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Section 1: Introduction
Defense project managers and software engineers are often 

called upon to produce effort, duration, and quality estimates 
for a new project based on the project’s initial needs statement. 
Often the manager or engineer is solely responsible and ac-
countable for producing and delivering these estimates; in other 
cases, a senior executive may ask them to develop estimates for 
his or her use. 

Depending on the time available (usually short turnaround–
one or two days–is required), the level of uncertainty associated 
with the project scope (often only a general vision or statement 
of capability), and the phase of the project (early concept is 
most common), estimators often rely on one or more rules-of-
thumb to arrive at their estimate. Most published models have 
guidelines for these rules, but there is little empirical data to 
show how well they work. This paper provides that empirical 
data for one organization’s software development approach. 

Project estimation involves translating a set of business 
objectives or requirements into a measure of product “size.” 
This size measure is then used to estimate the effort, duration, 
and quality of the final software product. The ability of a system 
engineer or project manager to align the business objectives 
with the technical estimates leads to well informed business de-
cisions. The time to complete an estimate is often sufficient only 
for the use of “rules-of-thumb” for simple models to generate 
“ballpark” estimates that can then be refined as the project un-
folds. Several authors, including Boehm [1,2], Jones [3,4], Rone 
[5], and others [6-10], have published approaches to arrive at 
software development effort, project duration in calendar time, 

and quality as measured by defects discovered prior to release. 
In all cases the authors advocate for calibrating their approach-
es based on data from the organization’s previous projects … 
but what if this data is not available? The questions, then, are: 
(1) How good are these approaches “out of the box” using the 
parameters from the model author’s environments?; and (2) Can 
we rely on them to make business decisions? 

Several authors have contributed critiques and compari-
son papers of the various models:

• Atkinson, et al. [11] and Pearse, et al. [12] show how simple 
software metrics, both actual and estimated, can be used to ef-
fectively manage the final stages of software development, but 
they do not address early project estimators.

• Kemerer [13] concluded that metrics-based software proj-
ect estimation is a viable approach as long as the models are 
calibrated for the environment. He also concluded that function 
point-based size estimates were better than source lines of 
code for the 15 projects studied from one environment.

• Jorgensen and Sheppard [14] found that more than 50% of 
estimation articles try to build, improve, or compare regression-
based estimation models. In further studying expert judgment 
estimation, they also identified a lack of in-depth studies on the 
actual use of the approach and real-life evaluations published as 
journal papers.

• Fenton and Pfleeger [15] concluded that single models may 
work well in environments for which they were derived, but do not 
translate well to other environments because of the availability of 
parameter drivers early on in the estimating process. They recom-
mend changes to estimation model structure and standardization 
of local data definitions to reduce input subjectivity. 

• Jorgensen [16] also reported that expert judgment is the 
predominant estimation technique used in industry today. He 
analyzed 15 studies comparing model-based and expert-based 
effort estimation. The results were a tie: Five in favor of model, 
five in favor of the expert, and five had no difference. Thus, there 
was no clearly superior approach to effort estimation. 

These results encouraged us to continue to search for a 
parametric approach that would help us to quickly create a rea-
sonable bound on the effort, duration, and quality for a particular 
project request. Our investigation identified several candidate 
models that a systems engineer could apply with little to no 
historical data. But, just because we could … should we?

The findings presented herein pertain to our particular col-
lection of 54 completed projects by a well-established and 
measured software development organization. It is possible that 
some of our findings are not generally applicable, so practitio-
ners are encouraged to run their own tests and determine which 
of the available models is best for their particular environment. 
Nevertheless, most of the results presented here are consistent 
with our intuition and the conclusions above. Thus, we believe 
the results provide a good perspective of the value of metrics-
based software project estimators and the corresponding rules-
of-thumb provided by their inventors.

The next section provides an overview of the various estimat-
ing models we tested (four Effort prediction models, three Dura-
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tion prediction models, and two defect prediction models). This 
is followed in Section 3 by a description of the projects included 
in the analysis and the data collected. Section 4 presents the 
comparisons and the findings.

Section 2: Estimating Models
The following subsections describe the models that we evaluated.

