
Proceedings of the 5th Annual Borland International Conference, Orlando, Florida, 5 June 1994

Borland Software Craftsmanship: A New Look at Process, Quality and Productivity

James O. Coplien
Software Production Research Department

AT&T Bell Laboratories

Abstract

The Borland Quattro Pro for Windows (QPW)
development is one of the most remarkable organizations,
processes, and development cultures we have encountered
in the AT&T Bell Laboratories Pasteur process research
project. The project assimilated requirements, completed
design and implementation of 1 million lines of code, and
completed testing in 31 months. Coding was done by no
more than eight people at a time, which means that
individual coding productivity was higher than 1000 lines
of code per staff-week. The project capitalized on its
small size by centering development activities around
daily meetings where architecture, design, and interface
issues were socialized. Quality assurance and project
management roles were central to the development
sociology, in contrast to the developer-centric software
production most often observed in our studies of AT&T
telecommunications software. Analyses of the
development process are ‘‘off the charts’’ relative to most
other processes we have studied.

Jim — Thanks again for speaking at BIC ’93. I’m also glad you
could stop by Borland and experience what we call Borland
Software Craftsmanship. We are a young company, started by a
Frenchman, with young bright and excited developers. In my 8
years at Borland I have been in the center of it all and can’t imagine
another place to be. Let us know if there is anything else we can
do for you.

— David Intersimone, Director of Developer

Relations, Borland

1: Introduction

Last year, Borland invited me to speak at the Fourth
Annual Borland International conference in San Diego,
California, and to visit their location in Scotts Valley,
California. I made arrangements with David Intersimone,

Director of Borland Developer Relations, to speak at the
conference in exchange for access to one of their
development organizations. Interviews with such
development organizations have helped the process
community better understand the high-level
characteristics of software development organizations.
We can use this understanding to help projects assess their
development methods against those used in other
development cultures. I was enthusiastically received and
graciously hosted, a harbinger of other positive signs of
the Borland culture that I would observe that day. I was
treated to insights into one the most stunning development
efforts I have had the pleasure to study.

In this paper, I relate what I learned while meeting
with the development team for Borland’s Quattro Pro for
Windows 1.0 (QPW) on May 20, 1993, in Scotts Valley.
I feel there is much to be learned about their process,
technology, and organization that we can apply to projects
across the industry, including large projects and perhaps
even embedded and real-time system developments such
as we have in AT&T.

It is important to understand that this is a retrospective
on the development of the software for the initial offering
of QPW. There was little or no embedded base, and the
project didn’t face the constraints one finds in the legacy
code projects common in large, traditional
telecommunication projects. Even so, the phenomenal
productivity of this group and the factors contributing to
that productivity are thought-provoking. Most
organizations should be able to take a page from
Borland’s book as a basis for their own process
improvements.

This paper starts with a high-level description of the
project and describes the personalities in the development
effort. The next section gives a brief review of the data
acquisition technique used. Analyses of the data from our
process analysis technique follow in the next section.
Subsequent sections of the paper describe aspects of the
QPW development that stood out as contributing to its
success.

- 1 -

Market Pressures Windows heating up—
had 1.0 spreadsheet

Offsite Meeting
to do staffing,

form teams

Bob Winfield
(VP)

Phillipe develops
commitment to

provide resources

Prototyping by
Architecture Team

QA/Test Manuals Product Manager

Review

Review

Beta Milestone
(set on basis of ship date)

Beta Administration

Beta

Last of Betas

Gammas

Ship

Get bug curve down

Core development team
is expanded to 8

Stable Base Emerges
12 months

19 months

User manuals;
design manuals for
next product cycle

Figure 1. High-Level Business Flow of the Borland QPW Development

2: What Quattro Pro for Windows Is and
How it got Started

Borland launched development for QuattroPro for
Windows as a natural follow-up to their DOS spreadsheet
offering. QPW offers spreadsheet and database
functionality in the spirit of most spreadsheet products on
the market today. The team I interviewed created QPW
1.0, the so-called base generic development for the
product.

The initial development was to be heavily loaded with
features. The project goal was to produce a product with
the maturity and feature richness of a third- or fourth-
release product. The team felt they had achieved that goal
when the product shipped.

Like most Borland products, QPW is designed to be a
self-contained deliverable that is compatible with other
members of a product family. Its human interface is
consistent with other Borland products. Its database
interfaces allow it to interwork with other Borland

products. Borland views itself as a vendor of individual
business solution components, from which a customer can
select combinations to meet their needs. The total code
volume of all Borland products, expressed as original
source lines, is huge: tens, if not hundreds, of millions of
lines of code (my estimate). Products are largely
independent of each other, yet share common
infrastructure and look-and-feel (and, conjecturally, the
code providing this functionality).

