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Thin Ice Growth 
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The thickening of ice covers has traditionally been calculated using a method in which the thickness 
is assumed proportional to the square root of the accumulated freezing degree days. Particularly for 
newly formed thin ice this method overpredicts the ice thickness. Consideration of the thermal 
resistance between the top of the ice and the atmosphere results in a method which predicts linear 
growth with time for thin ice and transitions to the t 1/2 growth at large thicknesses. The method 
proposed here is not new but seems to be rarely used even though it requires selection of only one 
coefficient. Data from several sources including initial river ice growth, sea ice growth, and sludge 
freezing are used to validate the method and bracket the coefficient. 

INTRODUCTION 

The most commonly used method for predicting the thick- 
ness of floating ice sheets is the so-called "square root of 
freezing degree days" method. In this method the difference 
between the daily average air temperature and the freezing 
point of water is multiplied by time (days) since initial ice 
formation, the square root taken, and the result multiplied by 
a coefficient to obtain the predicted ice thickness. This 
method seems to work reasonably well for thicknesses over 
about 10 cm. For thicknesses less than about 10 cm it will be 

shown below that the method overpredicts the ice thickness. 
A method nearly as simple is shown to give good results at 
all thicknesses. The additional consideration is the effect of 

the thermal resistance between the top of the ice and the 
atmosphere above the ice. For some cases use of the 
traditional method can give very erroneous results. 

The purpose of this paper is to more widely publicize the 
more correct method since, even though it has been known 
for many years, is often not used in cases where the 
difference between the two methods is important. 

The method is not meant to substitute for analyses of ice 
growth that require considerably greater data needs to 
evaluate the components of the energy budget necessary to 
perform detailed assessment of ice growth as, for example, 
described by Kuroda [1985] or de Bruin and Wessels [1988], 
or for cases where one component of the energy budget is 
crucial to the particular ice growth process of interest such 
as the analysis of deterioration under the influence of solar 
radiation [Ashton, 1985]. 

TRADITIONAL METHOD 

The most commonly used method for predicting the thick- 
ness of ice is based on a very simplified solution of the 
so-called Stefan problem. That is, given an ice sheet growing 
into the melt below, with a fixed top surface temperature, 
what is the relation between the thickness and time? The 

simplified solution is obtained by expressing the heat flux 
through the ice in the form 

Qi -- - k( T m - Ts)/h (1) 

where Qi is the heat flux through the ice, k is the thermal 

ature at the ice water interface (=0øC), and Ts is the 
temperature of the top surface. At the bottom surface this 
heat flux is balanced by the production of ice at a rate 

pL dh/dt = Qi (2) 

where L is the heat of fusion, p is the density of ice, and t is 
time. Equating the two and integrating with the initial 
condition that h - 0 at t = 0 results in 

(2k) 1/2 h = • [(Tm- Ts)t] 1/2 (3) 
In (3) the bracketed term is the "square root of degree days 
of freezing" if the top surface temperature of the ice is taken 
as the air temperature. In practice, data show that an 
additional coefficient, a, usually in the range 0.5-0.8, must 
be applied to the right-hand side to give results as measured, 
and the measurements that have generally been used are 
usually for thicknesses greater than about 10 cm. There are 
other assumptions implicit in the above analysis, such as 
neglect of specific heat effects, but the major limitation is the 
assumption that the top surface temperature is the same as 
the air temperature. 

PROPOSED METHOD 

I first experienced the difficulty inherent in the result 
embodied in (3) while doing a numerical simulation of thin 
ice growth with small time steps. To do the simulation, (1) 
and (2) were used to determine the growth rate at zero time, 
which resulted in an infinite growth rate, a result that was 
clearly in error, since that would require an infinite heat loss. 
As will be shown below, inclusion of the effect of the thermal 
resistance between the top of the ice surface and the bulk 
temperature of the air removes this difficulty. More impor- 
tantly, it provides an analytical result which is applicable for 
both thin and thick ice. The method entails only selection of 
a single coefficient which has been bracketed by the results 
from several data sets as well as energy budget analyses. 

In addition to (1) and (2) above, the flux of heat Qia from 
the ice surface to the air above is expressed in the form of a 
bulk heat transfer coefficient Hia applied to the difference 
between the top surface temperature of the ice and the air 
temperature above the ice, resulting in 

conductivity of the ice? h i s the thickness, Tm i s the t•mper- Qia • Hi•Ts- Ta) (4) 
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Fig. 1. Comparison of calculated thin ice growth with observations. 

