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Abstract: Extremes of the hydrologic cycle will accompany global warming, causing precipitation
intensity to increase, particularly in middle and high latitudes. During the twentieth
century, the frequency of major storms has already increased, and the total precipitation
increase over this time period has primarily come from the greater number of heavy events.
The Great Lakes region is projected to experience a rise these extreme precipitation
events.

For southern Wisconsin, the precipitation rate of the 10 wettest days was simulated using
a suite of seven global climate models from the UN Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report. For each ranking, the precipitation rate of
these very heavy events increases in the future. Overall, the models project that extreme
precipitation events will become 10% to 40% stronger in southern Wisconsin, resulting in
greater potential for flooding, and for the waterborne diseases that often accompany high
discharge into Lake Michigan.

Using 6.4 cm (2.5 in) of daily precipitation as the threshold for initiating combined sewer
overflow into Lake Michigan, the frequency of these events is expected to rise by 50% to
120% by the end of this century. The combination of future thermal and hydrologic
changes may affect the usability of recreational beaches. Chicago beach closures are
dependent on the magnitude of recent precipitation (within the past 24 hours), lake
temperature, and lake stage. Projected increases in heavy rainfall, warmer lake waters, and
lowered lake levels would all be expected to contribute to beach contamination in the
future.

The Great Lakes serve as a drinking water source for more than 40 million people.
Ongoing studies and past events illustrate a strong connection between rain events and the
amount of pollutants entering the Great Lakes. Extreme precipitation under global
warming projections may overwhelm the combined sewer systems and lead to overflow
events that can threaten both human health and recreation in the region.
(Am J Prev Med 2008;35(5):451–458) © 2008 American Journal of Preventive Medicine

Background
Climate Change and Hydrologic Extremes

Global climate change is expected to cause
warming temperatures, sea-level rise, and a
change in frequency of extremes of the hydro-

logic cycle (more floods and droughts). This study
focuses on the health implications of heavy precipita-
tion, with an in-depth look at related health risks in the
U.S. Such heavy precipitation events often result in
substantial societal impacts, including an increased risk
of waterborne disease outbreaks. Heavy precipitation

can lead to stormwater discharge of contaminants into
water bodies if the volume exceeds the containment
capacity. The seasonal contamination of surface water
in early spring in North America and Europe may
explain some of the seasonality in sporadic cases of
many types of waterborne diseases. According to the
North American chapter of the most recent IPCC
report,1 heavy precipitation events are expected to
increase under climate change scenarios (Figure 1).

Rainfall Projections for the Great Lakes Region

For the Great Lakes region of the U.S., contamination
events typically occur when daily rainfall levels exceed a
threshold of about 5–6 cm (2–2.5 in).2,3 Given that
rainfall extremes are expressions of climate, there is
heightened concern as to how this type of event might
change in a warmer future climate.
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Meteorologic theory indicates that the intensity of a
precipitation event is regulated primarily by the local
amount of moisture in the atmosphere during a storm
and that the moisture-holding capacity of the atmo-
sphere increases exponentially with temperature.4 Con-
sequently, expectations are high that more intense
precipitation will accompany global warming. This pos-
sibility is supported by many modeling studies that have
simulated the climatic response to increasing concen-
trations of greenhouse gases.5–8 Precipitation intensity
(total precipitation divided by the number of wet days)
is projected to increase almost everywhere, particularly
in middle and high latitudes where average precipita-
tion is also expected to increase.9 Most of the Great
Lakes region is projected to experience a rise in both
average and extreme precipitation events.1,10

These anticipated future changes are consistent with
recent trends over the U.S., including the Great Lakes
area. Major storms have been occurring with greater
frequency during the twentieth century, and the total
precipitation increase over this period has resulted dispro-
portionately from the increase in heavy events.11–13 This
trend has been accentuated by the increase in heavy
events toward the end of the century, the time of most
pronounced global warming.14,15