QPW had a small core team—four people—who
interacted intensely over two years to produce the bulk of
the product. Prototyping was heavily used: Two major
prototypes were built and discarded (the first in C; the
second, called ‘‘pre-Crystal,’’ in C++). Four core
developers defined an architecture, built early prototypes
and the foundation code for the product, and participated
in implementation through its delivery. Additional
programmers were added after about six months of
intense effort by the core of four.

- 2 -

The methodology was iterative. Modulo the
architectural dialogue, the core developers worked
independently. Early code can be viewed as a series of
prototypes that led to architectural decisions, and drove
the overall structure of the final system.

The programming language was C++. The final
implementation stages of QPW stressed their C++
compiler—which was being developed in parallel with
QPW—to its limits. There was uncharacteristically tight
coupling between the QPW group and the language
group. QPW was one of the largest and earliest projects
to stress their C++ compiler release. Cooperation
between the two allowed each to contribute to the quality
of the other.

After the product took shape (after about a year),
additional roles were engaged in development activities.
QA (quality assurance), testers, and others were at last
allowed to see and exercise copies of the code that had
been kept under wraps during early development. These
roles had been staffed earlier, but engaged in development
only when the developers felt they had something worthy
of testing.

While the QA organization conducts its own testing,
there is an active beta program to uncover bugs as only
real users can. This is a luxury that tool purveyors enjoy
to a greater extent than most telecommunications
companies can (and that we enjoy to a greater extent than
some contractors in, say, the aerospace industry).

The QPW product entered the market to high acclaim.
PC Sources said, ‘‘Borland International Inc’s Quattro
Pro for Windows spreadsheet software package makes
better use of the Windows graphical user interface (GUI)
than any other spreadsheet package to date.’’ [1] PC User
says that ‘‘Borland International’s Quattro Pro for
Windows (QPW) is the world’s best spreadsheet
software.’’ [2] Computer Shopper quips, ‘‘Borland
International Inc’s Quattro Pro for Windows spreadsheet
software outperforms the standing champion of Windows
spreadsheet management, Microsoft Corp’s Excel
4.0.’’ [3] InfoWorld, [4] PC Magazine, [5] and many
others also offer positive reviews, which dominate the
press perspective on the product. I found other reviews
that are more balanced, but uncovered no reviews that
found the product lacking in key areas.

The team members I interviewed included:

• Charlie Anderson, the Director of Applications for
Borland, who was one of the QPW architects. He is
experienced and thoughtful, the apparent ‘‘spiritual
leader’’ of the group, but only in a subtle sense.

• Weikuo Liaw, a renowned expert on spreadsheet
engines and one of the QPW architects. Wei is a
highly revered developer, almost to the point of

inspiring awe, but rather shy and among the most
introverted of the group.

• Murray Low, an energetic, darting, bright and witty
engineer who worked on the QPW/UI side (user
interface stuff) and who was a QPW architect.

• David Intersimone, Borland Developer Relations, who
facilitated my appearance at Borland but who was not
part of the QPW development.

• Dan Horn, also from Developer Relations. He helped
put me in touch with the Borland people while I was
at the conference to make final arrangements.

3: The CRC Card/Pasteur Process
Evaluation Technique

Process research carried out in the Bell Laboratories
Software Production Research Department has used,
among other techniques, an organizational analysis tool
borrowed from object-oriented analysis. The technique is
called CRC cards. CRC is an acronym for classes,
responsibilities and collaborators, three of the most
important dimensions of abstraction in object-oriented
analysis. The technique provides an ‘‘object-oriented
analysis’’ of the structure of an organization by dividing it
into objects that are cohesive locales of related
responsibilities. A more common term for these
abstractions is role. Each role’s responsibilities to the
organization are written on the left side of a 3 x 5 index
card. The right side of the card lists the helpers, or
collaborators, employed by a role to carry out its
responsibilities. Responsibilities and collaborators are
discovered in a role-playing exercise where development
scenarios are simulated. The interests of a role are
represented by someone who commonly fills the role, by a
recognized domain expert in the appropriate area, or by
someone who is otherwise familiar with the work.

Collaborations between roles form a network, or
graph. The edges of the graph are subjectively weighted
by the participants (high, medium, or low) according to
the strength of the coupling between two roles. The graph
can be visualized in many different ways: as a force-based
network; as a topologically sorted hierarchy or directed
graph; as an interaction grid; and others. We use the
Pasteur process analysis environment to create and
interact with such visualizations.