Effort Models
Three common formulas for estimating the effort (in person-

months) are based on delivered source lines of code (SLOC). 
Rone developed a model at IBM based on observations from a 
variety of software projects for customers, including the space 
shuttle flight software, school district management, point-of-sale 
systems, help desk systems, and others. The model has the form:

E = ((((SLOC/productivity)*1.1)*1.2)*1.3)
Where E is the effort measured in person-months, SLOC is 

the delivered project scope measured in thousands of lines of 
code, and productivity is measured as lines of code/develop-
ment person-months spent between design and functional test. 
The multipliers are for independent test (1.1), systems engineer-
ing and architecture (1.2), and project & configuration manage-
ment and additional overhead (1.3). 

Similarly, Bailey and Basili [6] developed a formula based on 
18 large FORTRAN projects. It is expressed as: 

E = 3.4 + 0.72 * KSLOC^1.17 plus or minus  
 1 standard deviation 

Where effort is measured in person-months, and KSLOC is 
the delivered project scope measured by thousands of lines of 
delivered code. While the goal of the article was to demonstrate 
an approach to calibration using step-wise regression, our 
question is, “Can this model, with its published parameters help 
deliver a ready-made estimation formula?”

Finally, Barry Boehm’s original COCOMO model [1] has an 
effort formula for three different types of systems: organic 
systems, semidetached systems, and embedded systems. The 
formula is: 

E = 2.4 * KSLOC^1.05 (organic systems)
E = 3.0 * KSLOC^1.12 (semidetached systems)
E = 3.6 * KSLOC^1.20 (embedded systems) 
Where KSLOC represents the delivered project scope mea-

sured by thousand delivered source instructions. Boehm’s model 
has 14 factors that allow the estimator to tailor the estimate 
by +/- 65% using subjective assessments of each factor. This 
range was used to establish the upper and lower bounds for the 
analysis performed.

Caper’s Jones [3, 4] and the International Software Bench-
marking Standards Group (ISBSG) [7, 8] have also published 
rules-of-thumb formula to help estimators. These formula are 
based on project size calculated using Jones’ function points 
metric [17]. The effort estimator is: 

Effort = Project Size in Function Points * Productivity 
Caper’s Jones has derived the staff productivity (measured in 

function points/staff-hour) as a function of project size, which can 
be found in [18]. The ISBSG has also empirically derived the pro-
ductivity rates of project teams developing on various platforms 
from their project database. These are shown in Table 1.

Table 1: ISBSG Productivity Rates 

Platform 10th Median 90th Mean 

Mainframe 3.2 11.9 34.4 16.8 

Midrange 3.8 10.3 30.6 14.1 

PC 2.2 7.1 23.1 10.2 

Multi 2.6 6.9 22.2 10.7 

 

 
Source Rule equation Parameters 

Boehm D = 2.5*(Effort)C C = [0.32, 0.38] 

Jones D = FPC C = [0.36, 0.46] 

ISBSG D = 0.971*FPC C = [0.35, 0.50] 

 

 
 

Source Rule equation Parameters 

Rone Q = KSLOC*C C = [5.4, 11.2] 

Jones Q = C*FP1.25 C = [0.05, 1] 

 

Duration Models
Three of the previously cited sources also offered simple 

estimates of project duration. These are summarized in Table 2, 
where D is the project duration in calendar months, Effort is Staff-
months, FP is Function Points, and C is a constant representing 
upper and lower bounds for the estimate’s rule-of-thumb. 

Table 2: Duration Rules of Thumb

Quality Models
Both Rone and Jones also offered simple estimates of the 

quality of the product in terms of the number of defects that 
should be removed prior to release. The two models are sum-
marized in Table 3, where Q is the expected number of defects, 
KSLOC is thousands of delivered source lines of code, FP is 
Function Points, and C is again an empirical constant represent-
ing the model’s upper and lower bounds.

Table 3: Quality Rules-of-Thumb

Section 3: Project Data
Fifty-four projects were selected from an organizational 

repository containing more than 150 projects. In most respects, 
these projects are typical of an organization assessed to be at 
Software Engineering Institute (SEI) CMMI® Level 2/3. This 
means that good practices are followed and that project plans 
are tailored from the organizational standard process to ensure 
a good fit between the project goals and activities. Data is col-
lected on all projects and used to track and control the project 
against the committed plan of record.

