonal to [11], in that, if
SNIFFER were to greatly increase the number of features, it
could employ their proposed compression to to keep in check
transfer bandwidth requirements.

III. THREAT MODEL

SNIFFER addresses the threat of malware running on net-
worked computers. Specifically, our goal is to detect malware
on computers connected to enterprise networks. Networks of
this size often employ a centralized management structure
referred to as a Network Operations Center (NOC). We assume
that the system performing behavioral analysis within the
NOC is trustworthy (including all hardware and software).
We consider all software running on computers connected
to the enterprise network but outside the NOC to be un-
trustworthy, while microprocessors (including the hardware-
assisted monitoring) on these systems are trustworthy. Thus,
we must assume other computers connected to the network
are controlled by malware.

To summarize our threat model, we consider trusted: all
hardware (e.g., processors and network interfaces) and com-
puters and software within the network operations center. We
deem untrusted: all software on users’ computers. This threat
model presents two challenges for SNIFFER: (1) making
trusted measurements on untrusted computers; and (2) making
accurate and timely high-level decisions based on low-level
measurements from users’ computers.

IV. SYSTEM DESIGN

As illustrated in the lower portion of Figure 1, SNIFFER’s
approach to malware detection can be partitioned into two
parts: hardware-assisted feature acquisition at the client
computer and behavioral classification at a central trusted
server. The system components responsible for feature acquisi-
tion and storage are trusted hardware-level components located
on each of the monitored client systems within the enterprise
network. The behavioral classification component is located on
one of the Network Operations Center (NOC) trusted servers
(see also Section III). At the end of each set of computational
epochs, the feature data collected on the client’s computer is
transferred to the server, which in turn analyzes it and clas-
sifies the observed behavior as malware-infected or malware-
free. By embedding the feature acquisition into a hardware-
level component of the client machines, we ensure that the
behavioral classifier on the server receives an untampered view
of the client system’s operation. By relocating the behavioral
classification task away from the client systems, we avoid both
the overhead of malware detection for these computers and
also minimize the attack surface of our detection system. We
detail each component of SNIFFER in the following sections.
A. Hardware-assisted feature acquisition and collection

Our system contains a protected hardware monitor that
collects features that can be used individually or collectively
by the behavioral classifier to detect malware. The features
are representative of the manifested behavior of malware to
prevent it from hiding by changing its implementation. For

instance, for a denial of service malware, there must be a
burst of network packets of some type directed towards one
or more victims. In this case, monitoring packet transmission
rates and target addresses would be useful features to collect.

Below we provide the list of features currently collected.
As we grow the range of attacks SNIFFER can protect from,
we expect features to grow accordingly:
• [superuser time] - The time spent by the processor in user

and superuser space is indicative of what privileges are
needed by currently running programs. On our x86-based
implementation, this measurements requires sampling the
Code Segment (CS) register’s Privilege Level (CPL).

• [page faults] - The number of page faults is collected
because it provides information on the pattern of memory
accesses. On x86, this measurement entails tracking the
number of updates to the CPU’s Control Register 2 (CR2).

• [network packets] - The counts of incoming and outgoing
packets can detect departures from normal network activity.
Our implementation assumes the use of a CPU-integrated
Network Interface Controller (NIC), and the NIC provides
packet capture and analysis capabilities to gather these
statistics and those below.

• [destination IPs] - The number of distinct destination IP ad-
dresses for outgoing packets alerts the classifier of unusual
concentration or dispersion of IP address destinations.

• [source IPs] - The number of distinct source IP addresses
for incoming packets reveals potential divergences between
outgoing destinations and incoming sources.

• [ports] - Number of ports used to send/receive packets –
alerts the detector of suspicious spikes in either category.

• [packet size] - The average size of outgoing packets detects
a device sending a large number of small or large packets,
as in a synflood or an ICMP fragmentation flood.