These visualizations offer insights into subtle (and
sometimes not-so-subtle) organizational dynamics. For
example, cliques can be readily identified from the natural
force-based networks. Interaction grids offer insight into
the cohesiveness of an organization. Highly specialized
patterns have been noted in visualizations using each of
these techniques, including a tendency for roles to cluster

- 3 -

according to their degree of extrovertedness or
introvertedness with respect to the process community.

For more information on the use of CRC cards to
debrief organizations on their structure, see the reference
by Cain and Coplien. [6] For more information on the use
of CRC cards for object-oriented analysis, see the
reference list of that same paper.

4: Analysis of the Pasteur Data for QPW

We most frequently use a natural force-based network
analysis to analyze organization data collected in the
Pasteur data base. This analysis produced an adjacency
diagram. In these diagrams, a default repelling force is
established between each pair of roles. There is also an
attracting force between pairs of roles that are coupled to
each other by collaboration or mutual interest; a stable
placement occurs when these forces balance. Figure 2
shows the picture that results by applying this analysis to
QPW. There are several things worth noting in these
pictures that set them apart from most other
organizational process models we’ve made. Here is a
summary of those properties:

• The QPW process has a higher communication
saturation than 89% of the processes we’ve looked at.
The adjacency diagram shows that all roles have at
least two strong connections to the organization as a
whole. The project’s interaction grid is dense. The
coupling per role is in the highest 7% of all processes
we have looked at. This is a small, intensely
interactive organization.

• There is a more even distribution of effort across roles
than in most other processes we’ve looked at. The
roles in the adjacency diagram are shaded according to
their intensity of interaction with the rest of the
organization. In the QPW process, Project Manger and
QA glow brightly; Coders a little less so; Architect,
Product Manager, and Beta Sites are ‘‘third magnitude
stars’’; and Tech Support, Documentation, and VP still
show some illumination. Most ‘‘traditional’’
processes we’ve studied show a much higher
concentration of interaction near the center of the
process. That is, most other processes comprise more
roles that are loosely coupled to the process than we
find in QPW. That may be because QPW is self-
contained, or because it is small. It may also be
because the process was ‘‘intense’’: a high-energy
development racing to hit an acceptable point on the
market share curve.

• Project Manager and Product Manager are tightly
coupled, central roles in the process. These
managerial roles were filled by individuals who were
also key technical contributors to the project (they
wrote real code), which contributed to their
acceptance and success as process hubs.
Product Manager was a role that was employed only
after a year of development.

• Quality Assurance is a tightly coupled and central role.
Many organizations consider QA to be an external
function, outside their organization and process. At
Borland, QA becomes a way of life after development
has converged on a good design and a stable user
interface. For QPW, this was about 12 months into
development.

• The CEO (Philippe) figures strongly in the
organization. In a company of thousands of
employees, it is unusual to find the CEO as tightly
coupled to development as we find in QPW. It is
instructive to examine the responsibilities associated
with Philippe Kahn’s role:

• Ensure product is commensurate with current
market environment;

• Ensure product market coordination is done in a
timely and cost-effective manner;

• Determine pricing, product positioning;
• Shape public perceptions and handle PR for the

product prior to and after ship;
• Determine cosmetic changes to keep consistency

among all Borland products and to call out certain
features (in other words, usability testing);

• Playing jazz to avoid press questioning on ship
dates.1

• The overall interaction grid pattern (Figure 3) is
uncharacteristic of what is found in other processes.
Interaction grids show patterns of interactions in an
organizations, and are particularly useful when the
organization is large or when its interactions are
dense. We most often use an interaction grid where
roles are ordered on both axes by their degree of
coupling to the organization as a whole. The most
integral roles are placed near the origin. Most other
processes exhibit a characteristic pattern of points
along the axes, with lower point density and lower

1. There’s a story in here, but I didn’t hear it. Philippe is an
accomplished jazz musician.

- 4 -

 Phillipe

 Tools Provider

 QA

 VP

 System Administrator

 Product Manager

 Beta Administration

 Project Manager

 Documentation

 Architect

 Integration

 Usability Testers

 Admin

 Coders

 Beta Sites

 Tech Support

Figure 2. Natural Force-Based Analysis of QPW

intensity for increasing distances from either axis. In
QPW, there is a general lessening of density and
intensity as one moves toward the northeast quadrant
of the interaction grid. The northwest and southeast
quadrants of the Borland grid remain more dense than
we’ve seen in other processes.

