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Languages and Concepts in Science 
 
If you ask most teachers of science what their main goal is, they will probably say: for my students to 
understand the basic concepts of physics, chemistry, biology, or whatever other field is being studied. The 
critical words here are "understand" and "concept", and both of these terms assume a fundamentally 
psychological approach to learning. They belong to the tradition of mentalism, in which concepts are mental 
objects and understanding is a mental process. In more modern terms, they belong to a cognitive model of 
science education. I do not believe that this kind of theoretical model can tell us enough to help us to become 
better teachers of science. I believe that it lacks the necessary vocabulary to tell us just what we must lead 
students to do in order to learn to reason and act scientifically. 
 
It was my dissatisfaction with the traditional mentalist view of education that led me in the late 1970s to 
explore other theoretical traditions. There have always been other kinds of answers to the basic question of 
our goal in the teaching of science. We can also say that we wish students to reason in the ways that 
scientists reason, that we wish them to be able to use the tools and practices that scientists use as part of their 
activities of problem-solving, discussing scientific issues, and participating in everyday life in a 
technological society. We can make the goal of science education learning and using particular ways of 
making meaning about natural and technological phenomena, we can make it be engaging meaningfully in 
the kinds of patterns of action that scientists use in their work.  
 
These alternatives do not contradict psychology, but they are more consistent with some psychological 
theories than with others. In particular, they are more consistent with theories of social psychology and 
social-developmental psychology, such as those associated with the names of Lev Vygotsky (1934, 1978) or, 
in his later work, Jerome Bruner (1986, 1990), than they are with mainstream American cognitive 
psychology of the 1970s and 1980s. If we see the goals of science education in terms of what students will 
be able to do, and how they will be able to make sense of the world, rather than in terms of our speculations 
about what may be going on in their brains, then we need to see scientific learning as the acquisition of 
cultural tools and practices, as learning to participate in very specific and often specialized forms of human 
activity. 
 
This alternative view places more emphasis on the role of the teacher as someone who can model for 
students how scientists talk and write and diagram and calculate, how scientists plan and observe and record, 



how we represent and analyze data, how we formulate hypotheses and conclusions, how we connect 
theories, models, and data, how we relate our work and results to those of other researchers.  
 
Traditional cognitive psychology is not a theory for teachers, nor a theory of education. It is an attempt to 
build a universal model of all human thought. It is founded on the assumption that the ways in which all 
thought is alike are more important than the ways in which we all think differently in each specific activity 
of life, think differently in each particular concrete situation in which we find ourselves. A critic might well 
say that existing models of universal thought are mainly premature over-generalizations from observations 
of just a few kinds of thought (mainly logical-mathematical and some cases of simple and idealized physical 
problem-solving), by just a narrow range of people (mostly American university undergraduates and a few 
technically trained experts), and in very artificial situations (the psychologists' carefully controlled 
laboratory settings). 
 
There are today many alternative views, from those which point out the implausibility of the view that 
thoughts can directly represent realities or actions (e.g. Bickhard 1995), to those that emphasize the 
situatedness and specificity of different kinds of reasoning in different concrete conditions and challenge the 
assumption that the general basis of human thought is abstraction. Both Situated Cognition Theory (e.g. 
Lave 1988, Rogoff 1990, Saxe 1991) and the neo-Vygotskyan Activity Theory models (e.g. Leontiev 1978, 
Engestrom 1987, Wertsch 1991), as well as general Cultural Psychology (Cole 1996, Cole et al. 1997) 
recognize that thinking is a kind of material action, and that it is conducted not just in and by the human 
brain, but by the whole body, making constant use of material tools and artifacts in the environment, and 
interpreting its own actions and their results by means of socially learned and culturally specific systems of 
meaningful signs, such as the languages of words, diagrams, and mathematical symbols. Year by year more 
new research defines itself as socio-cognitive or socio-cultural in these terms, rather than in terms of a 
purely mentalistic psychology. 
 
Teachers of science should rejoice that at last researchers are looking beyond their pet theories about the 
human mind and actually studying what teachers and students say and do in the classroom, in the laboratory, 
and wherever science is being learned and practiced. Looking at meaningful action and activity, at language 
in use, at all forms of verbal and non-verbal communication in real classrooms, laboratories, museums, and 
virtual on-line environments (e.g. Lemke 1990, Roth 1995, Cobb et al 1993; Newman et al. 1989, Michaels 
& O'Connor 1993; Kamen et al. 1997; Lemke et al. 2015). 
 
This change in our view of learning science, from just a mentalist psychology to the comprehensive study of 
all the meaningful ways that people engage in specifically scientific forms of human activity is paralleled by 
great changes in our view of what science itself is and how it is practiced. For a very long time scientists and 
the philosophers who built their reputations on the prestige of science have had their own way in providing 
rather self-serving views about what science is and how it is practiced. Most working scientists have never 



taken these views very seriously, and neither have they felt it worth the effort to contradict them. In the last 
few decades, however, sociologists trained in both science and social science methodology have begun to 
carefully observe and analyze what actually happens in scientific laboratories, discussions, conferences, and 
journals (e.g. Latour 1987; Lynch & Woolgar 1988; Ochs 1996)  Their picture is very different from the 
traditional one. 
 
Science is not a pure form of rationality; it is not an ideally objective pursuit of truth, guided by the dictates 
of nature alone. It is a very human activity, full of biases and accidents, driven by egos and budgets, 
competitive and sometimes venal, tightly locked into the agendas of larger institutions and social 
movements: a wonderful and terrible human comedy, like every other part of life. Science cannot be equated 
with its products: what science says about the world is not science itself. Science itself is the human activity 
that produces these statements and theories, and to learn science is not to learn what the last generation of 
scientists thought the world was like: it is to learn how each new generation of scientists re-makes our view 
of the world. Ultimately, it is to learn how to have some degree of participation in this process of invention 
and discovery. 
 
