
30 CrossTalk—March/April 2011

RUGGED SOFTWARE

Introduction
Software assurance is the level of confidence that software is

free from vulnerabilities, whether intentionally designed into the
software or accidentally inserted at any time during its lifecycle,
and that it functions in the intended manner.1 Once an organiza-
tion becomes aware of the need to meet software assurance
goals, the next step is to assess its current development and
procurement activities and practices. Such an analysis requires at
least two things. The first is a repeatable and objective assess-
ment process. The second is a clear benchmark or target that
represents a suitable level of risk management given the nature
of the organization and the software’s mission. Performing this as-
sessment periodically provides an ongoing understanding of the
maturity of respective software assurance capabilities.

Choosing a methodology for appraising an organization’s
ability to meet software assurance goals may seem overwhelm-

Edmund Wotring III, Information Security Solutions, LLC
Sammy Migues, Cigital, Inc.

Abstract. All organizations–government and commercial alike–share
an interest in minimizing their software vulnerabilities and, consequently,
in maturing their software assurance capabilities. Successful software
assurance initiatives require organizations to perform risk management
activities throughout the software lifecycle. These activities help to ensure
organizations can meet software assurance goals, including those related
to reliability, resilience, security, and compliance. The Software Assurance
(SwA) Checklist for Software Supply Chain Risk Management (hereafter
referred to as the SwA Checklist) serves as a framework to help organiza-
tions establish a baseline of their risk management practices and select
maturity model components to better meet evolving assurance goals.

ing because there are several maturity models available, each
with their own focus and level of granularity. For an organization
that may be new to the area of software assurance, it can be a
challenge to simply find good sources of guidance, much less
understand which parts of each model are best suited for its en-
vironment and supply chain. Although finding the right maturity
model may seem challenging, organizations should not wait for
an authority to mandate a software assurance initiative. Such
mandates are typically intended to be “one-size-fits-all” and of-
fer limited flexibility. Organizations are best served by tailoring a
software assurance strategy to their own supply chains.

Selecting the best maturity model, or model components, for
a particular organization to begin addressing assurance goals
may also present a time-consuming learning curve. In order
to facilitate an understanding of how multiple maturity models
address similar assurance goals, the authors created a model-
agnostic framework as part of participation in the SwA Forum
Processes and Practices (P&P) Working Group (WG), which is
co-sponsored by organizations with DHS, DoD, and the National
Institute for Standards and Technology. This analysis involved
mapping maturity models, and their respective practices, within
the framework. The agreement among the models provides
a valuable reference. This framework evolved into the SwA
Checklist, which serves as a model-agnostic harmonized view of
software assurance guidance.

The SwA Checklist can help organizations begin a dialogue
amongst the entities in the supply chain that influence and/or
support the software throughout the lifecycle. Using the check-
list to characterize each of the organizations in a given supply
chain provides extraordinary insight into the credibility or trust
deserved by a given piece of software. By leveraging this insight,
organizations can verify implicit assumptions that certain prac-
tices are taking place and align their activities with assurance
goals to mitigate risks within their supply chains. Organizations
can also use the checklist to organize evidence for assurance
claims while assessing all of its practices as it performs the ac-
tivities necessary to complete its baseline. Finally, organizations
can use the baseline to engage their senior leadership regard-
ing the areas in which resources are needed to meet assurance
goals based upon guidance from the mapped models.

The SwA Checklist provides a consolidated view of current
software assurance best practices in the context of an orga-
nized SwA initiative. The checklist is currently implemented as
a “hot linked” Microsoft Excel spreadsheet that provides a cross-
reference of goals and practices with side-by-side mappings
to several publicly available maturity models. Organizations can
use the mappings to identify where the maturity models agree
and diverge, and use this consolidated format to select model
components best suited to their environments.

Once an organization establishes its assurance goals, selects
a maturity model (or model components), and captures its
baseline, it can then establish an improvement plan for achieving
software assurance goals as it develops and/or acquires secure
software. Working with its direct customers (downstream in the
supply chain) and suppliers (upstream in the supply chain) to
improve software assurance will have a large multiplier effect as
the approach spreads to other organizations.

Ensuring
Software
Assurance
Process
Maturity

CrossTalk—March/April 2011 31

RUGGED SOFTWARE

Intended Use
The intended users of the SwA Checklist are organizations that

currently are or soon will be acquiring or developing software. Or-
ganizations may have many options when developing or acquiring
software from various sources. Although vendors and developers
may offer software that meets specified functional requirements
and provides myriad features, these offers are inconsequential
if the data and functions are not protected. Developers and
acquirers must give significant consideration to the ability of the
software to reliably function and protect data and processes over
the life of the product. Organizations can use the SwA Checklist
to guide their own development or to evaluate vendor capabilities.
Organizations can use the baselines they establish to facilitate an
understanding of similar assurance goals and practices among
several freely available maturity models, which can help guide the
selection of the most appropriate model components.