Between 30% and half of the processes we’ve
studied exhibit a pattern called schismogenesis.
Schismogenesis is a term from classic anthropological
literature that describes a tendency for societies to
stratify into sociological ‘‘comfort zones.’’ This
phenomenon appears in interaction grids as a
clustering of points around the diagonal. For
organizations where this phenomenon is present, the
effect is particularly pronounced in the northeast
quadrant of the interaction grid. It indicates that
organizations contain splinter groups.

The QPW process is characteristically ‘‘anti-
schismogenetic.’’ That is, there is blank space around
the diagonal of the interaction grid, particularly in the
northeast quadrant. While we have seen graphs with
random scatterings of points, the QPW graph is the
first where the points seem to abhor the diagonal, yet
fill out the rest of the graph.

We have not yet explained the schismogenesis
phenomenon to our satisfaction, nor correlated it to

properties of an organization. It is worth mentioning,
however, that the Borland process is unique in having
this anti-schismogenetic quality.

5: Personal Excellence and Integrity

The initial QPW development team comprised highly
productive professionals who viewed each other with the
highest respect. These perhaps sound like hollow words
that most managers would apply to their organizations,
until one looks more deeply into what ‘‘highly
productive’’ and ‘‘respect’’ mean.

The QPW development team has chronologically
mature membership by industry standards. ‘‘We have
professionals, not hired guns’’ noted one member of the
development team. People are brought into the team for
their recognized expertise in domains of central
importance to the project: spreadsheet engines, graphics,
databases, and so forth. No one is viewed as a warm
body, or general engineer, or interchangeable employee:
Each brings special talents to the effort.

QPW had a small core team—four people—who
interacted intensely over two years to produce the bulk of
the product. Prototyping was heavily used: Two major
prototypes were built and discarded (the first in C; the
second, called ‘‘pre-Crystal,’’ in C++). Additional

- 5 -

System Administ rator

Tech Suppor t

Beta Si tes

Beta Administ rat ion

Product Manager

V P

Usabi l i ty Testers

Project Manager

Tools Provider

Coders

Integrat ion

Archi tect

Documentat ion

QA

Admin

Phi l l ipe

S
y
s
t
e
m

A
d
m
i
n
i

T
e
c
h

S
u
p
p
o
r
t

B
e
t
a

S
i
t
e
s

B
e
t
a

A
d
m
i
n
i
s
t

P
r
o
d
u
c
t

M
a
n
a
g

V
P

U
s
a
b
i
l
i
t
y

T
e
s

P
r
o
j
e
c
t

M
a
n
a
g

T
o
o
l
s

P
r
o
v
i
d
e

C
o
d
e
r
s

I
n
t
e
g
r
a
t
i
o
n

A
r
c
h
i
t
e
c
t

D
o
c
u
m
e
n
t
a
t
i
o
n

Q
A

A
d
m
i
n

P
h
i
l
l
i
p
e

Grid for QuatroProcluster1

Figure 3. Interaction Grid for QPW

programmers were added after six months or so of intense
effort by the core of four. These prototypes drove
architectural decisions that were discussed in frequent
(almost daily) project meetings. A million lines of code
were written over 31 months by about eight people: that’s
about 1000 lines per person per week.2 And that doesn’t
include the code in the prototypes.

Trust extends to eschewing code reviews. But while
reviews are rare, group buy-in and trust are important.
Each project member must personally sign off on a set of
project floppy disks before they can be released to the
next stage (e.g., beta test or to the ‘‘street’’). Personal
evaluation of the software, as well as informal dialogue,
build the confidence for such a sign-off.

There is a complex and highly non-linear relationship
between project productivity, programmer skill, and
project organization. There will always be debate about
how much of the phenomenal productivity of QPW owes

2. I acknowledge that lines of code is an imperfect measure of
productivity at best. However, a disparity of one or two orders of
magnitude between the Borland experience, and more typical
numbers from the rest of the industry, cannot be explained away with
the usual attacks on source line measurements.

to its culture, how much to its choice of staff, and how
much to other factors.

6: Do One Thing and Do It Well

This is Brian Kernighan’s admonition of how to view
C functions. Analogous advice is starting to appear for
classes in object-oriented systems. And the same might
apply to the people who write those classes.

QPW is organized along lines of domain
specialization. Domains important to QPW are
dependency registration software, human interfaces,
databases, and a few others. An individual was identified
for each of those domains.

In their domain, each individual does what they are
good at. They excel at bringing their domain expertise to
the table in architecture meetings. They know what the
right abstractions are. They know how to implement
those abstractions. They bring C++ or DOS or
Windows proficiency to the project, or quickly develop
it (through analogy to related domain experience).