• [syn packets] - The fraction of outgoing packets that are
syn packets is indicative of a synflood if both the percentage
and the number of outgoing packets are high.
There are several other considerations in our feature acqui-

sition process. The key trade off lies between the thoroughness
of features collected and the bandwidth required to transmit
the collected measurements to the classification servers. Once
hardware structures collect an epoch of features, data must be
transferred to a trusted server for analysis. We assume that
the system incorporates an integrated (and trusted) network
interface controller (NIC) that is capable of sending feature
data via a secure link (e.g., via TLS) to a trusted server. Since
next-generation NICs will likely incorporate TCP/IP imple-
mentations in hardware-protected components, it is reasonable
to expect that this transmission can be made in a secure
fashion, even from a compromised machine.
B. Behavior classification

The data collected during feature measurements is analyzed
by a trusted analysis server in the NOC. The goal of this
analysis is to detect systems infected with malware, while
maintaining a low false alarm rate.

Using a single epoch’s measured features, a machine-
learning (ML) classifier is used to determine if the measured
behavior is indicative of a machine infected by malware, or a
malware-free system. Within our evaluation we considered K-
nearest neighbors (KNN), Bayesian, SVM, and neural network
classifiers. We found that, for the malware types and features
we considered, KNN and Bayesian network classifiers provide

Example: ICMP flood on client streaming media

- training infected
- training clean
- new feature data

0 25 50 75 100 125

40

35

30

25

epochs 4, 5, 6 & 8

epochs 1, 2, 3,
7, 9, 10 & 11

- dirty epoch
- clean epoch
- assessment

ICMP

clean

1 2 3 4 5 6 7 8 9 10 11

ML algorithm: KNN - Features: networks packets, superuser time
Epoch length: 50ms

superuser time (samples/epoch)

ne
tw

or
k

pa
ck

et
s

epoch

Figure 2. Example of server classification for ICMP flood. An ICMP
flood is identified by collecting feature data on the number of network packets
and time spent in superuser mode. After the initial assessment by the machine
learning algorithm, KNN, SNIFFER applies a weighted moving average filter
(EWMA) to stabilize the determination and reduce the incidence of false
positives in flagging malware.

the best outcomes. The trained ML classifiers, one for each
major class of malware, will provide an initial assessment of
the client state (infected or clean) for each individual epoch.
Note how, during training, SNIFFER selects the set of features
and the ML classifier that works best for the specific class of
malware. Then, during classification, the previously selected
classifier is used to evaluate data from a run-time epoch with
respect to a specific class of potential malware infection.
Note also that, in general, the administrators of an enterprise
would want to validate the client computers against a range of
malware. Thus, SNIFFER will run multiple classifications, one
for each class of malware under investigation, using a distinct
classifier and feature set.

After the classifier provides an initial assessment, SNIFFER
applies an exponentially weighted moving average (EWMA)
filter to the outcome (clean/infected) of the current and past
epochs. This filter stabilizes the assessment. It is not infrequent
that a client manifests short bursts of activity resembling the
activity of a malware; however, unless the activity is sustained
SNIFFER will overlook it to minimize false positives. The
final assessment provided to the security administrators for
each execution epoch of the client is the output of the EWMA
filter, represented by the thick purple line in Figure 2.

Since the actual incidence of malware is typically low, one
of the key challenges of malware detection is to keep the false
alarm rate low. The EWMA filter limits the false alarm rate
by leveraging the fact that an epoch is less likely to be tagged
malware if the previous epoch was tagged clean. The down-
side of using this filter is that, if the exponential average is
weighted too heavily towards previous predictions, lightweight
malware could exploit the weighting to avoid detection while
still eventually accomplishing its goals. Balancing these two
considerations requires careful tuning.
C. Training the malware detection classifiers

Our classifiers must be trained in advance of use for each
class of malware that they must detect. For our experimental
malware detector, we trained a variety of classifiers on both

baseline (non-malicious programs) and malware. The training
then used both KNN and Gaussian Naive Bayesian candidate
classifiers. KNN requires setting parameters, which were se-
lected through cross validation. Finally, all the training data is
fed to the classifier so that it learns a model, and the classifier
configuration that performs best on the cross-validation data
set is selected as the classifier for that particular class of
malware. We envision that in a production environment the
training of classifiers would be either performed in the NOC
or provided by an anti-malware software vendor. The training
provider could easily configure the training to detect any
subset of malware needed by the user.