Design of the SwA Checklist
The SwA Checklist is available at no cost at <https://buildse-

curityin.us-cert.gov/swa/proself_assm.html>. The SwA Checklist
is currently being vetted and we request your feedback based
upon practical use within the field. A feedback form is available
at the same URL above. The authors designed the checklist to
be understandable by users with various levels of SwA experi-
ence (readers are invited to download a copy now and review it
while reading this section).

The SwA Checklist contains multiple tabs/worksheets includ-
ing the following: Intro, SwA Checklist, Sources, BSIMM, CMMI-
ACQ, OSAMM, PRM, and RMM. The “Intro” tab serves as the
introductory section that also provides pointers to each of the
included models. The “SwA Checklist” tab provides the informa-
tion that enables users to perform their analysis. Content from
the included models is organized into five domains: Governance,
Knowledge, Verification, Deployment, and Supplier Manage-
ment. This categorization helps to harmonize terminology and
makes it easy for the user to locate specific guidance. Within
each domain are three categories containing a short, high-
level goal and a set of three corresponding practices. There is
a “Status” cell under each practice. Users can click on the cell
to open a pull-down menu with pre-defined responses to input
their organization’s implementation status for each practice. The
range of possible status levels in the pull-down menus includes
the following:

•	 Unknown
•	 Not Applicable
•	 Not Started
•	 Partially Implemented Internally
•	 Partially Implemented by Supplier(s)
•	 Partially Implemented Internally and by Supplier(s)
•	 Fully Implemented Internally
•	 Fully Implemented by Supplier(s)
•	 Fully Implemented Internally and by Supplier(s)

It is the combination of the status of each practice that will
help an organization understand its ability to execute on soft-
ware assurance activities in development and acquisition.

The implementation status options vary based upon the degree
to which the practice is implemented (i.e., not started, partially
implemented, or fully implemented) and the party responsible for
each practice (i.e., internally, by the supplier, or by both). The two
other responses included in the pull-down menu are “Unknown”
and “Not Applicable.” The user should follow up on any response
marked with either of these statuses. Organizations should
mark a practice “Unknown” if it is unknown whether someone is
performing the practice or who is responsible for performing it.
Such a practice is almost certainly an area of increased risk and
requires further investigation. Likewise, if a practice is marked as
“Not Applicable,” the user should obtain justification for selection
of that status. Supply chain partners must understand the environ-
ment in which the software will be deployed and meet the end
customers’ assurance needs even if those needs are not explicitly
stated. When assurance goals are analyzed from such derived re-
quirements, certain practices may reveal themselves as applicable.
Thoroughly investigating the status of each practice is a valuable
due diligence exercise that may result in the user discovering
that certain practices actually are applicable or that practices are
already being performed as part of other related practices.

By performing the analysis required to assign a status to each
practice, the user gains a greater understanding of their overall
supply chain and establishes an assurance baseline. This under-
standing will enable more productive dialogue among all supply
chain parties and will foster better understanding of where risk is
introduced during acquisition or development of software.

Maturity Model Mappings
The third tab of the spreadsheet, Sources, includes all the

same goals and practices from the SwA Checklist tab. Table 1
contains a portion of this view. The Sources tab also includes
mappings for each practice to several maturity models, described
in the sidebar to this paper on page No. 32 titled Maturity Models
(Maturity Models Mapped within the SwA Checklist). All mappings
are hyperlinked to other tabs in the spreadsheet. Clicking on a
hyperlinked mapping will take the user to the related section on
the tab for the corresponding maturity model. The user can return
to the Sources tab by clicking on the hyperlinks in column A of
any of the maturity model tabs.

There are several benefits to viewing the mappings for each
practice in the SwA Checklist side-by-side in the Sources tab.
The mappings help the user to see how the maturity models
agree and diverge on each of the related practices. Since each
model has its own particular focus, viewing the relationships

Another tool that is mapped to multiple maturity models, the SwA Self-
Assessment, is also available on the same webpage on the DHS SwA
Community Resources and Information Clearinghouse website. The SwA
Checklist and the SwA Self-Assessment are resources made available
from the SwA Forum. The tools provide alternative views on similar
assurance process frameworks whose shared objective is software im-
provement. It is in an organization’s best interest to try both approaches
and use the one that works best for its own environment. No matter
which tool users select, it is important to remember the ultimate goal is
producing and delivering rugged software.

