
22     CrossTalk—March/April 2011

RUGGED SOFTWARE

Introduction
The activation of faults can cause degradations in system 

services–sometimes tolerable, sometimes intolerable. As long as 
resulting deviations in system services remain within specified 
requirements, services can be maintained, although in degraded 
mode. If deviations exceed acceptable limits, errors occur. As 
long as erroneous states do not damage component services, 
error resolution may be possible; at the same time, unaffected 
states can render service. If errors propagate to component 
services, component failure occurs; we say that the errors have 
been activated. Failed components that provide nonessential 
services can be abandoned. Alternatively, they can be replaced 
or their corrupted states corrected, assuming sufficient time 
and resources are available. If component failure prevents the 
rendering of an essential service, system failure must ensue. 
Uncontrolled system failure results in faulty products delivered 
to clients, potentially repeating the cycle of anomalies. We follow 
the propagation of faults to errors and failures and then to faults 
again, with service degradation considered as a control mecha-
nism at each stage of the anomaly cycle. Our study applies to 
both hardware and software systems.

The Anomaly Cycle
A service is a set of outputs and/or inputs together with a 

set of restrictions (timings, dependencies, and priorities) [3] that 
satisfy system requirements. Services are rendered to clients for 
further manipulation and/or for consumption. Precise service 
requirements may be specified, perhaps for voltage levels, de-
livery deadlines, or ordering of data, but deviations from optimal 
specifications frequently are accepted. Delays, truncated ser-
vices, and fuzzy outputs are all examples of tolerated deviations 
in some system requirements. We define “service degradations” 
to be services that are rendered within acceptable deviations 
from optimal service requirements by system states containing 
attributes that differ from system specifications for particular 
conditions under which the service is rendered.

“ISO 3.5.2 Error:  A manifestation of a fault  
	 [see 3.5.3] in an object …

3.5.3 Fault: A situation that may cause errors to  
	 appear in an object.

A fault is either active or dormant. A fault is active  
	 when it produces errors.” [1]

“The adjudged or hypothesized cause of an error is  
	 called a fault ... A fault is active when it causes  
	 an error, otherwise it is dormant.” [2]

A fault is a set of attributes that are assigned to system 
states together with conditional dependency restrictions, yet 
do not conform to system specifications.  A fault is activated 
when the condition(s) of such a dependency evaluates to true, 
rendering states unable to provide specified services. If system 
requirements tolerate deviations from precise specifications, the 
result can be a degradation of service. For example, consider an 
unsecured wireless home network. If an unauthorized neigh-
bor eavesdrops, obtains the homeowner’s credit card number, 
and uses it to subsidize a trip to Hawaii, errors have occurred. 
Suppose, however, that the neighbor’s connection only slightly 
delays the homeowner’s service. As long as delays remain 
within tolerable limits, so that the homeowner continues being 
serviced, the neighbor has caused a degradation of service.  
We thus modify the definitions of fault activation that are  
cited previously: A fault is active when it produces errors or 
service degradations.

Service degradations are common at multiple stages of a sys-
tem’s lifecycle, not only as direct results of fault activation, but also 
as by-products of error resolution and component replacement or 
abandonment. For example, delay degradations occur during error 
resolution, diversity selection, and fault masking; partial service 
degradation occurs when nonessential failed components are 
abandoned; and dependency degradations occur following inferior 
voting selections of design or data diversity. Service degradations, 
however, are the only mechanisms applicable for error preven-
tion immediately after a fault has been activated and are relatively 
efficient because of their ability to be utilized early in the anomaly 
cycle. Systems monitor deviation patterns to detect suspected 
degradations, enabling appropriate actions to be taken before 

Fault  
Tolerance 
With Service  
Degradations
Abstract. The disruptions and/or corruptions that occur during a sys-
tem’s lifecycle require efficient management in order to enable service 
continuation. We investigate service degradations, which are effective 
mechanisms for fault tolerance at multiple stages of the anomaly cycle. 
The acceptance and control of degradations are of particular importance 
for the prevention of errors.

Dr. Gertrude Levine, Fairleigh Dickinson University



CrossTalk—March/April 2011     23

RUGGED SOFTWARE

errors occur. Since degradations frequently feed upon themselves, 
systems must ensure that deviations are limited. For example, chan-
nel utilization and packet loss frequency are monitored to forestall 
errors resulting from network congestion; traffic is monitored in 
multimedia systems, with the throttling of users, as necessary, to 
maintain quality of service requirements and prevent errors.

Corrupted (erroneous or failed) service is not service, but dis-
service. Similarly, intolerable degradations are not degradations, 
but errors.