V. EXPERIMENTAL SETUP

Rather than create a physical implementation of our SNIF-
FER system for experiments, we created an experimental
setup, based on virtual machine execution, that allows us to
evaluate sniffer’s performance without needing to physically
build the system itself. The experimental setup faithfully rep-
resents the full function of the proposed system, and it collects
results representing how well it performs at detecting malware.
A. Malware testbeds

In our experimental evaluation, we employed several mal-
ware types described below. For each attack, we used a pub-
lically available implementation of the attack but in all cases
we extended the attack implementation to provide tunable
duty cycle and peak rate capabilities. The duty cycle specifies
what fraction of time the malware is active during a fixed
period of one second. For instance, if the user specifies a
duty cyle of 10%, the malware is active for 100ms and then
goes dormant for 900ms before becoming active again. This
feature strengthens the stealth capabilities of malware, making
it harder to detect. At the limit, a user can specify a duty cycle
of 100% so that the malware is always active. The peak duty
cycle is a user-specified metric indicating the intensity of the
attack when the malware is active. The specific units depend
on the type of attack the malware is performing.
• [UDP Flood] - A UDP flood is a denial of service (DoS)

attack that makes use of the UDP protocol. It sends UDP
packets to random TCP/IP ports at the target, forcing it to
reply with destination-unreachable ICMP packets, thus con-
suming the target’s resources. This malware is derived from
the PyNuker UDP flood project [12], which we adapted with
control for duty cycle and peak rates.

• [SYN Flood] - A SYN flood is similar to a UDP flood, but
uses SYN (synchronization) packets to perpetrate a denial-
of-service attack. Our SYN flood has the same duty cycle
and peak rate control as UDP flood. We developed it as a
wrapper around Nmap [13], a network scanning tool used
to send packets to a target at a user-set constant rate. For
duty cycles below 100%, we built the malware on Scapy
[14], a Python packet manipulation program.

• [ICMP Flood] - ICMP floods send a large number of ping
packets to a victim in order to draw ping responses. Our
ICMP flood provides duty cycle and peak rate control, and
it is developed in Python using Scapy [14].

• [SMTP Spammer] - Simple Mail Transfer Protocol
(SMTP) is the standard protocol for email. Our SMTP
spammer is a Python program wrapping a Windows com-
mand line utility for sending email (based on SwithMail). It
has two modes of operation: sending one email per second
or as many emails as possible.

• [Slowloris] - The Slowloris attack opens several HTTP con-
nections to a web server and keeps them open to prevent the
target from responding to other traffic. We use the Slowloris
implementation that is distributed with Nmap [13].

These malicious programs are selected because they represent
a variety of current and historical attacks that a compromised
computer within a botnet might encounter. In our evaluation,
we strive to detect these malware programs under several
stealth conditions: we limit attack time by controlling the duty
cycle to avoid detection, and we attack while a variety of non-
malicious applications execute concurrently on the system.

To avoid compromising third party systems and malware
propagation, our malware programs omit a propagation com-
ponent and only execute the payload of the malicious appli-
cation; it should also be noted that only IP addresses within
our lab’s network were attacked.
B. Feature collection

We collect all features listed in Section IV-A throughout
each epoch. In our setup, epoch lengths are 50ms to strike
a balance between the noisy characteristics of short epochs,
where even small spikes of activity may be interpreted as
malware, and the low-pass filter effects of long epochs, which
average away the behavior of duty-cycle controlled malware.
Specifically, we simulate a physical SNIFFER implementation
by reading a virtual machine’s registers via LibVMI [15], a
tool to monitor low-level characteristics of a virtual machine;
this includes the number of page faults and the time spent
in superuser mode. The remaining features are related to the
packets entering or leaving the virtual machine. We capture
all packets going into or out of the virtual machine using
tcpdump [16] on the host machine and then parse the raw
data to gather the desired features.
C. Classifier setup

Once we collect all the feature data from the virtual ma-
chine, we run the selected classifier and features that SNIFFER
found most suitable for the given malware during training (see
Section IV-C). The ML algorithm processes several epochs at
a time (called a set), approximately 200 in our setup, and then
applies the weighted moving average filter to attain the final
assessment for each epoch. If any of the epochs in the set is
deemed as malware, the client is flagged as infected and the
set is classified as malware-flagged, otherwise the set is clean.