But mentalist psychology does not have much to say about science as a social activity, as a system of 
interdependent actions and practices that produce scientific statements and theories. It does not tell us how 
and why a scientist undertakes her next experimental project, or how she connects the results of an 
experiment to other experiments and existing and new theoretical models. It does not tell us how scientific 
views are constructed during dialogue and the exchange of ideas, or influenced by cultural value systems 
and disciplinary traditions. It has little to say to us about how to model the practices and activities of science 
for our students, how to help them learn to integrate these various practices into some semblance of the ways 
that scientists act, or how to learn to be even peripheral participants in the world-spanning activities of 
scientific communities. 
 
What sorts of theories are useful in this respect? I have already pointed to social and cultural psychology 
and to the sociology and ethnography of science, but these models also fall short for our purposes as science 
educators, because we are not their primary audience, our purposes are not their purposes. Even within these 
emerging alternative theories, there is also recognition that some tools and some perspectives are missing, 
that the logical and explanatory chain from overall activity to moment-to-moment action cannot be 
completed unless we look at how people actually deploy resources for making meaning, actually engage 
selectively in meaningful actions as part of larger agendas and activities, and this means that we need to look 
at one more theoretical picture of science education. 
 
I have called this additional perspective that of "social semiotics" (Lemke 1990, 1995). Back in the late 
1970s and early 1980s when I did the research that was eventually published as Talking Science in English 
(and in Spanish as Aprender a hablar cienca, Lemke 1997a), I knew that the results of audio- and video-



recording and close observation in science classrooms produced massive amounts of transcriptions of what 
words were said, in what contexts, what diagrams were drawn on the chalkboard and in students' notebooks, 
what equations were written, what graphs interpreted, what demonstrations performed. I knew that the 
progress of learning in these classrooms was manifestly a function of these small details, that it was the 
dynamic development of a trajectory of meaningful action, socially shared and jointly constructed by teacher 
and students, that produced learning. I think that every teacher knows this; we all seek to make meaning 
jointly with our students, to become engaged together in scientific sense-making, scientific doing. 
 
If this is the heart of teaching, this progressive sequence of things we say, diagrams we draw, equations we 
write, experiments we perform: how can we analyze the nature and extent, and difference, of our 
participation as teachers in this meaning-making vs. the participation of our students? Here is where I locate 
the contribution of social semiotics, which addresses just these questions. 
 
Semiotics, most basically, is the study of how we make meaning using the cultural resources of systems of 
words, images, symbols, and actions. It looks at every object and action as a sign, as having a meaning that 
goes beyond its properties as a material object or process, a meaning for some other system, which interprets 
the sign as having this further meaning (e.g. Peirce 1955 and Houser & Klossel 1992; Saussure 1915).  
Social semiotics looks at these meaning-making practices and activities as social processes, as something we 
learn to do as members of communities, and which we tend to do in characteristic ways that index our 
communities as much or more than our own individuality.  
 
Language itself is the most pervasive system of semiotic resources, and the ways in which scientists use 
specialized languages and use common language in specialized ways index the discourses of the 
communities of scientific disciplines. Every word is rich with meanings, meanings that accumulate as we 
encounter it in many different contexts. Every word is an intersection of many statements, many discourses 
that make use of it. Every word-in-context is part of some possible exchange of meaning between different 
members of a community (cf. Lemke 1998b). And what is true in this way of words, is no less true of 
pictures and diagrams, graphs and maps, equations and symbolic representations, and the symbolism of 
actions that mean as well as cause. 
 
In the early stages of my work, I focussed only on language. I did so not because I did not recognize the 
importance of the visual, mathematical, and actional-operational "languages" of science, but because at that 
time the needed tools of analysis existed for language (e.g. Halliday 1985/1994, Halliday & Hasan 1976), 
but not for the others. When I used the term "languages of science" in the 1980s, I usually meant the 
specialized languages of physics, chemistry, biology and the other scientific disciplines and their 
communities. I meant what today would be called the linguistic registers and genres of these fields: their 
vocabularies, their semantic networks, their styles of discourse, their standardized types of documents, etc. 
 



Today, however, I want to put before you the case for using this phrase, "the languages of science" in a 
broader sense. I want us to recognize that in addition to scientific English, or Spanish, or Catalan, there are 
also other essential "languages", in the sense of cultural systems of semiotic resources in science: the 
languages of visual representation, the languages of mathematical symbolism, and the languages of 
experimental operations. The goal of science education, I want to argue, ought to be to empower students to 
use all of these languages in meaningful and appropriate ways, and, above all, to be able to functionally 
integrate them in the conduct of scientific activity. 
 
 
How Science Says What it Means 
 
A few years ago I decided to have a close look at how scientists "say" what we mean (Lemke 1998a). I 
looked at our proudest products, scientific research articles for publication. I examined the most prestigious 
of the general English-language scientific journals, Science published by the American Association for the 
Advancement of Science, and its British counterpart, Nature. I also looked at some physics journals and 
across a range of advanced textbooks and treatises, to see the whole range of science, from molecular 
biology to field ecology, from particle physics to cosmology. What I saw on the pages of these books and 
journals was never words alone. On every page there were also visual-graphical representations of many 
kinds, as well as mathematical equations, and charts and tables. 
 