These large-scale findings were tailored to the
Wisconsin–Chicago region, where we are conducting
research on the health impacts of extreme events. In
one example, the recent and future simulated precipi-
tation rate of the 10 wettest days were computed for the
Madison WI area from seven global climate models
(GCMs) used in the UN Intergovernmental Panel on
Climate Change (IPCC) Fourth Assessment Report1

(Figure 2). For each ranking (tenth wettest day to the
wettest day), the precipitation rate of these very heavy
events increases in the future, and the enhancements
are most pronounced for the most extreme events (wet-
test and second wettest days). Overall, the models project
that these extremely heavy precipitation events will be-
come 10% to 40% stronger in southern Wisconsin,
resulting in greater potential for flooding and for the
waterborne diseases that often accompany high dis-
charge into Lake Michigan.3

A somewhat different approach was used to estimate
future changes in extreme precipitation over Chicago.
For this application, the GCM output from two repre-
sentative models, the geophysical fluid dynamics labo-
ratory (GFDL) model and the parallel climate model
(PCM) was statistically downscaled to provide higher-
resolution information. Statistical downscaling uses his-
torical observational data to tailor projections from a
global model to a local scale. A statistical relationship is
first established between a location’s measured precip-
itation and the corresponding climate model output
during a prior time interval, typically around 30 years.
This historical relationship—between climate model
output at the relatively coarse scale of the GCM and
the daily precipitation values recorded on the local
scale—is then used to downscale future model projec-
tions to the same local scale. This method assumes that
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Figure 1. Projected changes in total precipitation from the late twentieth to the late twenty-first centuries, based on
middle-of-the-road increases in greenhouse gases: annual (left), winter (center), and summer (right). Source: IPCC, 20071

Figure 2. GCM-simulated precipitation amounts in southern
Wisconsin for the 10 wettest days in the late twentieth and late
twenty-first centuries (10 days total for each century), based
on middle-of-the-road projected increases in greenhouse
gases.
GCM, global climate model
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the relationships between large- and small-scale pro-
cesses remain the same over time.

The change was analyzed in the frequency of heavy
daily precipitation events, ranging from 1 to 5 cm
(0.4–2.0 in), between the late twentieth and late twenty-
first centuries (Figure 3). Although the precise changes
are dependent on the assumed greenhouse gas emissions
scenario, the results clearly indicate more frequent ex-
treme events, ranging from !10% increases for 1–1.5 cm
(0.4–0.6 in) events to !60% for the heaviest storms
("4 cm ["1.6 in]) in the high-emissions scenario.
Using 6.35 cm (2.5 in) of daily precipitation as the
threshold for initiating combined sewer overflow into
Lake Michigan,2 the frequency of these events is ex-
pected to rise by 50%–120% by the end of this century.
This translates into an expected occurrence of about
one event every other year in the recent past to
approximately one event every year (low-emissions sce-
nario) to 1.2 events every year (high-emissions sce-
nario) by the end of this century.2

The expected changes in the hydrologic cycle, in-
cluding increases in extreme precipitation events,
should have a direct bearing on waterborne diseases in
the Great Lakes. For example, the 1993 Cryptosporidium
outbreak in Milwaukee was preceded by the heaviest
rainfall in 50 years in the associated watersheds.16

Summertime bacteria concentrations in an inland lake
in Wisconsin (Lake Geneva) exhibit positive, significant
correlations not only with mean summertime rainfall
but also with the duration between rainfall events, a

variable that is expected to increase in the future.17 The
combination of future thermal and hydrologic changes
may affect the usability of recreational beaches. Chi-
cago beach closures are dependent on the magnitude
of recent precipitation (within the past 24 hours), lake
temperature, and lake stage (i.e., height of the water
surface above an established level).18 Projected in-
creases in heavy rainfall, warmer lake waters, and
lowered lake levels19 would all be expected to enhance
beach contamination in the future. Although more
extreme rainfalls would seem to contradict the projec-
tion of lower lake levels, the latter expectation stems
from a large anticipated increase in evaporation at the
lake surface (which can offset the precipitation gain)
and a higher proportion of future precipitation falling
as heavy events, even if the total precipitation amount
does not rise.