“3.5.2 Error:  Part of an object state which is liable 	
	 to lead to failure.”[1]

“The definition of an error is the part of the total  
	 state of the system that may lead to its subse 
	 quent service failure. ” [2]

An error is a deviation in a service state (caused by fault 
activation) that renders the state incapable of producing (un-
corrupted) service. Service corruption may involve intolerable 
output values, unauthorized inputs, or unacceptable waits, for 
example. As long as errors do not corrupt essential services, 
unaffected states can continue to render service. Some errone-
ous states are never accessed, i.e., they are implicitly or explicitly 
abandoned. Others are detected during state changes or state 
monitoring and resolved before they cause failure. Error resolu-
tion is possible only if resulting degradations, such as delays, are 
tolerable. Errors that are not resolved propagate to those system 
states that accept their corrupted service. Errors are activated 
when they cause component failure.

A corrupted state regresses, losing qualities that made it ser-
viceable at that state. (Hardware is frequently serviceable in pre-
vious states, such as a demolished building’s steel that is reused 
as scrap or gold jewelry that is melted and reshaped.) The loss 
of serviceability is critical to the definition of an error, else how 
do we distinguish between a dormant fault and a dormant error? 
Both can cause errors and both can lead to “subsequent service 
failure.” Yet, a faulty state can continue to render service; an er-
roneous state cannot.  Consider a system that receives concrete 
that does not satisfy specifications. The faults in the concrete 
are not detected during (faulty) acceptance testing. A two-deck 
bridge is built using the concrete. Under light traffic, the con-
crete provides optimal service. As the traffic load increases, the 
concrete bulges, continuing to support traffic but in degraded 
mode. When stress is applied to the upper deck, the concrete 
cracks and even light traffic can no longer be sustained. An 
error has occurred. The lower deck, however, is still serviceable. 
Then traffic appears on the upper deck. The crack spreads and 
the entire bridge and its traffic load collapse–a system failure. 
The upper deck could no longer render service unless the crack 
was repaired or returned, at the least, to its service state prior to 
stress application. The provider of the concrete was at fault (and 
may have incorporated faulty materials that it had accepted). 
But it was also the responsibility of the clients to properly test 
the concrete before acceptance. In addition, maintenance crews 

should have performed necessary repairs, alerted by degrada-
tions that became evident during the use of the bridge. We 
recognize multiple faults, errors, and component failures leading 
to the failure of the bridge.

	“Failure: The inability of a system or component to  
	 perform its required functions within specified  
	 performance requirements.” [4]

A corrupted state loses its serviceability, but that may not 
be evident to clients. The acceptance of corrupted service by 
system states propagates errors; its acceptance by system com-
ponents causes failure. Components are sets of states that are 
bound together with dependencies [2] so that they fail and must 
be abandoned or replaced as a unit. A failed component can 
be discarded if its service is nonessential. For example, a failed 
parity disk in RAID 2 systems can be disconnected without loss 
of input or output service. Alternatively, component failures can 
be handled by backup and recovery procedures or by compo-
nent replacement, causing delay degradation. If a component 
fails, and the service that it provides is essential, and it is neither 
replaced nor its erroneous states corrected, then the system 
must fail, i.e., it will deliver corrupted (including missing) service. 
We say that a system failure is activated when a client accepts 
its faulty service.

A hazard is an “extraordinary condition” [5] that threatens to 
destroy all components of a software and/or hardware system. 
Even systems that have extraordinary defensive mechanisms 
are vulnerable to some hazards, such as tornados, meteorite 
landings, or a Linux installation by an inept user. We would not 
categorize systems as faulty, however, for such vulnerabilities. 
It is generally impossible or impractical to forestall the execu-
tion of each conditional dependency that can render a system 
inoperable. We claim that hazards cause system failure upon 
activation, bypassing the states of faults, errors, and component 
failures. Failure recovery following hazard activation relies on 
redundancies, where feasible.

Multiple faults are required for some types of errors (e.g., the 
errors of security violations [2]); multiple errors are required for 
some types of component failures (e.g., parity failures following 
an even number of bit errors); and multiple component failures 
are required for some types of system failures (e.g., RAID 5 disk 
failures). Consider the following “fundamental chain” [2] desig-
nating the relationship between failures, faults, and errors:

 failure  fault   error  failure  fault  …
                              
An expanded diagram of anomaly relationships and propaga-

tions should include service degradations and hazards, as well 
as events that cause transitions between states (see Figure 1 
on following page).

Advertent or inadvertent attacks on a system are faulty and 
exploit (activate) system faults. Some systems adopt oner-
ous procedures in an attempt to control fault activation. These 



24     CrossTalk—March/April 2011

RUGGED SOFTWARE

constraints are not considered degradations by the system, yet 
clients may feel differently and cancel the service. Thus, systems 
seek to minimize the costs of error and failure control, but, since 
methods are typically heuristics, additional degradations and 
errors are frequently introduced. 