For example, in the prestigious Physical Review Letters, there were an average of at least one and often two 
or three graphical figures (tables, charts, graphs, photographs, drawings, maps, and more specialized visual 
presentations) per page, as well as at least 2-3 and often as many as 6-7 equations per page. In Science, with 
more experimental and fewer theoretical articles, there were fewer equations, but on average one table, one 
data graph, and a total of 4-5 visual graphics of one kind or another per article. In the broader survey as well, 
there was usually at least one graphic per page and, if equations were used, 1-2 of these per page as well. 
 
Some extreme examples help to make the point: 
 

• In one advanced treatise, a diagram was included in a footnote printed at the bottom of the page 
(Berge et al. 1984: 84). It was necessary for even the minor point being made there. 

• In one 7-page research report in Nature, 90% of a page (all but 5 lines of main text at the top) was 
taken up by a complex diagram (Svoboda et al. 1993) and its extensive figure caption. 

• The main experimental results of a 2.5-page report in Nature were presented in a set of graphs 
occupying one-half page and a table occupying three-fourths of another (Martikainen et al. 1993). 
The main verbal text did not repeat this information but only referred to it and commented on it. 

• In most of the theoretical physics articles, the running verbal text would make no sense without the 
integrated mathematical equations, which could not in most cases be effectively paraphrased in 



natural language, even though they can be, and normally are meant to be read as if part of the verbal 
text. 

• Science does not speak of the world in the language of words alone, and in many cases it simply 
cannot do so. The natural language of science is a synergistic integration of words, diagrams, 
pictures, graphs, maps, equations, tables, charts, and other forms of visual and mathematical 
expression. 

 
Why should this be so? I will return in more detail to this question later, but for now consider how poor 
language is in resources to describe continuous variation and complex matters of quantitative relationship. 
How well could you describe in words the shape of an irregular surface, twisting and bending in 3-
dimensions? How well could you describe the exact quantitative relationships between two curves on a 
Cartesian graph? or even give more than the most rudimentary view of their changing differences in 
qualitative terms? What non-mathematical resources do we have in natural language to describe complex 
ratios and rates of change? or general functional relationships more complex than those of simple linear 
proportionality? Natural language is very limited in its ability to describe continuous variation, shape, and 
movement in space. Gesture is a more suitable language in which to express such meanings. And drawings 
and visual depictions, which are in many ways the lasting traces of gestures, standing to gestures as writing 
does to speech, are the time-independent medium of choice for such expressions of meaning. For 
quantitative relationships, we have furthermore extended natural language with the language of 
mathematics, and learned to use mathematics as a bridge between verbal language and the meanings we 
make in visual representations. 
 
 
Concepts as Multimedia Signs in Use 
 
So, have we then totally lost the notion of a scientific concept and its understanding? How can we translate 
these traditional terms and the many useful understandings of our work as science educators that we have 
formulated with their help into the new and broader theoretical language of the social semiotics of scientific 
activity? 
 
In the traditional mentalist view, a concept exists outside of all language, and indeed outside of all 
languages, in the sense of representational systems like images, symbols, actions, etc. It exists in some 
imaginary "lingua mentis" -- the very metaphor relies on the notion of a language, of a semiotic resource, a 
"language of the mind". This is only a fairly recent effort to make plausible a very old idea: that a concept as 
an abstraction exists in a realm of its own, beyond the material world. We heard this first from Plato, and 
there is for me little distance between the mentalism of Descartes and the idealism of the Platonists. The 
most popular view today among philosophers is of course radically anti-idealist; it calls itself Realism, and 
in its most comprehensible form it simply says that there is some correspondence between the ideas of the 



mind, our concepts, and the realities of the objective world. The concept of energy exists in the mind, but it 
has some correspondence to a real phenomonenon of energy in the material world. It is the reality of the 
phenomenon which gives a unity to the concept, and allows it to exist above and independently of all 
possible representations of it. Frankly, I find this view distressingly theological; in fact its intellectual 
distance from the idea that  the soul exists in a realm separate from that of the material body does not seem 
very great. 
 
All these imaginary mental realms are also pretty much unnecessary for making sense of human activity. 
Yes, we certainly need something more than crass materialism; we need more than a universe in which there 
are only material causes and effects. But we do not need a second non-material universe, whether of souls or 
minds, we need only a second interpretation of the one, single material universe. We need only to add 
meaning to matter, interpretation to causal effect, so that every material object and process can also function 
for us as a sign, as something that means more than it does. And how do things mean as signs? this is one of 
the basic questions for which semiotics supplies useful answers. [Added 2015: I would also now say that we 
need to add the feelings which in part derive from and in part help define our experience and its meanings.] 
 
I cannot summarize all of semiotics in a few words, but for the purposes of my argument here, let us just say 
that as a sign an object or process means because we connect it, in a relation of similarity or difference, of 
kind or degree, to some set of alternatives: this word vs. that word, this image vs. that image, this action vs. 
that action. More importantly, signs do not occur in isolation. They are produced and deployed in clusters or 
arrays, whether as sentences or images or mathematical proofs and derivations, and these arrays mean as 
wholes as well as meaning through each part and sub-unit, and each of these different scales of meaning also 
operates by difference and degree, but more interestingly by their typical and expectable (or surprising) 
relations to various contexts. The symbol "V" may denote velocity in one context, and voltage in another; 
how do we know which? because of some pattern in the array (a legend, an accompanying text) that we have 
learned to connect with the symbol (as a standard genre), or because of some typical and expectable 
connection to the situation, to the larger activity in which the array occurs (is this a lesson on electricity, or it 
is a lesson on kinematics? are we seeing a demonstration of motion, or one about electric circuits?). 
 