Vulnerability Factors

Even today, many of our community water systems can
be overburdened by extreme rainfall events. Heavy
rainfall or snow melt can exceed the capacity of the
sewer system or treatment plant, which are designed to
discharge the excess wastewater directly into surface
water bodies.20,21 In urban watersheds, more than 60%
of the annual loads of all contaminants are transported
during storm events.22 In general, turbidity increases
during storm events, and studies have recently shown a
correlation between increases in turbidity and illness in
communities.23,24 Also, higher winter temperatures
could further enhance flooding from the contribution
of snow melt.

Combined Sewage Overflows and Aging
Water Infrastructure

Older cities around the nation have combined sewer
systems, which are designed to capture both sanitary
sewage and stormwater and convey these flows to
a wastewater treatment plant. Large rain events can
overwhelm these systems, causing untreated sewage
mixed with stormwater to be released directly into receiv-
ing waters. The U.S. Environmental Protection Agency
(EPA) has estimated that 770 communities release
more than 3.2 trillion liters (850 billion gallons) of
combined sewage to the nation’s waterways annually.25

As infrastructure improvements to sewer system ca-
pacity are made, the number of combined sewer
overflows can be decreased. For example, the con-
struction of an inline storage system in Milwaukee
reduced the number of combined sewer overflows
from 40 – 60 per year to 0 – 4 per year (with the
average approximating 1.5 per year over the past 10
years). However, it remains difficult to capture the most
extreme events. Changing weather patterns that bring

Figure 3. Projected change in the frequency of heavy precip-
itation in Chicago by the late twenty-first century, based on
downscaled climate model output for high-end and low-end
greenhouse gas emissions scenarios from two global climate
models used in the Chicago Climate Impact Assessment.
Source: Hayhoe and Wuebbles2
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more� extreme� storms� to� some� regions� may� outpace� the
infrastructure� improvements.

Case� Study

Climate� and� water� quality� in� Milwaukee.� The� urban
environment� presents� unique� risks� of� water� contamina-
tion.� Runoff� from� impervious� surfaces� contains� metals,
pesticides,� pathogens,� and� fecal� indicator� bacteria.� It
has� been� linked� to� adverse� public� health� effects.26� –28� In
most� municipal� areas,� urban� stormwater� is� conveyed� in
separated� sewer� systems� and� discharged� directly� into
receiving� waters.� Aging� infrastructure� may� cause� sani-
tary� sewage� to� infiltrate� into� stormwater� pipes,� where� it
is� essentially� discharged� with� no� treatment.� Beaches� are
often� located� in� urbanized� areas� and� highly� susceptible
to� stormwater� impacts.29� –31� Accelerating� development
of� urban� coastal� areas� and� changing� storm� patterns� may
synergistically� increase� the� amounts� of� urban� stormwa-
ter� released� into� coastal� systems.

The� Milwaukee� River� Basin� consists� of� 1440� km2� (556
miles2)� of� rural,� agricultural,� suburban,� and� urban� land
use.� The� basin’s� watersheds� drain� to� three� major� rivers
that� converge� in� downtown� Milwaukee� and� discharge
through� a� 140� m� (0.09� mile)� channel� leading� to� Lake
Michigan.� Following� storm� events,� the� fecal� indicator
bacteria� Escherichia� coli� can� be� detected� in� the� channel
at� levels� as� high� as� 2000� –7000� colony� forming� units
(CFU)/100� ml.� These� levels� are� 10� times� higher� than
the� EPA-recommended� limit� for� recreational� waters.32

The� presence� of� E.� coli� demonstrates� that� fecal� pollu-
tion� is� present;� however,� given� the� complexity� of� this
system,� the� bacteria� may� come� from� agricultural� runoff,
urban� stormwater,� or� sanitary� sewage.� Human� viruses
have� been� detected� at� this� same� site� following� storm
events� with� no� reported� sewage� overflows,� providing
evidence� that� sanitary� sewage� may� be� continually� re-
leased� into� the� basins� tributaries.� Storm� events� of� !3
inches� of� rainfall� within� 24� hours� may� overwhelm� the
combined� sewer� systems� and� lead� to� an� overflow.� In� this
case,� the� levels� of� E.� coli� detected� in� the� channel� leading
to� Lake� Michigan� can� be� up� to� 10� times� higher� (e.g.,
20,000� –50,000� CFU/100� ml)� than� when� there� are� no
sewage� overflows.3� These� events� generally� occur� less
than� three� times� per� year,� and� do� not� occur� at� all� in� dry
years� (Figure� 4).