VI. EXPERIMENTAL EVALUATION

This section evaluates SNIFFER in terms of the quality of its
analysis and its performance impact on the enterprise compo-
nents. The metrics that we use to assess SNIFFER’s malware
detection capabilities are based on the relation between SNIF-
FER’s classification and the client’s situation. Specifically, we
summarize these measurements with two key metrics based
on counting one event per set of epochs (see Section V-C):
• [False Alarm Rate (FAR)] - This metric represents how of-

ten SNIFFER will flag malware on a client that is malware-
free, thus forcing an unnecessary secondary inspection or
downtime on the client, causing loss of trust in the system.
We compute FAR as: FalsePositives / (FalsePositives +
TrueNegatives)*100 over each 50ms epoch.

• [Missed Alarm Rate (MAR)] - This metric represents how
often the system fails to detect malware when a client is
infected. MAR is derived as FalseNegatives / (FalseNega-
tives + TruePositives)*100 over each 50ms epoch.

malware
detector

machine
activity Targeted Malware

on Idle System
Targeted Malware

with Media Streaming
No Malware

Typical Usage

UDP Flood FAR=MAR=0% FAR=MAR=0% FAR=0%

SYN Flood FAR=3% any rate
MAR=80%@1 pkt/s, 0%@ >100 pkt/s

FAR=0
MAR=7%@10 pkt/s, 0%@ >15 pkt/s FAR=0%

ICMP Flood FAR=MAR=0% FAR=13.3% any rate
MAR=0% FAR=1% any rate

SMTP Spammer FAR=MAR=0% FAR=MAR=0% FAR=0%
Slowloris FAR=MAR=0% FAR=MAR=0% FAR=0%

Table I. False Alarm Rate (FAR) and Missed Alarm Rate (MAR) reported for each malware testbed (across all 50ms epochs) for three distinct
types of client executions: idle, streaming media applications, and typical workday use. In most cases, SNIFFER provides a FAR and MAR of 0.0%.

During the training phase, the classifier and features to be
used for each class of malware are selected. Each class aside
from Slowloris requires a K-nearest neighbors classifier, while
Slowloris uses a Bayesian classifier. In terms of features, SYN
Flood uses SYN packets, user time and outgoing network
packets, Slowloris uses page faults and user time, all other
malware uses all the features that SNIFFER measures.
A. Malware detection

SNIFFER’s accuracy in detecting malware is presented in
Table I, which reports FAR and MAR metrics for each of
the malware testbeds and for multiple operating conditions.
The ”Media Streaming” column includes malware detection
concurrent with the website YouTube continuously streaming
video. We varied the rate of flooding for all flood malware
from 1 packet/second to 1,000, while keeping the duty cy-
cle at 100%. For the SMTP spammer we used both the 1
email/second and max rate settings. Slowloris was operating
at the default parameter setup from Nmap. Note that both FAR
and MAR are at 0% (indeed, 0.0%) for most combinations.
SYN Flood has noticeable MAR at extremely low attack
rates, but they both quickly approach 0% at rates above 100
packets/second when the client is idle, and at rates above 15
packets/second when the client is simultaneously streaming
media. Finally, ICMP Flood and SYN Flood present a small
FAR, one under idle and typical use conditions, and the other
while streaming.

To assess the extent that non-malicious activities triggered
false positive malware occurrences (e.g., a non-zero FAR), we
performed analysis of a machine running one hour of typical
usage for three users. We did not report MAR for typical use
workloads because no malware was activated, thus, we only
tracked the FAR metric. As shown in Table I there were no
false positives encountered except for occasional ICMP Flood
alerts. These alerts were quite infrequent, and they did not
form a significant contribution to the overall alarm rate.

Next, we evaluated how SNIFFER’s detection performs with
malware attempting to evade detection by throttling down their
attacks. In duty cycle mode (see Section V-A), a malware is
active for short intervals of time, followed by dormant periods.
This is one of the most effective techniques against a solution
like SNIFFER, which detects the behavioral manifestations of
malware, since the malware detector may deem the short duty
cycle of an attack as non-malicious activity.