SwA Tools Relationship

https://buildse�curityin.us-cert.gov/swa/proself_assm.html
https://buildse�curityin.us-cert.gov/swa/proself_assm.html
https://buildse�curityin.us-cert.gov/swa/proself_assm.html

32 CrossTalk—March/April 2011

RUGGED SOFTWARE

among them provides a context from which the user can better
understand the assurance goals and practices. The user will also
see how various models address similar goals and practices.
This will help the user begin selecting a maturity model that will
be of most use to their particular software assurance needs.

Table 1: Sources Tab Snapshot

Appraisal Considerations
When performing an appraisal using the SwA Checklist, it

is important that the user adapt the checklist to the processes
being performed and the structure of their organization’s supply
chain. Users may determine that they implement a different
practice that also supports an assurance goal in the check-
list. This is typical since not all organizations employ the same
practices despite desiring roughly the same assurance goals.
Users may also perform an evaluation of a supplier or a division
of an organization that only manages a portion of the processes
in the overall supply chain. In this case, it is likely that not all the
goals and practices within the checklist will apply to this specific
supplier or division. Users should leverage the SwA Checklist to
determine whether they are taking a comprehensive approach
to produce rugged software throughout the entire supply chain.
This approach may require evaluating multiple suppliers, divi-
sions, and other entities to comprehensively manage risks and
to ensure supply chain partners meet assurance goals.

The mappings of the models in the Sources tab provide valu-
able reference and context as users complete a baseline. As
users become more aware of how the models address similar
goals and practices, they may begin to find currently unimple-
mented model components that are useful for their environments
and specific assurance needs. The models referenced within the
checklist are designed with varying levels of granularity ranging
from high-level control objectives to lower level controls. Each of
these perspectives may provide insight into addressing the assur-
ance challenges in various supply chain environments.

Baseline Summary
After users establish a baseline, a summary displays at the

bottom of the SwA Checklist tab. This summary depicts a count
of each category of implementation status and is highlighted in a
conditional formatting color scheme according to the following:

“Not Applicable” practices – Grey
“Unknown” and “Not Started” practices – Red
“Partially Implemented” practices – Yellow
“Fully Implemented” practices – Green

This system provides an easy-to-view dashboard for an orga-
nization’s overall implementation of practices.

The color-coded system provides a way to quickly assimilate data
contained within the user-created baseline. Although the system
uses stoplight colors, improvement efforts should not focus solely
on the “reds” and “yellows.” A practice highlighted in green does not
necessarily satisfy the organization’s assurance goals or adequately
mitigate risks. Further, a practice highlighted in green is one that is
being performed, not necessarily one that is required. Organizations
must analyze the entire checklist to determine if the correct entity
performs each practice correctly and to a sufficient extent, and if
each practice is actually mitigating risks according to the organiza-
tion’s assurance goals. Only after determining these factors can the
organization outline a plan to effectively and efficiently improve its
software assurance capabilities.

There are several freely available maturity models that focus on
securing software. Each has its own focus and level of granularity. The
publicly available maturity models mapped in the Sources tab of the SwA
Checklist include:

•	Building Security In Maturity Model version 2
	 <http://www.bsimm.com>

•	Carnegie Mellon University SEI CMMI® for Acquisitions, version 1.2 		
	 <http://www.sei.cmu.edu/cmmi/index.cfm>

•	Open Web Application Security Project Open Software Assurance 	 	
	 Maturity Model version 1.0 <http://www.opensamm.org>

•	Software Assurance Forum Processes and Practices Working Group
	 Assurance Process Reference Model, September 2010
	 <https://buildsecurityin.uscert.gov/swa/downloads/20100922_PRM_
	 Practice_List.pdf>

•	Carnegie Mellon University/CERT Resiliency Management Model,
	 version 1.0 <http://www.cert.org/resilience/rmm.html>

The authors performed a model-agnostic analysis to determine how
these maturity models help organizations address assurance goals and
practices and to determine where the models converge and diverge. This
analysis of the mappings between the models revealed a high degree
of agreement. Organizations can use the checklist to determine process
improvement opportunities and establish a baseline from which to bench-
mark their capabilities. More information on the maturity models analyzed
and included in the SwA Checklist is available at <https://buildsecurityin.
us-cert.gov/swa/proself_assm.html>.