Equally important is what these individuals are not
good at, and that they are not expected to take
responsibility for domains not related to their
specialization. Instead of working in these domains, they
work with these domains. One good example is

- 6 -

documentation. Developers are supported by a
documentation organization that develops internal and
external documentation. The time spent by developers in
conveying this information to the documentation
organization is far less than it would take for them to
commit it to writing, put it into an acceptable format, and
have the work edited for linguistic elegance.

By contrast, most of our AT&T developers write most
of their own memos. It’s not clear whether this owes to
our history, our organizational boundaries, the nature of
our business, or to reward mechanisms. Nevertheless, a
deeply rooted cultural behavior at AT&T is that engineers
draft their own memos. Developers spend much time
(roughly 13% of total development time [7]) creating and
refining memos in AT&T; in Borland, that job is deferred
to people who are expert at it.

7: Architecture and Meetings; Coding and
Iteration

QPW development was highly iterative. To
understand the nature of the iteration, one must
understand its ramifications for architecture and
implementation. One must also understand the culture by
which changes were approved and how decisions were
made. This takes us into the realm of project meetings,
always a topic of interest in a large development
organization.

The core architecture team met daily to hammer out
C++ class interfaces, to discuss overall algorithms and
approaches, and to develop the basic underlying
mechanisms on which the system would be built. These
daily meetings were several hours in duration; from what
I heard, the project was made more of meetings than
anything else. Everyone’s external interfaces were
globally visible, and were globally discussed. The
product structure was built on the domain expertise
brought to the table by domain experts, but it was
socialized and tempered by the needs of the product as a
whole.

In spite of the intense meeting-oriented development
culture the project built around its architectural
development, class implementations were fleshed out in
private. Individuals were trusted with doing a good job of
implementation: after all, project members were
acknowledged experts in their domains. Code reviews
were rare.3 The trust and respect engendered by this

3. This can be viewed as an extreme of the position developed by Votta
in his recommendations for less formal code review meetings; see
the paper by Votta. [8]

domain expertise made it possible to focus meetings on
system-level issues.

There are three project principles worth noting about
the QPW organization’s communication architecture:

1. Meetings are not a bad thing. While we all cringe
at the thought of a project centered on a meeting
that carries over from one day to the next
throughout early development. But our fear of
meetings likely comes more from our memories of
the ineffectiveness of our meetings, not from their
frequency.

At the First International Workshop on
Software Process, I polled several process
luminaries with the following question: Suppose I
am among the most mature software organizations
in the world (a CMM Level 5). [9] How much of
my time do I spend in meetings? Responses from
Vic Basilli, Watts Humphrey, and Bary Boehm
ranged from 30% to 50%. Project communication,
a shared vision, and meetings are important and
productive if meetings are properly conducted.

2. Development takes place on two levels:
architecture and implementation. There is an
architectural thread, and a development thread;
both are ongoing, and they interact with each other
strongly. New implementations suggest
architectural changes, and these are discussed at the
daily meetings. Architectural changes usually
require radical changes to the implementation. The
implementors’ ability to quickly reflect those
changes in their implementation is key to turning
around architectural changes quickly. This is where
the outstanding productivity of the project members
comes into play: Their incredible productivity
supports iterative development.

Their may be a third development thread—
product management and marketing—that goes
beyond the scope of this inquiry.

3. The development interaction style is a good match
for the implementation technology the group had
selected. Object-oriented development leads to
abstractions whose identity and structure are largely
consistent across analysis, design and
implementation. Classes hide implementations and
localized design decisions, though their external
interfaces are globally visible. Mapping C++
classes and people close together made it possible
for developers to reason about the implementation
off-line, away from the meetings that dealt with
interface issues.

- 7 -

Notice this is contrary to the commonly presumed
model that the object paradigm makes it possible for an
individual to own a class, interface and all, with a
minimum of interaction with other class owners in the
organization. It should be emphasized that classes are
good at hiding implementation and detailed structure
(e.g., in derived classes) but that they are not good at
reducing the ripple effect of interface changes. In fact,
because interactions in object-oriented systems form an
intricate graph, and interactions in structured procedural
systems usually form a tree, the ripple effect of interface
changes in an OO system can be worse than in a block-
structured procedural design.

A question frequently posed to organizations using
iterative techniques is: ‘‘How do you mark progress or do
scheduling?’’ For QPW, there are two parts to the
answer. First, they relied on experience sizing similar
jobs, and found the overall estimates to be satisfactory.
Second, they kept multiple sets of books internal to
Borland to achieve different goals. The hardest of the
dates was owned by (and not divulged by) the parts of
Borland that own the financial books. A ‘‘real’’ street
date was needed so the company could provide planning
and resource support to the development. But internal
scheduling provided incentive, focus, and pressure for
development to move ahead. Project management and
corporate executives presented deadlines to the
development teams that failed to telegraph the business
view of the schedule, presenting a more compressed
schedule for development than the business case allowed
for.