Milwaukee� is� not� unique� in� terms� of� its� impact� on� the
lake;� many� cities� around� the� Great� Lakes� are� situated
near� major� rivers� that� come� from� a� complex� mixture� of
watershed� sources.� The� Great� Lakes,� which� serve� as� a
drinking� water� source� for� more� than� 40� million� people,
are� particularly� susceptible� to� fecal� pollution� and� can
become� reservoirs� for� waterborne� diseases.� Ongoing
studies� and� past� events� illustrate� a� strong� connection
between� rain� events� and� the� amount� of� pollutants
entering� the� Great� Lakes.� The� 1993� Cryptosporidium
outbreak� in� Milwaukee,� which� sickened� more� than

400,000� people,� coincided� with� record� high� flows� in� the
Milwaukee� River,� a� reflection� of� the� amount� of� rainfall
in� the� watershed.16

Land-Use� Patterns

Land� cover� conversion� to� impervious� surfaces� (such� as
roadways� and� parking� lots)� increases� both� the� volume
and� velocity� of� stormwater� runoff,� while� also� reducing
groundwater infiltration.33 The percentage of impervi-
ous surface within a watershed, for example, explains
most of the variability for indicator bacteria across
watersheds.34 Bacteria levels also tend to be elevated in
agricultural catchments with higher levels of grazing
cattle and sheep.35 Zoning and development policies
can be a strong influence on the amount of impervious
surface within each municipality.36

Pathways� of� Human� Exposure
Drinking� Water

Waterborne disease outbreaks stemming from drinking
water source contamination require a combination of
determining factors. The requirements include: con-
tamination of the source water, transport of the con-
taminant to the water intake or well of the drinking
water system, insufficient treatment to reduce the level
of contamination, and exposure to the contaminant.

Recontamination of treated water may also occur at
the public or homeowner’s distribution system level.37

Waterborne disease outbreaks from all causes in the
U.S. are distinctly seasonal, clustered in key watersheds,
and associated with heavy precipitation.16 In Walker-
ton, Ontario, in May 2000, heavy precipitation com-

Figure 4. Levels of E. coli in the Milwaukee estuary, which
discharges to Lake Michigan, 2001–2007, during base flow
(n"46); following rain events with no CSO (n"70); and
following CSO events (n"54). Boxes indicate 75% of values,
with median values drawn in each. Whiskers are 95% of values
and outliers are shown as closed circles. There were signifi-
cant differences in E. coli levels following rainfall and CSOs
compared to base flow (p!0.05).
CFU, colony forming units; CSO, combined sewer overflow
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bined with failing infrastructure contaminated drink-
ing water with E. coli 0157:H7 and Campylobacter jejuni,
resulting in an estimated 2300 illnesses and seven
deaths.38

Recreational Water and Stormwater Issues

Heavy runoff after severe rainfall can also contaminate
recreational waters and increase the risk of human
illness39 through higher bacterial counts. This associa-
tion is strongest at beaches closest to rivers.40 Ear, nose,
and throat; respiratory; and gastrointestinal illnesses
are commonly associated with recreational swimming
in fresh and oceanic waters. Less abundant and poten-
tially more severe waterborne diseases such as hepatitis,
giardiasis, cryptosporidiosis, and toxic algal blooms
pose serious health threats to vulnerable human popu-
lations and local wildlife. Swimmers have an elevated
risk of contracting gastrointestinal illnesses versus non-
swimmers, and this risk generally increases with pro-
longed exposure.41 Frequent water users, such as life-
guards or recreational enthusiasts, are at risk for
waterborne disease, and young children, the elderly,
pregnant women, and the immunocompromised have
the greatest risk of suffering serious complications.41,42

Macrodemographic trends toward an older and more
immunocompromised U.S. population suggest that vul-
nerability to waterborne pathogens will continue to
increase.