Figure 3 reports SNIFFER’s ability to detect malware as
the duty cycle varies. In our experiments, we varied the duty
cycle from 10% (100ms) to 30% (300ms). We analyzed SNIF-
FER’s detection of all our flood malware while the client was
operating on idle. Users can choose to tune their epoch length
parameter to the minimum duty cycle they wish to be able to
detect. Given these results, it is clear that SNIFFER would be

0%

10%

20%

30%

40%

10% 15% 20% 25% 30%

m
is

se
d

al
ar

m
ra

te

duty cycle (period = 1s)

ICMP Flood

SYN Flood

UDP Flood

Figure 3. Missed Alarms Rate for malware on idle clients. The plot
reports the MAR for UDP Flood, SYN Flood and ICMP Flood while varying
the duty cycle from 10% to 30% when attacking from an idle client.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40%

m
is

se
d

al
ar

m
 ra

te

duty cycle (period = 1s)

ICMP Flood
SYN Flood
UDP Flood

Figure 4. Missed Alarms Rate for malware on media streaming
clients. The plot reports the MAR for UDP Flood, SYN Flood and ICMP
Flood while varying the duty cycle from 0% to 45% when attacking from a
client which is streaming media.

a powerful tool to identify malware, or at least force malware
to limit its own effectiveness. Figure 4 plots the same critical
metric, MAR, again for ICMP Flood, SYN Flood and UDP
Flood. However, this time the infected client’s activity is per-
formed concurrently while the infected machine is streaming
media, which generates network activity in the background.
SNIFFER’s detection capabilities are extremely accurate even
at very low attack rates (as low as 1 packet/second) and with
high incidents of non-malicious activity.

Finally, we also evaluated SNIFFER sensitivity to the mal-
ware implementation. As discussed earlier, SNIFFER attempts
to be insensitive to evasion techniques that are based on code
transformation. As an initial test for this, we compiled the
UDP Flood (written in Python) with baseline settings and
with modified compiler optimization settings, so as to generate
varied implementations. Figure 5 plots the Missed Alarm Rate
measured when SNIFFER detects these two versions of UDP
Flood on a client streaming media. SNIFFER’s MAR trend
is independent of the optimization level of the malware code,
and only sensitive to the malware’s duty cycle. Although code
optimizations fall short of the transformations possible with
metamorphic malware, this result is promising.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5% 10% 15% 20% 25% 30% 35% 40%

m
is

se
d

al
ar

m
 ra

te

duty cycle (period = 1s)

UDP Flood ‐ baseline
UDP Flood ‐ compiler optimized

Figure 5. Missed Alarm Rate for two different implementations
of UDP Flood. The plot reports the MAR over varying duty cycles for two
versions of UDP Flood: a baseline one and one with optimized compilation.

Storage per epoch bits Transfer bits
superuser time 8 data per epoch 90
user time 8 data per transfer 90*20
page faults 6 security hash 256
IN packets 8 nonce 32
OUT packets 8 TOTAL TRANSFER 2,088
destination IPs 4
source IPs 4
OUT packet src ports 8
OUT packet dest ports 8
IN packet src ports 8
OUT packet dest ports 8
packet size 5
syn packets 7
TOTAL storage/epoch 90

Table II. Storage and transfer requirements for SNIFFER. Storage
is required for all features gathered during each epoch, and we store
20 epochs of data at a time. Each transfer must transmit all feature
data augmented with a security data for a total of 2,088 bits/second.

B. Key feature analysis
Earlier, we reported which features were used for each

malware type to obtain the results in Table I. For all but
two malware classes, we are unable to achieve comparable
results with only one feature. This result shows that it is not
always possible to assess if a client is under attack with simple
intuitive measurements of just one feature, but it is important
to deploy the fine-grained capabilities of machine learning
classifiers that can be trained with a wide range of features.
C. Performance and area overhead analysis

To evaluate SNIFFER’s overhead, we first considered the
amount of storage necessary at the client end to gather all the
measurements for an epoch. The left part of Table II reports
the number of bits of storage per epoch for each of the features
we gathered. In addition, we transfer feature data to the server
in batches of 20 epochs, that is, once a second. Thus we need
to store measurements for 20 epochs, for a total of 1,800 bits.