What, then, in semiotic terms, is a scientific concept? Is it the word "energy" and the ways we use that 
word? Is it the symbol E and the mathematical equations in which that symbol appears? Is it a diagram of 
energy levels, or a graph of potential energy wells? Is it the set of procedures for experimentally measuring 
thermal or electrical energy in some system? 
 
In the mentalist-realist view, each of these is just a shadow of the Idea of Energy, a reality in the world and a 
concept in the mind; each of these representations of Energy can be made equivalent to the others because of 
the reality of Energy as an actual and existing phenomenon. 
 



In the semiotic view, there is no real phenomenon corresponding to the concept of energy; rather, there are 
only a great many complex material phenomena which can be interpreted or construed according to various 
discourses and symbolic schemes, one of which uses a notion of energy. What makes all the different 
semiotic representations for "energy" equivalent to one another is not the reality of "energy" but the work 
that we learn to do to construct these equivalences one by one, pair by pair. This work is the product of a 
long historical tradition telling us how to use these various symbolic representations effectively. 
 
These two views have profoundly different implications for the teaching of scientific concepts. On the 
mentalist view, students should be able to "discover" the concept of energy for themselves; they should be 
able to "generalize" from different instances of energy and "see" the conceptual unity of the various 
representations of energy. It should be possible for them to "leap" to the abstraction because in some sense 
that abstraction is real, and is always naturally there as a target for their leap. 
 
In the semiotic view, the "discovery" scenario is a dangerous and misleading fable. Students need to be 
taught, in each separate kind of physical instance of "energy", how to measure "energy" differently, how to 
use the word "energy" to refer to specifically different aspects of a system or phenomenon, how to write 
equations that apply to that type of system, how to draw diagrams for it; and then they need to be taught how 
to move back and forth among the different verbal, mathematical, visual, and operational representations for 
"energy" in each case, and then further how to integrate and construct equivalences between each different 
pair of types of cases. They need to gradually build up an abstract concept of energy, for there is nothing 
there to "leap" to until they have learned how to construct the necessary equivalences. 
 
Yes, of course, a very few students do seem to leap to some concepts. I think we know that these are 
students who already have quite a few more clues about how such integrations and equivalences are 
supposed to be formed than do the other students. One should not under-estimate the ability of the human 
brain to identify patterns, including those which are the historical product of various forms of reasoning in 
our culture. What we call the very bright students are usually those whose lives outside school are rich in 
examples of abstract patterns of reasoning inherited from the same elite cultural tradition that gave rise to 
our scientific concepts. But even these students do not make too many lucky guesses, and most of them will 
also have already read a fair bit about the subject beforehand. 
 
Those who are well-versed in the history of science will more easily understand the semiotic position. I 
chose the concept of energy deliberately because it falls about mid-way in the range from scientific concepts 
that seem totally natural, such as "mass" or "heat", to those that seem totally artificial, such as "entropy" or 
"action" (the quantity of which Planck's constant is the minimal unit). "Energy" has been naturalized by 
history, but there was a time when it seemed as arbitrary and artificial, as purely a mathematical convenience 
unrelated to material reality, as such older notions as the "vis viva" or "impulse" or current ones such as 
"Gibb's free energy" or "enthalpy". Historically, each new "form of energy", from heat energy, to electrical 



and magnetic energy, to nuclear energy had to be defined and constructed in completely different terms; 
there was no Idea of Energy to point us in the right direction, there were only the accepted experimental 
processes for establishing equivalences of quantity, and in fact in many cases these themselves had to be 
invented, and we give great scientific recognition to Joule and Kelvin and Faraday and Maxwell and all 
those others who first showed the ways to fit new cases into an expanded paradigm of energy. In semiotic 
terms the concept of energy changed and expanded as each new kind of energy was integrated into the grand 
synthesis of physics. 
 
Neither of course does the concept of energy have sufficient reality in its own terms to insure that it will 
continue to be applicable in all possible physical situations, as it is not in cases where the uncertainty 
principle forbids a system to be in an energy eigenstate, or where space-time is so radically convoluted in its 
topology that "energy" can no longer be usefully defined as the time-like component of the momentum 4-
vector or one cell in a 10-component 4-dimensional stress matrix that only exists in a co-ordinate frame that 
cannot be defined too close to a black hole singularity. 
 
No scientific concept re-presents a pre-existing absolute reality; every scientific concept offers a means of 
interpretation of our experience in the world, including the world of the laboratory, and the worlds we model 
for cosmological phenomena and conditions. Every scientific concept is an element in a system of signs, and 
indeed is a conflation or integration of simultaneous and conjoined elements in several very different 
systems of signs. This fact is, I believe, critical for our work as science educators. 
 
Every scientific concept is simultaneously a sign in a verbal semantics of discourse, and in an operational 
system of actional meanings, and usually also in a visual representational system, and frequently in a 
mathematical semiotic system as well. And its meaning does not arise simply from each of these added to, or 
in parallel with, the others: it arises from the combination of each of these integrated with and multiplied by 
each of the others. From this multiplication of meaning comes the great power of scientific concepts and of 
scientific reasoning: in scientific reasoning we can freely and self-consistently move back and forth between 
verbal reasoning, visual reasoning, quantitative reasoning, mathematical symbolic logic, and operational 
situated sense-making and action. 
 
We can integrate all of these modes to solve problems that could never be solved with only one or even two 
of them. We can partly talk our way through a scientific event or problem in purely verbal-conceptual terms, 
and we can partly make sense of what is happening by combining our discourse with the drawing and 
interpretation of visual diagrams and graphs and other representations, and we can integrate both of these 
with mathematical formulas and algebraic derivations as well as quantitative calculations, and finally we can 
integrate all of these with actual experimental procedures and operations, in terms of which, on site and in 
the doing of the experiment, we can make sense directly through action and observation, later interpreted 
and represented in words, images, and formulas. 



