
22 CrossTalk—Jan/Feb 2011

DATA MINING

Section 1: Introduction
Defense project managers and software engineers are often

called upon to produce effort, duration, and quality estimates
for a new project based on the project’s initial needs statement.
Often the manager or engineer is solely responsible and ac-
countable for producing and delivering these estimates; in other
cases, a senior executive may ask them to develop estimates for
his or her use.

Depending on the time available (usually short turnaround–
one or two days–is required), the level of uncertainty associated
with the project scope (often only a general vision or statement
of capability), and the phase of the project (early concept is
most common), estimators often rely on one or more rules-of-
thumb to arrive at their estimate. Most published models have
guidelines for these rules, but there is little empirical data to
show how well they work. This paper provides that empirical
data for one organization’s software development approach.

Project estimation involves translating a set of business
objectives or requirements into a measure of product “size.”
This size measure is then used to estimate the effort, duration,
and quality of the final software product. The ability of a system
engineer or project manager to align the business objectives
with the technical estimates leads to well informed business de-
cisions. The time to complete an estimate is often sufficient only
for the use of “rules-of-thumb” for simple models to generate
“ballpark” estimates that can then be refined as the project un-
folds. Several authors, including Boehm [1,2], Jones [3,4], Rone
[5], and others [6-10], have published approaches to arrive at
software development effort, project duration in calendar time,

and quality as measured by defects discovered prior to release.
In all cases the authors advocate for calibrating their approach-
es based on data from the organization’s previous projects …
but what if this data is not available? The questions, then, are:
(1) How good are these approaches “out of the box” using the
parameters from the model author’s environments?; and (2) Can
we rely on them to make business decisions?

Several authors have contributed critiques and compari-
son papers of the various models:

• Atkinson, et al. [11] and Pearse, et al. [12] show how simple
software metrics, both actual and estimated, can be used to ef-
fectively manage the final stages of software development, but
they do not address early project estimators.

• Kemerer [13] concluded that metrics-based software proj-
ect estimation is a viable approach as long as the models are
calibrated for the environment. He also concluded that function
point-based size estimates were better than source lines of
code for the 15 projects studied from one environment.

• Jorgensen and Sheppard [14] found that more than 50% of
estimation articles try to build, improve, or compare regression-
based estimation models. In further studying expert judgment
estimation, they also identified a lack of in-depth studies on the
actual use of the approach and real-life evaluations published as
journal papers.

• Fenton and Pfleeger [15] concluded that single models may
work well in environments for which they were derived, but do not
translate well to other environments because of the availability of
parameter drivers early on in the estimating process. They recom-
mend changes to estimation model structure and standardization
of local data definitions to reduce input subjectivity.

• Jorgensen [16] also reported that expert judgment is the
predominant estimation technique used in industry today. He
analyzed 15 studies comparing model-based and expert-based
effort estimation. The results were a tie: Five in favor of model,
five in favor of the expert, and five had no difference. Thus, there
was no clearly superior approach to effort estimation.

These results encouraged us to continue to search for a
parametric approach that would help us to quickly create a rea-
sonable bound on the effort, duration, and quality for a particular
project request. Our investigation identified several candidate
models that a systems engineer could apply with little to no
historical data. But, just because we could … should we?

The findings presented herein pertain to our particular col-
lection of 54 completed projects by a well-established and
measured software development organization. It is possible that
some of our findings are not generally applicable, so practitio-
ners are encouraged to run their own tests and determine which
of the available models is best for their particular environment.
Nevertheless, most of the results presented here are consistent
with our intuition and the conclusions above. Thus, we believe
the results provide a good perspective of the value of metrics-
based software project estimators and the corresponding rules-
of-thumb provided by their inventors.

The next section provides an overview of the various estimat-
ing models we tested (four Effort prediction models, three Dura-

George Stark, IBM Global Services

 A Comparison of
Parametric
Software
Estimation
Models Using
Real Project Data

CrossTalk—Jan/Feb 2011 23

DATA MINING

tion prediction models, and two defect prediction models). This
is followed in Section 3 by a description of the projects included
in the analysis and the data collected. Section 4 presents the
comparisons and the findings.

Section 2: Estimating Models
The following subsections describe the models that we evaluated.