The authors had some prior experience with the selected 
projects and chose the projects from the repository strictly on 
the basis of the availability of the project data, rather than the 
data values. The following criteria were used to select the 54 
projects analyzed in this study:
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• Completed. No in-progress projects were included.
• Recent. The repository contains projects since 2000. We 

decided to only use projects completed since the organization 
demonstrated an SEI CMMI assessment of Level 2 with some 
organizational characteristics at Level 3. The organization was as-
sessed at Level 3 with some characteristics at Level 4 in 2006. 

• Software-related. The repository contains hardware and 
deployment only projects. Since the estimation models are spe-
cific to software, we ignored all non-software projects.

• Life-cycle phase. For each completed project, the repository 
includes data from initial project concept through product release. 
We excluded the concept phase. We included data that went from 
technical specification through integration test and release.

• Necessary metrics. All data items related to size, effort, 
duration, and quality were available. Some projects in the reposi-
tory did not record all data items needed to calculate the effort, 
duration, and quality models, and, thus, could not be used. For ex-
ample, many projects collected use cases, objects, or story points 
for the size measure and could not be used with these models.

Thus, after eliminating the unfinished, pre-Level 2, non-
software, and project missing necessary data items, we were 
left with 54 measureable software projects representing a 
cross-section of the organization’s business. That is, there are 
innovative development projects, commercial product integration 
projects, and maintenance/enhancement projects of varying 
sizes, durations, and levels of process tailoring. These projects 
are multi-platform (e.g., AIX, Linux, Windows), multi-language 
(e.g., C, C++, Java, KSL, PERL and other scripting languages), 
and multi-disciplinary (e.g., IT monitoring solutions, help desk 
ticketing systems, telephony systems, banking systems).

Section 4: Results
The following collection of plotted graphs show how each of 

the project estimation models fit the actual data derived from 
the projects pulled from the historical repository. Each plotted 
point represents one of the actual projects. Projects plotted 
above the upper boundary line required more effort than the 
model predicted; those below the lower boundary line required 
less effort than the model predicted. Plots with a grey back-
ground SLOC as the project content estimator, while those 
with a white background use the Function Point approach to 
measure the project content.

Figure 1 shows the results for the SLOC effort estimation 
models. The boundaries (for COCOMO I) include the minimum 
and maximum multipliers for the subjective adjustments avail-
able in the model. Using these bounds, only 24% of the projects 
in our database fell within the bounds of the COCOMO model 
and more than 46% fell above the upper bound, meaning that 
the model was very optimistic for our environment. The Bailey 
and Basili effort estimation model did not fare much better, with 
54% of the projects coming in above the upper bound estimate 
and 33% falling within the bounds. The boundaries on the Rone 
effort estimation model contained roughly 40% of our projects 
with 20% of the projects above the upper boundary and the 
remaining 40% below the lower boundary.

Figure 1: SLOC Effort Estimation models

The Function Point effort estimation model results are shown 
in Figure 2. They did not fare any better than the SLOC models. 
50% of our projects were above the Jones upper bound and 
63% were above the ISBSG upper bound. In fact, only 13% of 
the projects were below the lower bound on the Jones model 
and only 4% of the projects were below the lower bound for the 
ISBSG approach. This would lead us to conclude that the lower 
bounds on these rules-of-thumb for effort estimation should 
never be used in our environment.
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Figure 2: Function Point Effort Estimation models

In general, any of these three duration approaches would give 
our organization a 75% chance of delivering the project on time 
using the shortest duration estimate.

Figure 4 depicts the results of the quality (i.e., defect) esti-
mates. The Jones model fared well with 60% of the projects 
falling between the model bounds and 93% of the projects 
having fewer defects than the model upper bound estimated. 
The Rone model bounds contained 24% of the projects, with an 
additional 31% falling above the upper bound estimate.

Figure 4: Quality Estimation Model results

The estimates for duration were significantly better than 
those for effort. Figure 3 contains the results for those models. 
Only four of the 54 projects (7%) were above the upper bound 
associated with the COCOMO-I model, indicating that they took 
more calendar time than the model estimated. A full 93% were 
contained below the upper bound and 78% were below the 
lower bound indicating that it is a cautious estimate to follow 
early in the process. The ISBSG approach was also quite good 
with 89% of the projects taking less time than the upper bound 
on duration using their model and 70% being below the lower 
bound. The Jones model was comparable with 80% below the 
upper bound and 75% below the lower bound. 