 
But it is precisely how to accomplish this miraculous synthesis of multimedia reasoning which most of our 
students do not learn to do. And this should not be surprising to us, because in general our curricula include 
almost no explicit instruction or practice in how to do it. We leave it all up to the students to work out for 
themselves, because we have been terribly misled by mentalist psychological theories that tell us that a 
"bright" student ought to be able to "think abstractly" and so re-create in a few weeks what our scientific 
history took decades and centuries to construct. Those who cannot do so are labeled hopeless, and the 
powers that be in society smile to discover that more sons of the well-to-do classes make successful guesses 
than do the sons of the poor, or anyone's daughters. 
 
Teachers do not smile when any student fails. Teachers want to be able to understand what it is that students 
are not learning how to do. We want to know what the missing links are that are needed to connect what we 
teach them with what we expect them to be able to do. As teachers we all want to know: what is it that we 
should have taught them to do, but didn't? 
 
 
Lessons from A Case Study: John Juggles Multimedia Science 
 
Recently, I was asked to analyze a video recording of one day in the life of a student in an Australian high 
school (Lemke 1997b). In the last year of advanced work in science, this student, John, was taking, in one 
day, a chemistry and a physics class, with lunch and some mathematics in between. What was unusual about 
the video was that it showed the student's view of the classroom; the camera was located next to and a little 
behind the student, at the end of one row of seats, and it showed his activity and his view out over the rest of 
the classroom. The point of this research study was to look through the student's eyes, to take the student's 
role-perspective on classroom interaction and learning. In addition to the video, I had access to the relevant 
pages of the textbooks, to the teachers' overheads, handouts and notes, and to the student's own notes from 
his notebook. 
 
So I began this analysis, and in particular I focussed on what different media and channels of information 
were conveying scientific information to John, and what media and tools John was using to interpret this 
information. I could not see John using concepts, but I could see him reading from a textbook, writing in his 
notebook, looking at a diagram on the chalkboard, using a calculator, talking to a friend in the next seat, 
listening to the teacher and other classmates ... and even I was astonished at how many different semiotic 
systems John had to integrate and make use of in every few minutes of time in the classroom. John was 
becoming an expert at juggling the many media that together make up scientific activity. Of course John was 
already successful in science, or he would not have advanced to these classes. He was one of the lucky ones 
who was correctly guessing by trial and error what he had to do to make sense of what he was being taught.  
 



Indeed, we should be very careful when we speak of "what is being taught", for there are things being said, 
and diagrams and graphs being drawn, and written material distributed, and demonstrations performed -- but 
this tells us nothing about how John interprets these signs. Given the large number of students who either 
fail at science, or who pass but really cannot use what they have learned, and the many who choose not to 
take courses in science, we can assume that most students are not like John; for most of them most of what 
we say and write and draw and compute and demonstrate makes very little sense, or at least not at all the 
kind of sense that is needed to succeed in science. 
 
We teach in the languages of science, but we do not very often teach students about those languages. It is as 
if we taught our English or Spanish or Catalan students in Chinese; as if we drew all our diagrams in secret 
codes, and represented all our formulas in encrypted form, as if the meanings of our actions were arcane and 
esoteric rituals. From our point of view we are presenting the content of science in as plain and clear a 
manner as possible, but this is useless if the students cannot decipher the languages in which we are saying 
and showing it. In fact, the situation is perhaps even worse than this, because to arrive at the meanings John 
needs, he must not only make sense of each of these languages separately, but he must understand the 
special ways in which the teacher combines and integrates them with each other. Time and time again in my 
analysis of John's lessons, it was clear that the teacher was not presenting the whole idea in any one 
language: it was only by combining a partial meaning from the words, with a partial meaning from the 
diagrams, and another partial meaning from the mathematics or the demonstration that a whole, sensible 
meaning could be formed. It is as if we taught science plainly and clearly, but we said the first words of each 
sentence in Chinese, then the next few in Swahili, and then the last few in Hindi, and in the next sentence we 
started in Swahili, ....  and so on. 
 
Of course the languages of science in which we teach are not totally alien to our students, but much in each 
of them is quite new, and the ways in which they must be combined to make complete meanings are totally 
unfamiliar to most students, especially in the first year or two of serious and intensive study in science. 
 
Not only are the meanings which teachers make in each separate channel of communication often 
incomplete in themselves and insufficient by themselves as a basis for inferring the correct scientific 
meaning, but frequently what teachers communicate in one channel is simply wrong, or misleading, if taken 
out of the context of what we are communicating in the other channels. Teaching is a fast-paced activity, as 
every teacher who races the clock to finish a lesson knows. As humans, we teachers are fallible, and we 
often mis-speak, and mis-write; we say things reversed, we mix-up two numbers or symbols, we leave 
something important out, we say just the opposite of what we mean to say, we write something in the wrong 
column, we skip a step in a derivation, we use the wrong symbol ... and it is truly remarkable that many of 
our students simply note our mis-steps, see them as obvious errors, correct them based on other things we've 
said, or what is on the sheet or in the book, or on the chalkboard, and only occasionally get confused enough 
to have to ask us if we made a mistake. These tiny lapses are really rather common if you examine 



transcripts and videos; mostly they are erased in memory by the next thing we say or write or draw or do, 
which sets all to rights. Human communication is a fault-tolerant system, it incorporates a great deal of 
redundancy, especially if we average meaning over longer stretches of time. But in order for these self-
correction mechanisms to work in science teaching, students again must be able to integrate the meanings 
that are communicated in different channels, using different semiotic systems of resources for 
communication. 
 