Effort Models
Three common formulas for estimating the effort (in person-

months) are based on delivered source lines of code (SLOC).
Rone developed a model at IBM based on observations from a
variety of software projects for customers, including the space
shuttle flight software, school district management, point-of-sale
systems, help desk systems, and others. The model has the form:

E = ((((SLOC/productivity)*1.1)*1.2)*1.3)
Where E is the effort measured in person-months, SLOC is

the delivered project scope measured in thousands of lines of
code, and productivity is measured as lines of code/develop-
ment person-months spent between design and functional test.
The multipliers are for independent test (1.1), systems engineer-
ing and architecture (1.2), and project & configuration manage-
ment and additional overhead (1.3).

Similarly, Bailey and Basili [6] developed a formula based on
18 large FORTRAN projects. It is expressed as:

E = 3.4 + 0.72 * KSLOC^1.17 plus or minus
 1 standard deviation

Where effort is measured in person-months, and KSLOC is
the delivered project scope measured by thousands of lines of
delivered code. While the goal of the article was to demonstrate
an approach to calibration using step-wise regression, our
question is, “Can this model, with its published parameters help
deliver a ready-made estimation formula?”

Finally, Barry Boehm’s original COCOMO model [1] has an
effort formula for three different types of systems: organic
systems, semidetached systems, and embedded systems. The
formula is:

E = 2.4 * KSLOC^1.05 (organic systems)
E = 3.0 * KSLOC^1.12 (semidetached systems)
E = 3.6 * KSLOC^1.20 (embedded systems)
Where KSLOC represents the delivered project scope mea-

sured by thousand delivered source instructions. Boehm’s model
has 14 factors that allow the estimator to tailor the estimate
by +/- 65% using subjective assessments of each factor. This
range was used to establish the upper and lower bounds for the
analysis performed.

Caper’s Jones [3, 4] and the International Software Bench-
marking Standards Group (ISBSG) [7, 8] have also published
rules-of-thumb formula to help estimators. These formula are
based on project size calculated using Jones’ function points
metric [17]. The effort estimator is:

Effort = Project Size in Function Points * Productivity
Caper’s Jones has derived the staff productivity (measured in

function points/staff-hour) as a function of project size, which can
be found in [18]. The ISBSG has also empirically derived the pro-
ductivity rates of project teams developing on various platforms
from their project database. These are shown in Table 1.

Table 1: ISBSG Productivity Rates

Platform 10th Median 90th Mean

Mainframe 3.2 11.9 34.4 16.8

Midrange 3.8 10.3 30.6 14.1

PC 2.2 7.1 23.1 10.2

Multi 2.6 6.9 22.2 10.7

Source Rule equation Parameters

Boehm D = 2.5*(Effort)C C = [0.32, 0.38]

Jones D = FPC C = [0.36, 0.46]

ISBSG D = 0.971*FPC C = [0.35, 0.50]

Source Rule equation Parameters

Rone Q = KSLOC*C C = [5.4, 11.2]

Jones Q = C*FP1.25 C = [0.05, 1]

Duration Models
Three of the previously cited sources also offered simple

estimates of project duration. These are summarized in Table 2,
where D is the project duration in calendar months, Effort is Staff-
months, FP is Function Points, and C is a constant representing
upper and lower bounds for the estimate’s rule-of-thumb.

Table 2: Duration Rules of Thumb

Quality Models
Both Rone and Jones also offered simple estimates of the

quality of the product in terms of the number of defects that
should be removed prior to release. The two models are sum-
marized in Table 3, where Q is the expected number of defects,
KSLOC is thousands of delivered source lines of code, FP is
Function Points, and C is again an empirical constant represent-
ing the model’s upper and lower bounds.

Table 3: Quality Rules-of-Thumb

Section 3: Project Data
Fifty-four projects were selected from an organizational

repository containing more than 150 projects. In most respects,
these projects are typical of an organization assessed to be at
Software Engineering Institute (SEI) CMMI® Level 2/3. This
means that good practices are followed and that project plans
are tailored from the organizational standard process to ensure
a good fit between the project goals and activities. Data is col-
lected on all projects and used to track and control the project
against the committed plan of record.