Precipitation events and sub-
sequent runoff may flush
pathogens and indicator bacte-
ria directly into water bodies
and overwhelm or decrease the
efficiency of the sewage dis-
posal infrastructure. Although
pathogens tend to co-occur
with indicator bacteria, indi-
cators are prone to false posi-
tive readings. Indicator bacte-
ria may survive in soil
sediments or beach sand, be-
come re-suspended during a
precipitation event, and con-
found estimates of waterborne
disease risk.30,43,44 The period-
icity and amplitude of contami-
nation events are likely affected
by processes that re-suspend or
transport pathogens.45,46 Indica-
tor bacteria are influenced by
precipitation events up to a week
prior to sample collection al-
though recent precipitation
(0–3 days) tends to exhibit
the strongest relationships with
their numbers.16 Interval time
between rainfall events can in-

crease pollutant accumulation and subsequent load-
ing into water bodies.18,47 A disproportionately large
pollutant mass similarly may be transported with the
first precipitation event following the dry season in
mid-latitude locations.48,49 Figure 5 shows an example
of rainfall and contamination levels for Lake Geneva
WI. Unseasonably high precipitation typically increases
indicator bacteria loading into water bodies.50 Earth
system processes like the El Niño Southern Oscillation
(ENSO) strongly influence interannual precipitation
and therefore must be taken into account, especially
for contamination events between September and
March.50–52

Resulting Waterborne Illnesses

Agents of disease. More than 100 different types of
pathogenic bacteria, viruses, and protozoa can be
found in contaminated water.53–55 Many of these have
been implicated in a variety of illnesses transmitted by
food or water.

Waterborne and foodborne diseases continue to
cause significant morbidity in the U.S. In 2002, there
were 1330 water-related disease outbreaks,56 34 from
recreational water and 30 from drinking water.57,58 In
recreational water, bacteria accounted for 32% of out-
breaks, parasites (primarily Cryptosporidium) for 24%,
and viruses for 10%.57 Bacteria were the most com-

Figure 5. Relationship between rainfall and beach contamination, Lake Geneva, Wisconsin
CFU, colony-forming units
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monly identified agent in drinking water (29%, primar-
ily Campylobacter) followed by parasites and viruses
(each 5%).58 Gastroenteritis continues to be the pri-
mary disease associated with food and water exposure.
In 2003 and 2004, gastroenteritis was noted in 48% and
68% of reported recreational and drinking water out-
breaks, respectively.57,58

Surveillance

Variability of indicator bacteria is controlled by the
physical dynamics of each water body, and quality can
be inferred from water’s chemical and biologic quali-
ties. Prevailing wind direction, toward or away from the
beach, modulates biophysical environment and indica-
tor bacteria relationships in large water bodies.46 Tidal
cycles in large water bodies enhance indicator bacteria
exchange from subsurface and soil reservoirs.59,60 Ele-
vated nitrate, ammonium, and caffeine in water quality
measurements suggest recent cross-contamination with
sewage-like materials.61,62 Recent advances in molecu-
lar detection techniques have developed alternative
indicators that are human-specific (e.g., demonstrating
sewage inputs) such as human-specific Bacteroides spp.,
Methanobrevibacter smithii, and the surface protein gene
present in enterococcus (esp).63–65 Precipitation and
subsequent runoff events increase nutrient loading into
water bodies, potentially enhancing floral productivity
and water chlorophyll levels.46 Indicator bacteria sur-
vival is inversely related to water salinity and survival
exponentially decreases with the duration and magni-
tude of solar radiation exposure.66 Surface water runoff
also disturbs and re-suspends sediments, increases wa-
ter turbidity, decreases solar radiation, and proportion-
ally increases indicator bacteria loading into water
bodies.46

Conclusion and Recommendations

A broad range of improvements can be made toward
attaining safe water quality in the U.S. These include
such activities as data collection/surveillance, infra-
structure improvements, land use planning, education,
and research. Ultimately, better assessment of water
quality and risk to the drinking water system from the
watershed to the tap, as well as recreational water
exposures, will allow for better prevention and controls
to limit the impact of contamination events.