Another feature of the multimedia communication of science is what is called fashionably today its 
intertextuality. This is a principle, in linguistics and literary theory, which says that we make sense of each 
item we read or hear or see partly by comparing it with other things we have read, heard, or seen somewhere 
else. One writer makes literary allusions to another book or novelist; a painting is meant to trigger our 
memory of some other classic work of art. And in simpler ways, what the teacher says right now may make 
sense only if the student remembers something read last night in the textbook, and what is read there may 
make sense only in the context of what was written in the previous chapter, and the diagram on the board 
may make sense only when we have also heard the verbal discussion of it, and the relationship in a formula 
may become meaningful to us only when we have entered some sample numbers on our calculator to try it 
out. Some students make sense of the graph before the formula, others the verbal statement before the 
mathematics, some may make sense of the demo only when they have also seen the diagram, and so on. 
Sometimes all the necessary information is present simultaneously in the classroom; more often it is 
presented to us only serially one bit after another, maybe in the best order for us individually, and maybe 
not. Patience is required, and trust that the missing pieces of the puzzle will be shown later. Many times not 
all the needed information is present today, we must remember from yesterday or last week or last year, or 
we must remember what we read in the textbook, or the problem we did as homework. And sometimes we 
need a little piece of the puzzle that is nowhere to be found in the school curriculum, but that we experienced 
in the science museum we went to with our family. If we are lucky enough to be born into the kind of family 
that feels comfortable and can afford to go to science museums. 
 
These puzzle problems, this juggling of different information sources, is not some weakness of a poorly 
prepared teacher. It is inherent in two aspects of all communication: that no meaning is ever complete in 
itself (there is always a necessary intertextuality), and that every interpreter finds a different pathway to 
meaning (sometimes an amazingly bizarre and idiosyncratic one). Science above all disciplines, except 
possibly mathematics, prides itself on its explicitness and completeness, but these are ideals that can never 
be totally achieved. A completely explicit text would be an infinite text, and indeed no text in a single 
medium can ever stand on its own -- all depend on co-reference to other aspects of meaning and experience. 
All communication must make some assumptions about what the reader will already know as a basis for 
further interpretation. And likewise, what every actual individual reader does know is different, and no two 
readers will interpret any text in exactly the same way, especially if it is a long and complex one. Perhaps 



they may even come to the same conclusions, but by very different pathways. And many times they will not 
even come to the same conclusion. 
 
This is one reason why teaching is a dialogue. It is only by on-going interaction that teacher and students 
have the chance to compare their interpretations of what each other is saying, and so gradually come closer 
to functionally equivalent meanings -- to interpretations that may still differ, but do not differ in ways that 
will cause the cooperative progress of the dialogue or the experiment to fail. Every teacher believes that he 
or she is capable of making a perfectly clear explanation that will be understood by every student. And every 
teacher knows that in this belief we are quite wrong. It is not a matter of our brilliance or clarity; it is simply 
not a human possibility. 
 
In every typical few minutes of his work in these science classes, John was listening to the teacher's spoken 
words, but also looking at diagrams and lists and tables and calculations and equations written both on the 
chalkboard and displayed on an overhead projector screen. He was listening to his classmate's answers to the 
teacher's questions, and to her evaluations of those answers (for only the three together make a complete 
meaning). He was consulting a copy of the textbook and relating what he found there to statements, to 
questions and answers, to the tables on the board and screen. As he followed the explanation of a method of 
problem-solving, he was getting ahead of the teacher by using his own calculator, and then comparing his 
result with hers. He was writing in his notebook, sometimes copying from board or screen, sometimes 
copying from textbook, sometimes transcribing teacher talk, sometimes formulating his own version of a 
conclusion of a question-answer-evaluation discussion. His notes integrate all these sources into a 
reasonably coherent exposition, and they too contain not just the words, but also the tables, the diagrams, the 
equations and calculations -- John's versions of these, not identical to the teacher's, sometimes more correct 
than hers, sometimes less. 
 
In the physics class there were also demonstrations of emission spectra and laser light, and the teacher did a 
visual pantomime of coherent emission and amplification in an imaginary laser crystal, all invisible, but 
clearly followed by most of the students as they visualized the crystal and the photons from his verbal 
narration, his gestures, his movements through the (large) imaginary crystal. They relied on memory of other 
diagrams and pictures that they had seen in the textbook and perhaps in another lesson. And they drew in 
their notebooks real drawings of invisible, imagined objects created solely by the narration and pantomime 
of the teacher and never drawn by him at all. This is visual intertextuality, it is visual-verbal integration, it 
transforms gestures into drawings through the joint work of teachers and students, mediated by verbal 
language cues, both more and less successfully. 
 
John and his classmates were constantly integrating, translating, comparing, and synthesizing information 
presented in verbal form as complete sentences but more often as incomplete phrases, as lists, as 
mathematics spoken aloud, as propositions spread out over question, answer, and evaluation of answer; 



together with visual information from written text, from graphs and diagrams and tables and charts; and 
information conveyed in the language of action and procedure and demonstrated operation, as well as in the 
language of mathematical symbolism and numerical calculation. I emphasize that complete ideas and 
relationships were not presented separately in each of these channels; they were not fully redundant. 
Complete meanings usually could be made in each few moments only by integrating information from 
several channels. This is a normal feature of human, and especially of scientific communication. We find it 
in professional scientific discussions (e.g. Ochs 1996) and in published scientific research articles (Lemke 
1998a) just as much or more than we do in these classrooms. 
 