The authors had some prior experience with the selected
projects and chose the projects from the repository strictly on
the basis of the availability of the project data, rather than the
data values. The following criteria were used to select the 54
projects analyzed in this study:

24 CrossTalk—Jan/Feb 2011

DATA MINING

• Completed. No in-progress projects were included.
• Recent. The repository contains projects since 2000. We

decided to only use projects completed since the organization
demonstrated an SEI CMMI assessment of Level 2 with some
organizational characteristics at Level 3. The organization was as-
sessed at Level 3 with some characteristics at Level 4 in 2006.

• Software-related. The repository contains hardware and
deployment only projects. Since the estimation models are spe-
cific to software, we ignored all non-software projects.

• Life-cycle phase. For each completed project, the repository
includes data from initial project concept through product release.
We excluded the concept phase. We included data that went from
technical specification through integration test and release.

• Necessary metrics. All data items related to size, effort,
duration, and quality were available. Some projects in the reposi-
tory did not record all data items needed to calculate the effort,
duration, and quality models, and, thus, could not be used. For ex-
ample, many projects collected use cases, objects, or story points
for the size measure and could not be used with these models.

Thus, after eliminating the unfinished, pre-Level 2, non-
software, and project missing necessary data items, we were
left with 54 measureable software projects representing a
cross-section of the organization’s business. That is, there are
innovative development projects, commercial product integration
projects, and maintenance/enhancement projects of varying
sizes, durations, and levels of process tailoring. These projects
are multi-platform (e.g., AIX, Linux, Windows), multi-language
(e.g., C, C++, Java, KSL, PERL and other scripting languages),
and multi-disciplinary (e.g., IT monitoring solutions, help desk
ticketing systems, telephony systems, banking systems).

Section 4: Results
The following collection of plotted graphs show how each of

the project estimation models fit the actual data derived from
the projects pulled from the historical repository. Each plotted
point represents one of the actual projects. Projects plotted
above the upper boundary line required more effort than the
model predicted; those below the lower boundary line required
less effort than the model predicted. Plots with a grey back-
ground SLOC as the project content estimator, while those
with a white background use the Function Point approach to
measure the project content.

Figure 1 shows the results for the SLOC effort estimation
models. The boundaries (for COCOMO I) include the minimum
and maximum multipliers for the subjective adjustments avail-
able in the model. Using these bounds, only 24% of the projects
in our database fell within the bounds of the COCOMO model
and more than 46% fell above the upper bound, meaning that
the model was very optimistic for our environment. The Bailey
and Basili effort estimation model did not fare much better, with
54% of the projects coming in above the upper bound estimate
and 33% falling within the bounds. The boundaries on the Rone
effort estimation model contained roughly 40% of our projects
with 20% of the projects above the upper boundary and the
remaining 40% below the lower boundary.

Figure 1: SLOC Effort Estimation models

The Function Point effort estimation model results are shown
in Figure 2. They did not fare any better than the SLOC models.
50% of our projects were above the Jones upper bound and
63% were above the ISBSG upper bound. In fact, only 13% of
the projects were below the lower bound on the Jones model
and only 4% of the projects were below the lower bound for the
ISBSG approach. This would lead us to conclude that the lower
bounds on these rules-of-thumb for effort estimation should
never be used in our environment.

CrossTalk—Jan/Feb 2011 25

DATA MINING

Figure 2: Function Point Effort Estimation models

In general, any of these three duration approaches would give
our organization a 75% chance of delivering the project on time
using the shortest duration estimate.

Figure 4 depicts the results of the quality (i.e., defect) esti-
mates. The Jones model fared well with 60% of the projects
falling between the model bounds and 93% of the projects
having fewer defects than the model upper bound estimated.
The Rone model bounds contained 24% of the projects, with an
additional 31% falling above the upper bound estimate.

Figure 4: Quality Estimation Model results

The estimates for duration were significantly better than
those for effort. Figure 3 contains the results for those models.
Only four of the 54 projects (7%) were above the upper bound
associated with the COCOMO-I model, indicating that they took
more calendar time than the model estimated. A full 93% were
contained below the upper bound and 78% were below the
lower bound indicating that it is a cautious estimate to follow
early in the process. The ISBSG approach was also quite good
with 89% of the projects taking less time than the upper bound
on duration using their model and 70% being below the lower
bound. The Jones model was comparable with 80% below the
upper bound and 75% below the lower bound.