8: Personality and Development: Do Nerds
supplant Allen’s Gatekeepers?

Thomas Allen at MIT has noted the correlation
between effective communication skills and prospects for
advancement and success in technical organizations. [10]
Individuals exhibiting extraordinary communications
skills, and exercising those skills outside their line
organization, he refers to as gatekeepers. They
‘‘control’’—or, more accurately, facilitate—the flow of
information between the development organization and
scholastic and competitive sources.

One might expect a team of developers of a highly
successful product such as QPW to follow this model.
My observations of the QPW team were brief, but I was
left with the impression that their personalities run
contrary to this stereotype. ‘‘Nerds’’ would be a more apt
characterization. However, individuals were able to
communicate intensely with each other as a group, with
intense stereotypical male-style communication dynamics.
Only David Intersimone—an outsider—took the role of

posing pointed questions to the group (probably to make
sure certain points were clear to me).

While it is unclear exactly what their communication
behavior would portend for success in a more structured
setting, their technical prowess has earned them the
highest positions of esteem at Borland. Perhaps one
needs to bring Allen’s models into question, at least as
they apply to small, inbred developments (most of Allen’s
organizations were large, government or military contract
projects).

One might consider evolutions of the AT&T
development culture where such technical expertise could
be a better harbinger of advancement. Different AT&T
organizations have emphasized different professional
qualities at different times as criteria for supervisory
promotion: technical ability, coordination and
interworking skills, administrative skills, and so forth.
There is a common perception that in our current business
environment, technical skills don’t dominate
considerations for reward or advancement to the same
extent that they did in the heyday of academia in the
1960s and 1970s. They are clearly key to success in the
Borland value system.

9: No Wine Before its Time

QPW used iteration from early in its development
cycle through the latest stages of development, increasing
the stability of their software and decreasing iteration over
time. This iteration took place in what might be described
as a traditional corporate context. From its outset, QPW
was a strategic, visible product in the company. That
meant that all development areas were primed for its
deployment, including quality assurance, documentation,
and product management.

Though these areas were staffed from the outset, they
were denied access to the details of the product until about
a year into its development. That gave the
architect/developers room to change the functionality,
interface, and methodology of the project before
interfacing it with the corporate culture and ultimately
with the ‘‘street.’’ Quality Assurance, Product
Management, and documentation were allowed access to
the project only after it had ‘‘conceptually congealed,’’
about a year into the development schedule.

10: Create, not Conform

Even though Microsoft’s Excel may have been a
significant market motivator to start the QPW program,
QPW developers paid it little heed during the design of
their code and human interfaces. Functionality and
interface were derived from first principles (project
members were strongly conversant in spreadsheet issues)

- 8 -

and from consideration for compatibility with other
Borland interfaces.

One major distinction between QPW, and most of the
work done in large telecommunications projects at
AT&T, is that QPW wasn’t working to a customer
requirements document. They simply knew what needed
to be done.4

11: California Gold Rush?

One cannot ignore the motivating power of bonuses
that are of the same order of magnitude as annual
compensation. While much of corporate America is
turning more and more to ‘‘egalitarian’’ compensation
structures, other companies strive to tie personal financial
rewards tangibly to the market success of the fruits of an
individual’s labor. The stereotype may actually be true
that bonuses and rewards for jobs well done are higher
west of the Rockies than elsewhere. While I did not
explore this with the Borland crowd, one might imagine
that the west coast bonus stereotype extended to the QPW
culture. The prospects for such rewards may make it
easier for individuals to justify the energy and
commitment they must commit to a high-intensity
development for it to succeed.

12: QPW’s Introspection about its Own
Process

Can an organization without an explicit, conscious
process effort enjoy the same process benefits as an
organization with full process certification? Though there
may be a tendency for certified organizations to
experience stronger process benefits than those lacking
any formal concern for process, this Borland project had
many of the hallmarks of a mature development
organization.

Borland is not subject to the ISO 9000 series process
standards, has no concept of its SEI CMM rating, and is
not conversant with the software development process
lingo being used increasingly in large software
organizations. For someone interested in process to visit
them was a rare event. Before going through the CRC
card exercise, my presence as a process guru was viewed
with a range of responses that ranged from intrigued
interest, through curiosity, to suspicious doubt. By the
time the exercise ended, those involved were able to
identify some parts of their value system and culture with

4. One AT&T developer I talked to quiped, ‘‘That’s how a good . . .
developer [for a large telecommunications system] does it, too.’’

what we call process. (By the way, the doubters went
away saying, ‘‘You know, I think you’ve got something
there.’’)