Types of Faults, Service Degradations, and Errors:
A fault, when activated, causes a degradation of service or an 

error, depending upon whether deviations from optimal service 
states are within specified requirements. We introduce four 
classes of faults, errors, and degradations for these anomalies 
[3], as well as examples of each class: 

a. Input/output values: Output and input values can imple-
ment data, such as digitally encoded numbers, letters, sounds, 
images, and odors, or products, such as robotic movements. All 
output values must be input at a specified location to complete 
their service, but representations need not always be precise. 
For example, consider hardware implementations of irrational 
numbers. These produce deviations from actual values, but 
usually satisfy client requirements.  Perhaps an algorithm is 
ported to a system that allocates fewer bits for representations; 
arithmetic overflow can result. Unless exception handling can 
catch and resolve overflow, perhaps using different numeric 
representations, output will be erroneous. Or consider defec-
tive (faulty) computation that loses precision when summing 
irrational numbers. If the result remains within specified devia-
tions, output degradation occurs but service can be maintained. 
The same algorithm might generate an error in an application 
that requires data of greater precision. As another example, 
a scratch on an audio disk is a fault. When the disk is played, 
resulting noise might be considered output degradation. Such 
noise from a symphony disk is an error that will probably cause 
the disk to be discarded. Error correcting codes on CDs enable 

resolution of some noise, but such capabilities are limited. As-
sume that encrypted data have been input by an eavesdropper 
via an unsecured wireless connection. If the data are decrypted 
without authorization and confidentiality is part of system or 
client requirements, errors have occurred; perhaps the encryp-
tion algorithm was faulty or the encryption key was stolen. Still, 
we claim that the original data states do not lose their service-
ability unless output obtained via the decryption process renders 
them invalid. (A data input with a non-matching key causes a 
dependency to be assigned to the original data [3]. Unauthor-
ized output of the decoded data conflicts with and renders the 
original data states unserviceable. Similar mechanisms cause 
data inconsistency [3] in the lost update problem of databases.) 
Unauthorized inputs are hardware issues as well, for example, in 
advertent or inadvertent carbon monoxide poisoning. Output of 
carbon monoxide into organs causes client failure. Degradations 
in air quality can signal detectors to assist in failure prevention.

b. Timings: Timing mechanisms can be generalized to count 
numbers of mappings per interval [3], including metrics such as 
numbers of allocated resources, transmission rates, and cost 
overruns. For example, a 56kbps bit rate on a dial-up modem 
may be considered optimal, while a somewhat lower bit rate 
is an acceptable deviation. A 56kbps bit rate on a broadband 
connection is an error, possibly caused by a worm. Firewalls can 
block worms, but they can cause delays and lost services as 
they evaluate and block incoming traffic. As another example, 
consider time and cost overruns, which are common degrada-
tions in many development processes. Overruns that exceed 
specified deviations are errors and have resulted in the cancella-
tion of many projects.

c. Priorities: Priority mechanisms are relevant during com-
petition [3], establishing servicing orders and voting choices. For 
example, operating systems dispatch high priority processes 
before competing lower priority processes. If a priority inver-
sion occurs, so that a lower priority process is executed before 
a dispatchable higher priority process, or before a dispatchable 
process that blocks a higher priority process, the resulting delay 
degradation is generally tolerable. If, however, the high priority 
process has hard real-time requirements, errors and failures 
will likely ensue. Priority inheritance mechanisms prevent many 
types of priority inversions. Their implementation in a distributed 
network, however, can be onerous, causing delay and other 
degradations. As another example, dynamic network routing al-
gorithms select “shortest” paths using data received from other 
routers. (They assign priorities based on computed metrics.) 
Assume that the activation of hardware and/or software faults 
causes a router failure. Routers executing a faulty routing algo-
rithm may then assign incorrect priorities. If computed paths en-
able packet delivery within acceptable delays, priority and delay 
degradation results. If delays are inacceptable and packets are 
discarded, errors and failures can result. Erroneous routing algo-
rithms may also select paths that do not satisfy system security 
requirements, potentially causing input errors as well as failures.

d. Dependencies: Interrelationships between system 
states and components are determined by dependencies. For 
example, automobiles provide transportation services utilizing 

Figure 1: Anomaly Propagation



CrossTalk—March/April 2011     25

RUGGED SOFTWARE

interrelationships between many different components. (Some 
components, such as video players and coffee cup holders, are 
nonessential for transportation.) A torn tire may be replaced 
temporarily with a small spare of lesser quality, causing depen-
dency, as well as output (comfort) and other degradations. If 
the replacement is also torn, transportation service becomes 
unavailable. As another example, flexible data structures are 
implemented with pointers that maintain dependencies between 
objects. The execution of faulty pointer arithmetic can cause an 
error in a linked list, so that traversal through a corrupted link 
must fail. If the list is doubly linked, the traversal algorithm can 
take the secondary path, resulting in dependency degradation.