Figure 3: Project Duration Model results

26 CrossTalk—Jan/Feb 2011

DATA MINING

Summary
Defense managers and system engineers require estimates

of project cost/effort, duration, and quality in order to secure
funding and set expectations with customers, end users, and
management teams. Researchers and practitioners of software
metrics have developed models to help project managers and
system engineers produce estimates of project effort, dura-
tion, and quality. These models generally quantify the project
scope using estimated source lines of code or function points,
and then require the application of generalized rules-of-thumb
to arrive at the needed project estimates of staffing, duration,
and quality. Experts agree that for these models to perform at
their best, the parameters should be calibrated based on project
data from the using organization. Our question was, “How do
parametric models perform out-of-the-box (that is, without
calibration)?” This is analogous to a project team without access
to historical data using the models as published. What level
of accuracy can they expect? We examined several published
models by comparing the predicted values against the actual
results from 54 software projects completed by a SEI CMMI
Level 3 organization with a mature (and commended) measure-
ment program.

This paper evaluated a subset of these approaches – nine
simple models (four effort estimation models, three duration es-
timation models, and two software quality (i.e., defect) models)–
using 54 non-trivial commercial projects completed recently by
a CMMI Level 3 organization. This certification means that the
data was collected in a standard manner and makes sense to
use in this study. It does not imply that a defined process level is
needed to use the results.

For the effort estimation models, we found that the upper
bound of the best case model contained 81% of our projects,
that is, four out of five of our projects would use less effort than
predicted by the best case model, whereas the average effort
estimate across all models contained only 54% of our projects,
or a little better than a coin flip if we estimate using the average.

Duration estimates performed significantly better. In the best
case model, the upper bound estimate contained 93% of our
projects with the overall model average at 91% and the lower
bound estimate exceeded the actual duration more than 70%
of the time. This means we can out-perform the project duration
seven out of 10 times using the shortest duration estimated us-
ing the models out-of-the box.

For quality modeling, one of the defect prediction approaches
worked quite well, with the upper bound containing 94% of the
projects (or 9.4 times out of 10 we will deliver fewer defects
than forecast by the model). This information is useful to execu-
tives and managers performing early project estimates without
detailed analysis of the requirements or architecture as the
bounds allow them to quickly respond to customer requests with
some level of confidence.

So, if you are asked for a project estimate and do not have
access to historical data or well-calibrated local estimation mod-
els, there is hope. Based on your available sizing information,
you can use these models out-of-the-box with some success as
long as you keep these things in mind:

• Caper’s Jones approach was the only one that (relatively)
accurately addressed all three project management estimation
needs for effort, duration, and quality.

• None of the four effort estimation models were particularly
effective with our project data, but using the upper bound of
the Rone model gives the project team an 80% chance of
meeting the effort estimate.

• A project should never commit to the lower bound effort
estimates from any of the models we evaluated.

• The duration estimation models are particularly effective
with our project data. Using the upper bound of the Boehm
model gives a project team a better than 90% chance of com-
pleting the project within the estimated calendar time.

• Capers Jones’ quality model was the most accurate predic-
tor of quantity of defects in our software development projects.

From our analysis, it appears as though duration and quality
models are quite useful, but effort estimation is still problematic.
We suggest researchers investigate other approaches to effort
estimation that are not based on SLOC or Function Points. For
example, models that rely on use cases or story points and can
estimate all three key parameters (i.e., effort, duration, and quality)
may prove valuable in the future. The translation from mission
or business need to requirements and architecture is a huge
challenge that impacts estimates on each iteration, by developing
models to address these early solution descriptions, managers
and system engineers can benefit with earlier estimates.

Disclaimer:
The opinions and conclusions are those of the author(s) and
not of IBM.
® CMMI is registered in the U.S. Patent and Trademark Office
by Carnegie Mellon University.