(5) 

This may be integrated, again with the boundary condition 
that h = 0 when t = 0 and results in the expression for h in 
the form 

h = (Tin- Ta)t + Hia (6) 
For large values of the product (Tin - Ta)t, (6) converges to 
the form of (3), and ice growth is proportional to t 1/2. For 
small thicknesses, however, ice growth is proportional to t 
but at a much lower rate than given by (2). To apply (6) in 
practical cases the bulk heat transfer coefficient must be 
estimated. One means of doing this would be to apply 
detailed energy budget methods to the top surface of the ice, 
calculate the net transfer Qia, determine Ts, and then deter- 
mine Hia by dividing by the temperature difference Ts - Ta. 
This requires many calculations and estimates of coefficients 
in the expressions for the energy budget components. 

In practice, I have found a reasonable approximation is to 
use a constant value of Hia with some consideration of wind 
speed. For still air conditions Hia has been found to be in the 

neighborhood of 10 W m -2 øC-1; for conditions typical of 
say, the St. Lawrence River or the midwestern United 
States, a value of 20-25 has been found to be reasonable and 
for exposed windy conditions a value as high as 30 W m -2 
o C- 1 has been found to be reasonable when the calculations 
are for several days duration. 

COMPARISON OF THE Two METHODS 

Figure 1 shows calculated results for the two methods in a 
log-log format which has the advantage of showing clearly 
the power law dependence on t at various thicknesses as well 
as the convergence of the two methods at large times or 
thicknesses. For the traditional method, results for a coeffi- 
cient a that must be applied to (3) of 1.0, 0.7, and 0.5 are 
shown in recognition of the experience that the coefficient is 
usually found to be about 0.6. The value of a = 1 corre- 
sponds to assuming that the surface temperature of the ice is 
the same as the air temperature (or that the transfer coeffi- 
cient is infinity for the proposed method). Values of Hia = 
10, 20, and 30 W m -2 øC -1 are shown for the proposed 
method. It is clear that the two methods differ markedly for 
small values of (Tin - Ta)t corresponding to small thick- 
nesses, while at large values of (Tin - Ta)t the two methods 
converge. 
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VALIDATION OF THE METHOD 

Until recently I had few systematic data to provide a 
convincing presentation and contrast of the two methods. 
Anderson [ 1960] presented an analysis essentially equivalent 
to that described above although the thinnest ice of his data 
set was about 3 cm. Recently, two additional data sets have 
become available. 

Parkinson and Hausser [1986] presented an extensive set 
of thin ice data obtained by following newly formed ice 
downstream on the St. Lawrence River. The water temper- 
ature was known to be at 0øC (thus the heat transfer to the 
underside was zero), and the thickness, air temperature, and 
time of travel to the location of measurement were deter- 

mined. The data extend down to thicknesses a fraction of a 

centimeter. Finally, in experiments concerned with the 
freezing of sludge (which is mostly water) J. Martel (per- 
sonal communication, 1988) obtained data on the thick- 
nesses down to 1 cm. These three data sets are presented in 
Figure 1. Martel's data were obtained in a roofed enclosure 
but open on the sides and probably are representative of still 
air conditions, since the ice surface was somewhat protected 
from the wind. Anderson's [1960] data were shown by 
Adams et al. [1960] to be bracketed by Hia = 12 and 29 W 
m -2 øC-•, corresponding to still air and a 6.7 m -• wind 
speed, respectively. The extensive data of Parkinson and 
Hausser [1986] are for the most part bounded by Hia = 10 
and 30 except for a few data points at very small thicknesses 
and exposure times. These may be subject to measurement 
error or short-term energy budget effects not adequately 
accounted for by use of a simple heat transfer coefficient. 
For values of (Tm - T,)t above IøC day almost all of their 
data lie in the 10-30 range of Hia. 

OTHER IMPLICATIONS 

Aside from the obvious advantage of representing thin ice 
growth data well, the proposed method has certain other 
implications that are important in research on river ice 
processes. In some simulations in which the ice both grows 
and melts as the driving thermal inputs change, it is impor- 
tant to account for the thermal inertia represented by the 
formation of ice. The proposed method conserves energy, 
since it gives a growth rate consistent with the heat fluxes 
from the ice while the traditional "Stefan" formula results in 

growth rates that exceed the corresponding loss of heat. This 

difference is important, particularly in situations where thin 
ice is alternately formed and melted. In other cases such as 
the formation of ice on slightly warm water, the actual ice 
growth is a result of the residual of the heat flux through the 
ice and the heat flux to the bottom surface. If the growth rate 
were to be calculated ignoring the thermal resistance asso- 
ciated with the air thermal resistance above, it is possible to 
predict ice formation when, in fact, the balance of heat fluxes 
is such that no ice forms. 

NOTATION 

h ice thickness, m. 
Hi, heat transfer coefficient, W m -2 øC-•. 

k thermal conductivity, W m-• øC-•. 
L heat of fusion, J/kg-•. 

Qia heat flux to atmosphere, W/m -2. 
t time, s. 

T, air temperature, øC. 
Tm melting point temperature, øC. 
Ts top surface temperature, øC. 
p density of ice, kg/m -3. 
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