The right part of the table computes how many bits are
transferred during each transmission: 1,800 bits are required
for 20 epochs of measurements. Moreover, we need to in-
clude a hash to protect the data from network-bound attacks.
Thus, each time feature data is transferred to the server, the
requirement is to transfer 2,088 bits, equivalent to 261 bytes.
The network bandwidth required to support SNIFFER-related
communication is thus 2,088 bits/second. These settings can
be adjusted by a user based on their needs.

In a typical enterprise there are many client computers that
must be continuously monitored for potential malware infec-
tions: in Figure 6 we report how the bandwidth demands on

0

0.005

0.01

0.015

0.02

1 10 100 1,000 10,000

ba
nd

w
id

th
 G

b/
s

clients on enterprise network
Figure 6. Network bandwidth demands for feature transmission as
the number of clients in the enterprise network increases.

the network increases as the number of clients increases. Note
that the demand is limited up to 10,000 clients, and becomes
significant for larger enterprises. In those environments it is
most practical to partition the network into multiple distinct
domains. We expect an enterprise-class network to easily
support 100,000’s of machines with no excessive burden on
network resources, with only a few malware analysis servers.

VII. CONCLUSION

In this paper, we introduced an enterprise-class antivirus
analysis framework, called SNIFFER, which measures in hard-
ware at run-time system-level features for transmission to
trusted classification servers. System features are analyzed,
using pre-trained machine-learning models, over an epoch of
execution to determine if a machine is infected with malware.
Experiments show that SNIFFER is effective at detecting
malware with low false positive rates, even as attackers lower
their attack rates to evade detection. We also examined the
bandwidth requirements of the SNIFFER system and found
that a single analysis server could easily service over 10,000
machines without undue network demands. These results show
the accuracy and security benefits of combining in-hardware
monitoring with behavioral-focused machine learning and sug-
gest that the SNIFFER architecture is a promising approach
to address increasingly sophisticated malware codes.
Acknowledgements. This work was supported in part by
C-FAR, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and
DARPA.

REFERENCES

[1] P. Kleissner, “Stoned bootkit,” BlackHat, 2009.
[2] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-

madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” in Proc. ISCA, 2013.

[3] A. Tang, S. Sethumadhavan, and S. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in Proc. RAID, 2014.

[4] K. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and D. Pono-
marev, “Ensemble learning for low-level hardware-supported malware
detection,” in Proc. RAID, 2015.

[5] “Latest RAP quadrant,” Virus bulletin, 2015.
[6] AV-TEST, “Malware statistics,” https://www.av-test.org/en/statistics.
[7] P. Szor, The Art of Computer Virus Research and Defense. Addison-

Wesley Professional, 2005.
[8] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Pono-

marev, “Malware-aware processors: A framework for efficient online
malware detection,” in Proc. HPCA, 2009.

[9] T. Ormandy, “Symantec/Norton Antivirus ASPack remote heap/pool
memory corruption vulnerability,” CVE-2016-2208, 2016.

[10] Sophos, “Tavis Ormandy finds vulnerabilities in Sophos,” 2015.
[11] X. Wang, S. Chai, M. Isnardi, S. Lim, and R. Karri, “Hardware perfor-

mance counter-based malware identification and detection with adaptive
compressive sensing,” ACM Trans. on Code Opt., vol. 13, no. 1, 2016.

[12] “Pynuker,” https://sourceforge.net/projects/pynuker/.
[13] “Nmap website,” https://nmap.org/.
[14] “Scapy website,” http://www.secdev.org/projects/scapy/.
[15] B. Payne, “Simplifying virtual machine introspection using LibVMI,”

Sandia National Laboratories, Tech. Rep. SAND2012-7818, Sep. 2012.
[16] “TCPDump website,” http://www.tcpdump.org/.

https://www.av-test.org/en/statistics
https://sourceforge.net/projects/pynuker/
https://nmap.org/
http://www.secdev.org/projects/scapy/
http://www.tcpdump.org/

	Introduction
	Background, Motivation, and Related Work
	Threat Model
	System Design
	Hardware-assisted feature acquisition and collection
	Behavior classification
	Training the malware detection classifiers

	Experimental Setup
	Malware testbeds
	Feature collection
	Classifier setup

	Experimental Evaluation
	Malware detection
	Key feature analysis
	Performance and area overhead analysis

	Conclusion
	References