John did all this juggling and integrating fairly fluently, though we do not know how well he would be able 
to marshall these skills and multimedia concepts to do original work in science. John was a mostly silent 
participant; we can judge him mainly by what he wrote in his notebook and his judgment in consulting the 
relevant sources at the relevant moments, his ability to correct a few errors the teacher made, his ability to 
use his calculator to get a few steps ahead of the teacher at one point. 
 
John is one of the lucky ones. He is an advanced science student who has learned to juggle and integrate and 
synthesize across the multiple semiotic languages of science. He made a lot of correct guesses earlier in his 
learning in science, and/or he had some special help and guidance, or some strong motivation and discipline 
to work through many wrong possibilities until he found ones that worked. Too many students are not as 
lucky as John. Too few curricula and standard teaching methods in science place enough emphasis on 
teaching students how to do what John has learned to do. It is our responsibility as teachers to develop the 
methods needed to teach all students how to talk the specialized verbal language of science, to create and 
interpret the specialized visual representations of science, to use the mathematical and quantitative 
symbolisms of science, and to execute and interpret the language of practical actions and operations that tie 
meanings to doings in science. More than this, it is also our responsibility to teach students how to explicitly 
integrate these different modes of representation, how to shuttle back and forth among them, how to reason 
with them in complex combinations, how to communicate their ideas and results through syntheses among 
them. 
 
Why Does Science Use Multiple Semiotics? 
 
I assume that science educators are intellectuals as well as practical men and women. For very practical 
reasons, we all need to know more about how science and the teaching of science relies on the integration of 
multiple channels of communication and the use of multiple systems of semiotic resources. We need to 
know these things practically because these are the very media we use in our own teaching, they are the 
tools of our trade, and we must learn to use them and teach our students to use them as well as we can. 
 



But as intellectuals we should also have a more basic curiosity: why is science like this? why does science 
need to use multiple semiotic systems? why would just verbal language alone not be enough? why would 
mathematics alone not be sufficient? could we teach students all they need to know using only verbal 
language and visual diagrams and graphs? in what sense is it really true that experimental procedures 
themselves form a communication system very much like language itself in the way that it works? 
 
I cannot hope to give satisfying answers here to these profound questions, but I think it is worth considering 
at least a few bits and pieces, a few hints, toward possible answers. 
 
We might begin with one of the oldest questions of science: why has mathematics proven itself so useful as 
to be indispensable in the work of the natural sciences? This was of course the basic concern of the 
Pythagoreans in ancient times, who found it profoundly mysterious, and indeed a matter of religious 
inspiration, that mathematics could be formulated as a purely logical system, apparently independent of our 
experience of the world, and yet seemed to be so perfectly suited to describing its forms and processes. 
Plato's idealism was of course itself inspired by more or less this same observation. But the Greeks, and 
especially the philosophically minded ones, however large they are made to loom in our historical myths, 
were in fact rather minor players in the ancient world, and most Greeks abhorred philosophy. Greek 
mathematics came mostly from Egypt and perhaps from Crete, and these systems of mathematics seem to 
have come mainly from the ancient Babylonians and Sumerians, who were remarkably advanced. They 
solved complex algebraic equations, had trigonometric tables and rudimentary logarithms, and they had the 
beginnings of integral calculus (Neugebauer & Sachs, 1945; van der Waerden 1963; Joseph 1991) Their 
mathematics was entirely practical and driven by practical problem-solving concerns. So, by and large was 
that of the Egyptians (Peet 1923, Neugebauer 1975, Cajori 1928). With rare exceptions, most of the history 
of mathematical development is the history of inventing mathematical techniques and concepts to handle 
practical problems that could not be handled adequately by verbal reasoning alone. 
 
The origins of our mathematical tradition lie in the tools devised by engineers and surveyors, agricultural 
superintendants and tax collectors. The collections of problems in Babylonian and Egyptian mathematical 
texts were almost always illustrated by diagrams or verbal descriptions of geometrical, figural relationships. 
The great first steps of these mathematical systems, from which our own derives by way of the Greeks and 
then the Arabs, were to find ways to represent symbolically, and operate symbolically with non-simple ratios 
and algebraic equivalents of geometrical relationships: they were in a profound sense creating a 
mathematical language for the description of quantitative relationships more complex and precise than 
natural language was accustomed to handling.  
 
The history of mathematics is a long and complex one, but until relatively recent times, most of its progress 
was driven by very practical problems of representing material relationships and processes, first as matters 
of complex ratios or rational numbers, and later as decimal numbers in the continuum of the real numbers. 



When human beings came to reason about lengths and areas, about angles and rates of change, about motion 
and shape, we found that the semantics of natural language was not well adapted to such tasks. Natural 
language operates primarily by contrasts between mutually exclusive categories (human vs. animal, singular 
vs. plural, move vs. stand) and it has relatively fewer and limited resources to express quantitative meanings 
or meaning-by-degree. There are the counting numeratives (integers), the simple multipliers (twice, thrice), 
and a few degrees of comparison (big, bigger, very big). Indo-European languages also distinguish mass and 
count nouns ("five lakes" but not "five waters") and introduce quantifier terms that become the basis of our 
notion of units of measure (five pails of water, five bushels of grain). There were also a few simple fractions 
(one-half, two-thirds) but the possibility of creating multiples (seven one-twelfths, or thrice a sixth) already 
represented an extension of natural language into an unfamiliar domain.  
 