CrossTalk—Jan/Feb 2011 27

DATA MINING

4. Jones, C., (1997), Applied Software Measurement, 2nd Ed., McGraw-Hill, NY.
5. Rone, K., et al, (1994), “The Matrix Method of Software Project Estimation”, proceedings of
 the Dual-Use Space Technology Conference, NASA Johnson Space Center, Houston, TX, Feb.
6. J.W. Bailey and V.R. Basili, “A Meta-Model for Software Development and Resource
 Expenditures,” Proceedings of the 5th International Conference on Software Engineering.
 New York: Institute of Electrical and Electronic Engineers, 1983.
7. ISBSG, International Software Benchmarking Standards Group, <http://www.compaid.com/
 caiInternet/ezine/ISBSGestimation.pdf>
8. ISBSG, International Software Benchmarking Standards Group, <http://www.isbsg.org/isbsg.
 nsf/weben/Project%20Duration>
9. McConnell, S., (2006), Software Estimation: Demystifying the Black Art, Redmond, WA,
 Microsoft Press.
10. P. Oman, “Automated Software Quality Models in Industry,” Proceedings of the Eighth Annual
 Oregon Workshop on Software Metrics, (May 11-13, Coeur d’Alene, ID), 1997.
11. G. Atkinson, J. Hagemeister, P. Oman & A. Baburaj, “Directing Software Development Projects
 with Product Measures,” Proceedings of the Fifth International Software Metrics Symposium,
 (Nov. 20-21, Bethesda, MD), IEEE CS Press, Los Alamitos, CA, 1998, pp. 193-204.
12. T. Pearse, T. Freeman, & P. Oman, “Using Metrics to Manage the End-Game of a Software
 Project,” Proceedings of the Sixth International Software Metrics Symposium, (Nov. 4-6, Boca
 Raton, FL), IEEE CS Press, Los Alamitos, CA, 1999, pp. 207-215.
13. Kemerer, C. F., (1987), “An empirical validation of software cost estimation models,”
 Communications of the ACM, Vol 30, No 5, pp. 416-429.
14. Jorgensen, M, and Sheppard, M., (2007), “A Systematic Review of Software Development
 Cost Estimation Studies,” IEEE Transactions on Software Engineering, Vol 33, No 1, Jan. pp 33-53.
15. Fenton N. E., and Pfleeger, S. L., (1997), Software Metrics: A Rigorous & Practical Approach,
 2nd Ed., London, PWS Publishing.
16. Jorgensen, M., (2004), “A Review of Studies on Expert Estimation of Software Development
 Effort,” Journal of Systems & Software, Vol 70, no 1, pp. 37-60.
17. International Function Point User’s Group (IFPUG), Function Point Counting Manual,
 Release 3.1, 1990.
18. Jones, C., “Achieving Excellence in Software Engineering,” presentation to IBM Software
 Engineering Group, March, 2006.

George Stark is an IBM Senior Technical
Staff member with over 25 years of experi-
ence in software and service measurement
and statistical modeling. He has published
more than 40 technical papers in referred
journals and conferences and was has
been on the editorial board of the Software
Quality Journal. He is currently a member
of the Delivery Excellence team where he
consults with IBM quality and productivity
improvement teams worldwide and is a key
leader in the IBM Estimation Community
of Practice. He also works with clients on
project estimation, software reliability and
process improvement approaches.

George Stark
10033 Circleview Drive
Austin, Tx 78733
(512) 653-5438 phone
(512) 263-5024 fax
gstark@us.ibm.com

ABOUT THE AUTHOR REFERENCES - CONTINUED

1. Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs, N.J., Prentice Hall.
2. Boehm, B. (2006). “Minimizing Future Guesswork in Estimating,” IBM Conference on
 Estimation, Atlanta, Ga. Feb. 2006.
3. Jones, C., (2007), “Software Estimating Rules-of-Thumb,” <http://www.compaid.com/
 caiinternet/ezine/capers-rules.pdf>, Mar. 2007.

REFERENCES

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

DoD Gaming and Virtual World Applications
July/August 2011

Submission Deadline: February 11, 2011

Protecting Against Predatory Practices
September/October 2011

Submission Deadline: April 8, 2011

Software’s Greatest Hits and Misses
November/December 2011

Submission Deadline: June 10, 2011

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.compaid.com/caiInternet/ezine/ISBSGestimation.pdf
http://www.compaid.com/caiInternet/ezine/ISBSGestimation.pdf
http://www.isbsg.org/isbsg.nsf/weben/Project%20Duration
http://www.isbsg.org/isbsg.nsf/weben/Project%20Duration
mailto:gstark@us.ibm.com
http://www.compaid.com/caiinternet/ezine/capers-rules.pdf
http://www.compaid.com/caiinternet/ezine/capers-rules.pdf
http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