All essential components of a system are bound together with 
a set of dependencies, so that the failure of any component, if 
not controlled, causes system failure. Dependencies for compo-
nents of nonessential services are conditional, allowing for their 
abandonment; then other services can be continued in the de-
graded dependency mode of partial services [6]. Redundancies 
enable component replacements to prevent failure. Replace-
ments may be fungible, of lower quality, of higher cost, or even 
supply alternate services, such as occurs during the degraded 
dependency mode of emergency services [6]. Replacements are 
effective using design and data diversity or reflection [7]. De-
pendency degradation occurs when a replacement component 
is of lower quality, assuming that the primary component was 
correctly identified as malfunctioning. Priority degradation, on 
the other hand, results when a defective voting scheme causes 
the replacement of a correctly functioning primary component 
with an inferior product.

Conclusion
Service degradations are the only immediate mechanisms for 

error prevention after a fault has been activated. The monitor-
ing of degradations and appropriate adjustment of parameters 
frequently forestalls the occurrence of errors. Systems that aug-
ment acceptable deviations in their service requirements, where 
appropriate, enhance this fault tolerance mechanism. 

Degradations of service also occur during error and failure 
resolution. Recovery is enabled by system requirements that 
tolerate deviations in acceptable service, such as non-optimal 
values, non-optimal delivery metrics, non-optimal orderings, or 
non-optimal service sets. Service degradations are integrated 
into mechanisms for fault tolerance at all stages of the anomaly 
lifecycle, with continual efforts to minimize their cost. 

Our study of service degradations has yielded a classifica-
tion scheme and an original diagram illustrating the role of 
service degradation in the propagation and control of anomalies. 
We have also introduced amplifications for some commonly 
accepted definitions. We expect future research to establish a 
framework for errors and degradations that includes research 
areas beyond the fields of software and hardware systems. 

Acknowledgments
My appreciation to all of the reviewers for their suggestions.

1.	 ISO Reference Model for Open Distributed Processing, ISO/IEC 10746-2:1996 (E), 1996, at 	
	 <http://standards.iso.org/ittf/PubliclyAvailableStandards>.
2.	 Avizienis, A., Laprie, J., Randell, B., and Landwehr, C. “Basic Concepts and Taxonomy for 	
	 Dependable and Secure Computing” IEEE Transactions on Dependable and Secure  
	 Computing, vol. 1, #1, Jan.-Mar. 2004, 11-33.  
3.	 Levine, G. N. “Defining Defects, Errors, and Service Degradations” ACM SIGSOFT,  
	 Software Engineering Notes, vol. 34,  #2, March 2009, 1-14.
4.	 IEEE Computer Society, “Standard Glossary of Software Engineering Terminology” ANSI/ 
	 IEEE Standard 610.12-1990. IEEE Press, 1990. New York.
5.	 Goertzel, K. M. “Software Survivability: where Safety and Security Converge” Crosstalk, The  
	 Journal of Defense Software Engineering, vol. 22, #6, Sept.-Oct. 2009, 15-19.
6.	 Mustafiz, S., Kienzle, J., and Berliz, A. “Addressing Degraded Service Outcomes and  
	 Exceptional Modes of Operation in Behavioural Models”, Proceedings of the 2008 RISE/EFTS  
	 Joint International Workshop on Software Engineering for Resilient Systems, 2008, pp. 19-28.
7.	 Rogers, P. “Software Fault Tolerance, Reflection and the Ada Programming Language”  
	 Thesis for the Doctor of Philosophy, University of York, October 24, 2003.

Gertrude Levine, Ph.D. Stevens Institute, 
is a professor of computer science in the 
School of Computer Sciences and Engi-
neering of Fairleigh Dickinson University. 
Dr. Levine has been writing a column in 
Ada Letters called Reusable Software 
Components since 1990. (One of these 
columns was published in CrossTalk in 
March 1992, #32, pp.13-17.) Her research 
interests include the Ada language and 
conflict control, specifically in operating 
systems and networks. 

Professor, Computer Science
Fairleigh Dickinson University
1000 River Road
Teaneck, NJ 07666
Phone: (201) 692-2498
Fax: (201) 692-2443
E-mail: levine@fdu.edu

ABOUT THE AUTHOR

REFERENCES

http://standards.iso.org/ittf/PubliclyAvailableStandards
mailto:levine@fdu.edu

	Cover
	Table of Contents
	From the Rugged Software Community
	Crumple Zones
	Stop the Flow
	The Need for Functional Security Testing
	Fault Tolerance With Service Degradations
	An Ecosystem for Continuously Secure Application Software
	Ensuring Software Assurance Process Maturity
	BackTalk
	Back Cover