Natural language gives us no clue as to which is larger: seven elevenths or eight twelfths? but a geometric 
representation would be quite clear on this point. In general the resources of visual representation were 
better able to handle matters of proportion and ratio, and complex shape, pathway, or direction of motion, 
than natural language. In time, visual representations came to be indispensable codings of material 
relationships in order to reason about them, but reasoning remained still a use of natural language. All our 
categories and logical operations were embedded in natural language, and not until very late in semiotic 
history do we find visual logics of equal power. Most of our questions and problems to be solved were posed 
in language and expected answers in language. The early mathematical texts are mostly in verbal prose, with 
diagrams added, and only a little specialized notation, mostly for large numbers and odd ratios. What was 
desperately needed in order to reason about the material world was some way to connect the categorial logic 
of natural language with the quantitative and geometrical descriptive power of visual and numerical signs. 
 
This connection of course was made, in many small steps, by the invention of algebraic notations. In the 
ancient texts, and even well into the Renaissance, algebraic notation was always embedded in natural 
language and written simply as an extension of prose verbiage (Cajori 1928). Our modern efforts to suppress 
natural language and operate purely in mathematical symbolism are quite foreign to most of the history of 
mathematical and scientific reasoning. Algebra was fundamentally an extension of the semantics of natural 
verbal language to allow it to express and reason about complex ratios of quantities, and arbitrary 
geometrical shapes and spatial motions and temporal changes. It was at first a supplement to both verbal 
language and visual diagrams, and finally with the appearance of co-ordinate geometry (anticipated in most 
of its features long before Descartes), there was a complete bridge, a constructed equivalence between the 
mathematical formula, the visual graph, and the quantitative variation observed in measurement operations. 
This unification more or less coincides with the birth of modern science, and made it possible. 
 
All semiotic resources, whether verbal language, mathematics, or visual representation combine two basic 
principles for making meaning: meaning by kind and meaning by degree (see Lemke 1998a, 1999, 2002). 
The first, or typological semiotics, is more familiar to students of linguistics and sign systems analyzed by 



analogy to natural language. All meanings are about category terms and relations among them, even 
categories of processes and categories of relations. Most categories are mutually exclusive, and membership 
in a category is all or none. The second, less familiar but extremely important for science and science 
education, we may call a "topological semiotics" (Lemke 1999). Here, as in the languages of visual 
representation and human movement, posture, gesture, and proxemics, the meaning of an element can 
change by infinitesimal degrees, instead of simply switching from one category to another: shades of a color, 
relative proximity in space, lengths of a line, curvature of a shape, rate of motion. Of course natural 
language has some capacity for meaning by degree, as in evaluations and judgments, or more clearly in 
matters of audible speech such as intonation and forcefulness, but this is not its forte. And so likewise visual 
representations certainly also rely on contrasting categories, as in the representation of familiar types of 
objects. But drawing and gesture are much more powerful at expressing topological, and therefore 
quantitative meanings, while verbal language is much better at reasoning about relations among categories.  
 
The phenomena of scientific investigation possess critical features of both kinds: to characterize material 
processes and their relationships we need both categorial descriptions and quantitative reasoning, and this 
fact created a historical pressure that gradually built a bridge between the linguistic and the visual-gestural: 
the result was mathematics, built out from the linguistic as the algebraic extension of the semantics of 
natural language in matters of quantity, ratio, and continuous variation, and built out from the visual-gestural 
side as geometric diagram and eventually Cartesian coordinate graph. The ability in mathematics first to 
create correspondences between algebraic and geometric representations, and eventually to construct 
complete equivalences between them provided the missing link that enabled science to reason both verbally 
and quantitatively, both typologically and topologically, about material phenomena and processes. 
 
And this is why, I believe, modern scientific concepts are essentially elements in the cross-articulated 
multiple sign system of language-mathematics-visual representation, with a final link to the actual 
operations of experimental manipulation of apparatus and measurement. It is easy enough to see that a link 
musy be made between semiotic representations and reasoning and material phenomena, and also easy I 
think to see that this link must come by way of the actions of the scientist in interacting directly with the 
phenomena under study. Two points are less obvious. First, that measurement plays a key role; the reason is 
that measurements are the operations by which we enable quantitative representations to descibe 
phenomena. Of course we also make qualitative observations, and these form the links to linguistic 
reasoning and verbal categories and concepts. We need quantitative representations because material 
processes and their dynamics are not, in most cases (there are quantum and some other exceptions) 
categorial in their operation; rather they are matters of covariation among continuous variables (or what 
amount for practical purposes to continuous variables). The second, and subtler point, is that the actions of 
the researcher form yet one more semiotic system. Of course our actions are also simply material processes, 
matter in motion, but more importantly they also have meaning beyond their physical causality, and it is 
these meanings that allow us to co-ordinate our doings with our other, verbal and visual and mathematical 



meanings. An operational definition of a scientific quantity is not just a material procedure, it is also a 
meaningful sequence of actions, which is connectable logically to our verbal definition of the quantity and to 
its mathematical relationships to other quantities in a theory or model for which we can give verbal 
justifications in relation to the kinds of human problems these quantities and relations are useful in solving. 
 
There is, finally, what I believe is a very deep and profound relationship between typological and toplogical 
meaning-making, one that depends on the organization of human action in the environment at various scales 
of space and time, and which represents a principle of alternation in kinds of meaning across levels of scale 
from the molecular on up to the social and ecological. But that is a much larger subject and far from the 
central themes of my argument here (see Lemke 1998c, 2000). 
 
I hope that I have at least persuaded you that if the goal of science education is to empower students to use 
the forms of reasoning and action that constitute scientific practice, and if the media of communication by 
which we teach, and the nature of the scientific concepts we hope students will learn to use, are in all cases 
complex integrations across language, mathematics, visual representations, and practical actions, that it is 
important to pay much more attention in our teaching to all the languages of science. 
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