Maturity Models

 Governance

 Strategy & Metrics Policy & Compliance Training & Guidance

Practices Establishes Security
Plan; communicates
and provides training
for the plan

Identifies and
monitors relevant
compliance drivers

Conducts security
awareness training
regularly

BSIMM SM1.1 CP1.1 T1.1

 - CP1.2 T3.4

CMMI-ACQ PP SG2 – SG3 OPF SG1 OT SG2

 - - -

OSAMM SM1B PC1A EG1A

 - PC1B -

PRM SG 2.1 SG 3.1 SG 1.3

 SG 1.3 - -

RMM RTSE: SG2 – SG3 COMP: SG2 OTA: SG1 – SG2

 MON: SG1 MON: SG1 – SG2 -

http://www.bsimm.com
http://www.sei.cmu.edu/cmmi/index.cfm
http://www.opensamm.org
https://buildsecurityin.uscert.gov/swa/downloads/20100922_PRM_Practice_List.pdf
https://buildsecurityin.uscert.gov/swa/downloads/20100922_PRM_Practice_List.pdf
http://www.cert.org/resilience/rmm.html
https://buildsecurityin.us-cert.gov/swa/proself_assm.html
https://buildsecurityin.us-cert.gov/swa/proself_assm.html

CrossTalk—March/April 2011 33

RUGGED SOFTWARE

Common Appraisal Challenges
The most common issue users face when creating a baseline

pertains to practices for which the status is “Unknown.” In these
instances, the best approach may be to document the process
flow surrounding the practice. It is helpful to coordinate with the
parties involved in processes surrounding the practice to deter-
mine the degree to which the process is implemented. Deter-
mining responsibility for each practice is another common issue
faced by users. Appraisers should diligently clarify accountability
and responsibility during their analyses. The third frequently aris-
ing issue is tracking execution of software assurance activities
and ensuring suppliers and acquirers do them consistently and
effectively. Even when users know what practices are imple-
mented and who is responsible for them, they may be unaware
how well they are implemented. Lastly, if users know a practice
is implemented, who is responsible for its implementation, and
whether it is executed correctly, they still may not know whether
it is effectively reducing risk and should be continued.

Even though the practices marked as “Fully Implemented”
on the checklist will register as green, this does not necessarily
mean they represent money (or resources) well spent. It is im-
portant for organizations to select components from the source
models to improve the implementation of practices specifically
required to meet assurance goals and to ensure their satisfacto-
ry completion. It is important to measure not only the assurance
activities, but also the software lifecycle artifacts (e.g., code) to
ensure both are improving. Overall, organizations should deter-
mine the model components that help them accomplish a coher-
ent and cohesive set of activities that accomplish organizational
goals based upon business objectives and risk appetite.

Conclusion
Establishing an implementation baseline of the practices

within an organization’s supply chain will foster a better under-
standing of its true capability to develop, acquire, and deploy
secure software. Using the checklist, an organization may
identify opportunities for improvement and begin to create a
plan to address improvement areas by selecting model compo-
nents from the mapped maturity models. The more robust the
processes are surrounding software lifecycle processes, the
more likely an organization will develop and acquire truly rugged
software. The SwA Forum P&P WG plans to periodically update
the SwA Checklist to ensure it aligns with updated versions of
the models mapped in the Sources tab and to incorporate other
models into this mapping in the future.

Acknowledgements
This work is funded in part by the DHS Software Assurance

Program. Many colleagues and members of the Software As-
surance community provided valuable feedback on the checklist
and this article including: Joe Jarzombek, DHS; Don Davidson,
OASD-NII / DoD CIO; Michele Moss, Booz Allen Hamilton; Lisa
R. Young, CERT; Walter Houser, SRA; Doug Wilson, Mandi-
ant; Rama Moorthy, Hatha Systems; and Dr. Robin A. Gandhi,
Nebraska University Center for Information Assurance.

Disclaimer:
® CMMI is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

Edmund Wotring III is a Senior Security Engineer with
Information Security Solutions, LLC. He previously support-
ed various federal government clients with security compli-
ance and process improvement initiatives. He has advised
senior leadership to ensure compliance processes facilitate
effective security. He currently supports the Department
of Homeland Security National Cyber Security Division’s
Software Assurance program.

E-mail: ed.wotring@informationsecuritysolutionsllc.com

Sammy Migues is a Principal and Director of Knowledge
Management at Cigital. He has nearly 30 years experi-
ence performing security research and providing practical
solutions to government and commercial customers. He
is currently working on expanding the BSIMM research,
smart grid security demonstration projects, new methods of
software security training, and helping organizations start or
grow software security initiatives.

E-mail: smigues@cigital.com

ABOUT THE AUTHORS

1.	 Committee on National Security Systems (26 April 2010). CNSS Instruction No. 4009. National Information Assurance
	 (IA) Glossary. [Accessed 02 Nov 2010]. Available from: <http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf>.

NOTES

mailto:ed.wotring@informationsecuritysolutionsllc.com
mailto:smigues@cigital.com
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf

	Cover
	Table of Contents
	From the Rugged Software Community
	Crumple Zones
	Stop the Flow
	The Need for Functional Security Testing
	Fault Tolerance With Service Degradations
	An Ecosystem for Continuously Secure Application Software
	Ensuring Software Assurance Process Maturity
	BackTalk
	Back Cover