Figure 3: Project Duration Model results 
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Summary
Defense managers and system engineers require estimates 

of project cost/effort, duration, and quality in order to secure 
funding and set expectations with customers, end users, and 
management teams. Researchers and practitioners of software 
metrics have developed models to help project managers and 
system engineers produce estimates of project effort, dura-
tion, and quality. These models generally quantify the project 
scope using estimated source lines of code or function points, 
and then require the application of generalized rules-of-thumb 
to arrive at the needed project estimates of staffing, duration, 
and quality. Experts agree that for these models to perform at 
their best, the parameters should be calibrated based on project 
data from the using organization. Our question was, “How do 
parametric models perform out-of-the-box (that is, without 
calibration)?” This is analogous to a project team without access 
to historical data using the models as published. What level 
of accuracy can they expect? We examined several published 
models by comparing the predicted values against the actual 
results from 54 software projects completed by a SEI CMMI 
Level 3 organization with a mature (and commended) measure-
ment program.

This paper evaluated a subset of these approaches – nine 
simple models (four effort estimation models, three duration es-
timation models, and two software quality (i.e., defect) models)–
using 54 non-trivial commercial projects completed recently by 
a CMMI Level 3 organization. This certification means that the 
data was collected in a standard manner and makes sense to 
use in this study. It does not imply that a defined process level is 
needed to use the results.

For the effort estimation models, we found that the upper 
bound of the best case model contained 81% of our projects, 
that is, four out of five of our projects would use less effort than 
predicted by the best case model, whereas the average effort 
estimate across all models contained only 54% of our projects, 
or a little better than a coin flip if we estimate using the average. 

Duration estimates performed significantly better. In the best 
case model, the upper bound estimate contained 93% of our 
projects with the overall model average at 91% and the lower 
bound estimate exceeded the actual duration more than 70% 
of the time. This means we can out-perform the project duration 
seven out of 10 times using the shortest duration estimated us-
ing the models out-of-the box. 

For quality modeling, one of the defect prediction approaches 
worked quite well, with the upper bound containing 94% of the 
projects (or 9.4 times out of 10 we will deliver fewer defects 
than forecast by the model). This information is useful to execu-
tives and managers performing early project estimates without 
detailed analysis of the requirements or architecture as the 
bounds allow them to quickly respond to customer requests with 
some level of confidence.

So, if you are asked for a project estimate and do not have 
access to historical data or well-calibrated local estimation mod-
els, there is hope. Based on your available sizing information, 
you can use these models out-of-the-box with some success as 
long as you keep these things in mind: 

• Caper’s Jones approach was the only one that (relatively) 
accurately addressed all three project management estimation 
needs for effort, duration, and quality.

• None of the four effort estimation models were particularly 
effective with our project data, but using the upper bound of 
the Rone model gives the project team an 80% chance of 
meeting the effort estimate.

• A project should never commit to the lower bound effort 
estimates from any of the models we evaluated.

• The duration estimation models are particularly effective 
with our project data. Using the upper bound of the Boehm 
model gives a project team a better than 90% chance of com-
pleting the project within the estimated calendar time.

• Capers Jones’ quality model was the most accurate predic-
tor of quantity of defects in our software development projects. 

From our analysis, it appears as though duration and quality 
models are quite useful, but effort estimation is still problematic. 
We suggest researchers investigate other approaches to effort 
estimation that are not based on SLOC or Function Points. For 
example, models that rely on use cases or story points and can 
estimate all three key parameters (i.e., effort, duration, and quality) 
may prove valuable in the future. The translation from mission 
or business need to requirements and architecture is a huge 
challenge that impacts estimates on each iteration, by developing 
models to address these early solution descriptions, managers 
and system engineers can benefit with earlier estimates.

Disclaimer:
The opinions and conclusions are those of the author(s) and 
not of IBM.
® CMMI is registered in the U.S. Patent and Trademark Office 
by Carnegie Mellon University.
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