So even though the organization has no codified
system of process, it is keenly aware of what it does, how
it does it, and what works. It views software development
as something fundamentally driven by special cases (at
least for initial generic development) and repeatability is
not an important part of their value system. Members of
the organization were nonetheless able to articulate in
great detail aspects of their process that demonstrated to
my satisfaction that they shared a single model, perhaps
based on development rules, of how development should
be done.

Many organizations we have interviewed have a weak
or confused notion of what their roles are, what the
responsibilities of the roles are, and how the roles interact.
Most AT&T organizations with a weak notion of process
are those who have not gone through an ISO audit, yet
developers’ notions of their roles even in some ISO-
certified organizations are fuzzy at best. Other
organizations that do not have any conscious process
culture are nonetheless able to articulate their process in
explicit terms, at a level of abstraction that transcends
technology, tools, or methodology.

Borland’s QPW development was one such
organization. When I asked what their development roles
were (with a short definition of what I meant by role) the
answers were immediate, intuitive, and reflected a single
model of the organization shared by its members. Team
members required little thought to come up with roles.
Few roles were added during the role-playing exercise,
and only one role was substantially redefined. The
organization knew itself well, and was conscious of how
people interacted with each other at an abstract level.

In his book, Gerry Weinberg suggests that there is a
paradigm shift between Level 2 and Level 3 of the SEI
Capability Maturity Model (CMM). [11] He believes that
organizations at Levels 1 and 2 need strong (managerial)
direction, while organizations at level 3 and above are
self-directing. Borland clearly appears to be in this latter
category—though it may not register a Level 3 rating
according to commonly accepted criteria.

Charlie Anderson entertained us with a thoughtful
monologue on how the project felt about itself and its
accomplishments. ‘‘We are satisfied by doing real
work,’’ he noted as he thought about how the project
dovetailed daily architectural meetings with
implementation. They learned how to improve the
structure of their product, and how to improve their
process, as they went through development. ‘‘Software is
like a plant that grows,’’ he mused. You can’t predict its
exact shape, or how big it will grow; you can control its

- 9 -

growth only to a limited degree. In the same vein, ‘‘There
are no rules for this kind of thing—it’s never been done
before.’’ In retrospect, though, he notes that there are a
few things that every project should have. At the top of
his list was that every project should have a good
documentation department. This sounded intriguing to
me (as it wouldn’t have been first on my list) but I didn’t
get a chance to follow it up with Charlie (but see Section
6 above).

13: Process and Quality

One widely-held stereotype of companies that build
PC products (or of California-based companies) is that
they hire ‘‘hackers’’ and that their software is magic,
unreadable spaghetti. Meeting with this group broke that
stereotype for me. Their constant attention to
architectural issues, their efforts to build an evolvable
structure, their care to document the system well (both
externally and internally), are all hallmarks of the highest
professionalism. Those attitudes, coupled with the
phenomenal general-purpose programming talents of the
staff, plus the high level of domain-specific expertise,
defined the kind of quality value system necessary to an
effective and productive process.5 There were few
gratuitous shortcuts and few novice errors. From what I
saw, these people produce very high quality code.

If there was any disappointment on the project, it was
in their inability to bring down the bug curve in the
project end game as fast as they wanted to. They noted
that the shapes of software development bug curves are
well-known, so there is hope of predicting how long it
will take to ferret out an acceptable fraction of the
remaining errors. However, the boundary conditions for
the curve aren’t known at the outset, so it is difficult to
predict the exact shape of the curve until developing
experience with bug discovery and resolution. Inability to
predict the exact shape of this curve resulted in a modest
schedule slip.

Other questions about the project can be answered
only over time. The process described here was for initial
product development. Can a similar process be used for
ongoing maintenance? Probably not, though vestiges of
the original process will certainly live on. How will
maintenance affect productivity? Can the dual-line
development continue to support architectural change
with rapid alignment of the corresponding

5. Al Barshefsky has pointed out that process work can move forward
only when the organization broadly subscribes to a common quality
standard (or what I prefer to call a value system); see [12].

implementation? Initial experience is good; the first
round of QPW changes earned it a PC Magazine Editor’s
Choice award. [13] The editors were astounded by the
amount of functionality that had been added so quickly.
Maintenance questions will become increasingly
important to Borland, as we already recognize them as
crucial in telecommunications systems with long service
lifetimes.