Data Collection

Based on the current state of surveillance, better indi-
cators of fecal pollution are required. Public health
officials and water managers need especially to be
informed about the source of contamination, which
could be from farm runoff, stormwater, or sanitary
sewage.67 Progress has been made in the field of
microbial source tracking in terms of identifying

source-specific alternative indicators, and molecular
approaches offer a broader range of target organisms
because they are not dependent on culture (for re-
views, see Santo Domingo et al.68 and Savichtcheva and
Okabe69). These have been used successfully in field
studies.70–72 However, widespread implementation will
require extensive validation (including geographic dif-
ferences), further assay development to reduce cost
and complexity of new assay procedures, and standard-
ization for use in public health laboratories.

One of the disadvantages of the current system is that
the outbreaks are detected after the fact—that is, after
the contamination event and after individuals have
become ill. The disease surveillance system is incapable
of detecting outbreaks when diagnosed cases are not
reported to health departments, such as when mild
symptoms are attributed to other causes or when health
problems cannot be treated medically. In addition,
delays exist in detecting outbreaks because of the time
necessary for laboratory testing and reporting of find-
ings. Predictive forecasts of swimming-related health
risk currently support beach management decisions at
some U.S. coastal oceanic and Great Lakes beach-
es.46,73,74 Near-term forecast models require knowledge
of the relationships between beach-specific environ-
ments and swimming health risks, collected and refined
over multiple years of observations. Forecast models
tend to have high sensitivity but relatively lower speci-
ficity and are therefore prone to false positive predic-
tions of unsafe swimming conditions. Future research
should investigate the extent to which dynamic envi-
ronmental conditions can augment alternative human-
specific pathogen indicators.

Infrastructure Improvements

This article has given specific examples of shortcomings
in our current water systems. Upgrading sewage/storm-
water infrastructure will obviously decrease the inci-
dence of waterborne pathogen pollution.59,75 For ex-
ample, !20% of childhood bacterial or viral diarrheal
illnesses can be attributed to the density of holding
tanks and other septic tanks.76 Improperly managed
holding septic tanks discharge untreated sewage and
contaminate surface water. Improving infrastructure
may further reduce risks of contamination from ex-
treme weather events.

Land use/watershed protection. Watershed protection
will continue to be an extremely important factor
influencing water quality.67 Watershed water quality has
a direct impact on source water and processed water
quality as well as on recreational sites and coastal
waters. Better farming practices (to capture and treat
agricultural wastes) and surrounding vegetation buff-
ers, along with improved city disposal systems to cap-
ture and treat wastes, would reduce the runoff of
nutrients, toxic chemicals, trace elements, and micro-
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organisms flowing into reservoirs, groundwater, lakes,
rivers, estuaries, and coastal zones.

Education and research. According to Rose and oth-
ers,67 coordinated monitoring of physical, chemical,
and biologic parameters should go toward building
databases and integrated models that include environ-
mental, ecologic, and social conditions, consequences,
and costs. Collaborative, multidisciplinary training and
research—involving health and veterinary profession-
als, biologists, ecologists, physical scientists, database
specialists, modelers, and economists—is required to
carry out comprehensive assessments and management
plans. Interagency agreements will be needed to coor-
dinate and support this initiative. Testing models and
hypotheses based on observed temporal and spatial
co-occurrences may help focus research policies. It is
essential to better delineate—in time and location—the
occurrence of disease and to maintain standardized
health databases.

Waterborne diseases remain a major public health
problem in the U.S. and around the world. Enhanced
understanding of the weather-sensitivity of many water-
borne diseases is necessary along with improved surveil-
lance, watershed/source water protection, and educa-
tional programs to improve the safety of our water.
Scenarios of future global warming accompanied by
climatic extremes only increase the importance of these
improvements.
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