14: Conclusions

Can we capture the architecture of the Borland
development organization and process, and expect
phenomenal results if we apply it to large development
projects such as we have at AT&T? Probably not.
However, its staggering productivity offers a target to
shoot for, and some aspects of its management policies
and process guidelines may serve small- to medium-sized
developments well. To the extent large jobs can be
partitioned into small ones, the Borland approach may be
suitable for individual parts of large developments.

Borland develops products for a domain and market
which, today, has little overlap with the traditional
telecommunications market. As large software
development organizations move into new markets—such
as software development environment platforms and soft
human interfaces—the techniques used at Borland will
become increasingly difficult to dismiss out-of-hand as
irrelevant for large system development.

The software industry has long embraced rationales
that dismiss the productivity of stereotypical ‘‘Silicon
Valley’’ cultures. Their products are not UNIX-based.
We think of PC development efforts as small and simple.
We say they have limited markets and don’t need to
evolve. Borland defies these stereotypes. It will need to
move into a market supported by Windows,
Windows/NT, Pink, and conjecturally others including
Macintosh—and maybe even UNIX. It will need to
interface to a host of different windowing systems and
hardware technologies. It is not small, even by AT&T
standards (it was larger than the first release of the
flagship AT&T local switching product). Borland was
able to coax 1 million lines of production code from about
eight people in 31 months. Perhaps a PC-based
development environment and PC-based deployment
platform make developers more effective, and perhaps
QPW doesn’t have the same fault-tolerance requirements
one finds in large telecommunications systems. But those
considerations alone don’t seem to account for figures that
are orders of magnitude above industry norms.

Software maintenance is of critical important to
today’s large, complex software developments. One
suspects that the same will be true for QPW as it offers
new features, runs on new platforms, and adapts itself to

- 10 -

new operating systems and windowing environments in
the market place. One might guess that foreseeing such
evolution is one reason for Borland to have chosen
object-oriented development techniques and C++ as the
basis for their development.

The Borland process operates at an extreme point in
our continuum of development organizations. Having a
set of extreme data points can be of use to us in our
process research, as it helps bound the models we make.
We hope the Borland model will provide data that will
help us calibrate our process models, and help us better
correlate properties of other models we study.

A great big thanks to Carol Johnson at Borland for
taking care of most of the local arrangements. I’m
indebted to Ruby Chu at AT&T for chasing down QPW
product reviews. A special thanks to Doug McIlroy and
Peter Weinberger for their critical comments, with hopes
for more to come.

REFERENCES

1. O’Malley, Christopher. ‘‘Borland turns the Windows
page: Quattro Pro for Windows.’’ PC Sources, vol. 4,
no. 1, p. 281, January, 1993.

2. Whitehorn, Mark. ‘‘Vorsprung durch spreadsheet.’’
PC User, no. 195, p. 54, 7 Oct., 1992.

3. Bonner, Paul. ‘‘Quattro Pro for Windows.’’
Computer Shopper, vol. 12, no. 11, p. 605, Nov, 1992.

4. Walkenbach, John, et al. ‘‘Quattro Pro for Windows
Version 1.0.’’ InfoWorld, vol. 14 no. 41, 12 Oct.,
1992.

5. Stinson, Craig. ‘‘Quattro Pro for Windows.’’ PC
Magazine, vol. 11 no. 19, p. 162, 10 Nov, 1992.

6. Cain, B. G., and J. O. Coplien. ‘‘A Role-Based
Empirical Process Modeling Environment.’’
Proceedings of the Second International Conference
on the Software Process, Berlin, February 25-6, 1993,
0-8186-3600-9/93 $3.00 1993 IEEE.

7. Personal discussion with Larry Votta (AT&T) and
Nancy Staudenmayer (MIT).

8. Votta, Larry. ‘‘Does Every Inspection Need a
Meeting?’’ Proceedings of the Symposium on the
Foundations of Software.

9. Humphrey, W. ‘‘Introduction to Software Process
Improvement.’’ Pittsburgh, Pa: Carnegie Mellon
University, Software Engineering Institute, 1992.

10. Allen, Thomas J. Managing the Flow of Technology,
Boston: MIT Press, 1977, 141-182.

11. Weinberg, Gerry. ‘‘Quality Software Management,
Vol. 1.’’ New York: Dorset House, 1991.

12. Barshefsky, A. ‘‘On the Road to Software
Automation,’’ Proceedings of ISS 92.

13. PC Magazine, Vol. 13 No. 1, 11 January 1994, page
191.

- 11 -

