
30 CrossTalk—May/June 2011

PEOPLE SOLUTIONS TO SOFTWARE PROBLEMS

Introduction
GUI plays an instrumental role in the success of any browser.

GUI enables user control and improves interaction with the
browser. GUI is considered a part of the user trust model for
all types of software including browsers. Apart from the main
browser window, GUI in browsers includes notification bars,
status bars, address bars, download dialog boxes, HTTP authen-
tication dialog, and browser objects such as frames, buttons, etc.

Users interact with the GUI components in their routine life
jobs. GUI flaws are considered design bugs in which an attacker
can circumvent the normal functioning of the browser by run-
ning malicious JavaScript. Primarily, GUI bugs in browsers are
mostly exploited by spoofing [1] and clickjacking attacks [2].
Spoofing attacks are those kinds of attacks that tamper the UI
component of software in order to fool users into performing
false operations by exploiting their ignorance. They fail to dif-
ferentiate between the real and manipulated objects in software.
Clickjacking attacks fall into the category of UI redressing
attacks in which an attacker embeds a hidden UI object such
as buttons, frames, etc. to execute stealth functions that are
binded to a real object. For example, an attacker can easily place
a hidden button over the real button in a browser window that
executes a malicious function when a user clicks it.

Browser User
Interface
Design Flaws
Exploiting User Ignorance
Aditya K. Sood, Michigan State University
Richard J. Enbody, Ph.D., Michigan State University

Abstract. A browser is considered to be a functional window to the
Internet. It is interface software that serves as a communication medium
between the users and the Internet. Sophisticated attack patterns and
design flaws in browsers pose serious threats to user security, privacy,
and integrity. Recent advancements have shown that browser User
Interface (UI) design flaws catalyze the vulnerability exploitation. This
paper sheds light on the design flaws in Graphical User Interface (GUI)
components of browsers that are exploited by the attackers to trick users
to perform rogue operations. In most of the cases, the user is unaware of
the attack that results in stealth operations. Thus, user ignorance plays a
critical role in successful exploitation of the design flaws.

Basically, spoofing and clickjacking attacks aim at tamper-
ing with and manipulating the functional operations of various
browser GUI controls. Apart from this, such attacks exploit the
user ignorance to a great extent because users are not able to
differentiate between the real GUI object and vice versa. Suc-
cessful GUI attacks depend a lot on the user awareness about
the browser controls and their integrity. It is a major concern
because exploitation of GUI design flaws can severely impact
the user trust thereby resulting in the loss of integrity. This paper
discusses design flaws in browsers related to GUI components
and how they are exploited by tricking the user.

HTTP Authentication Dialog Spoofing
Many browsers require HTTP-based authentication in which

users have to provide a set of credentials to access the re-
sources. In general, if a resource is protected, the server sends
a particular HTTP response to the browser based on which the
browser initiates a dialog authentication process. It is one of the
main characteristics of browsers to handle HTTP authentication.
Every single HTTP authentication process has a realm value as-
sociated with it. In general, the realm value is a string that shows
the domain name on which resource is protected. The realm
value also provides a user supplied string for identity purposes.
A user can check the domain name and provide his credentials
to gain access to the server. However, recent vulnerabilities have
shown the fact that it is possible to manipulate the authentica-
tion dialog box. Users are unable to differentiate among the
origins of authentication dialog. A dialog box may look real and
authentic but it can be spoofed. This type of flaw in browsers
results in the stealing of user credentials without users being
aware of the reality. For example: Internet Explorer and Google
Chrome inherit this design flaw. A serious design flaw in Google
Chrome [3],[4] is that an authentication dialog can be complete-
ly spoofed and users are not able to distinguish the difference.
A spoofed authentication dialog box is presented as in Figure 1.

Figure 1: Spoofed authentication dialog box in Google Chrome

CrossTalk—May/June 2011 31

PEOPLE SOLUTIONS TO SOFTWARE PROBLEMS

The spoofed authentication dialog box bedazzles the user.
However, it has been noticed that a number of users fall into this
trap and provide their authentication credentials as per the realm
value shown in the dialog box. This design flaw persists because
browsers are not able to handle the realm value passed as a pa-
rameter to the authenticated HTTP response header and render it
directly in the dialog box. Most browsers do not handle the realm
value in an appropriate manner, allowing spoofing attacks.

URL Obfuscation Flaws
URL obfuscation is one of the most notorious problems no-

ticed in browsers. Continuous efforts have resulted in correction
of this design problem in a number of browsers such as Mozilla,
Internet Explorer, etc. However, browsers such as Google Chrome
still inherit this design bug. In 2008, a design flaw [5] was
released in Google Chrome that still persists in recent versions
[6]. URL obfuscation is a trick that plays around the designing of
URLs with certain meta characters in order to confuse brows-
ers as well as users so that they can be redirected to malicious
domain. This is a browser design flaw because browsers are not
able to render the URLs appropriately thereby resulting in unau-
thorized redirection. As a result, the browser can be redirected to
a malicious domain that is ready to serve malware.

There can be many combinations based on this pattern. It
depends on the inherent design of the browser in interpreting
a URL. In general, good practice requires that browsers should
raise a warning about the obfuscation in a URL and should
be smart enough to present a user with an appropriate choice.
Primarily, the user thinks that a destination website is Google.
com, but in reality, the user is redirected towards yahoo.com. An
obfuscated URL is shown in Figure 2.

In Figure 2, Google Chrome is redirected towards yahoo.com
instead of raising a warning or going to google.com. A similar
test on Mozilla raises a warning about the URL obfuscation as
presented in Figure 3:

After a lot of discussion, Mozilla introduced a security check
to show concern with URL obfuscation flaws in browsers.

Manipulating Browser Status Bars
Browser status bars are used to present the active state of

links when a user clicks a hyperlink on a webpage. In general,
status bars represent the status of hyperlinks. The mindset
behind the design of the status bar is that a user can see the
authenticity of domain names and hyperlink. Basically, a user
believes that the status bar displays the domain name in the
form of a URL and the browser redirects to that page upon
clicking. Attackers have exploited this design flaw by spoofing
the status bar with JavaScript calls such as window.location or
window.href to fool users. However, the URL obfuscation trick
can also be used to spoof the status bar. An issue was raised in
Internet Explorer [7] about the problem in the status bar. When
considering spoofed HTML code, Internet Explorer 7 does not
appropriately render the information in the status bar whereas
Internet Explorer 8 does not even show any information in the
status bar when a mouse is pointed over a hyperlink. This a seri-
ous issue because it is the only way a normal user can scrutinize
the authenticity of a hyperlink. Figure 4 shows code that is used
to spoof the status bar in Internet Explorer.

Figure 2: URL Obfuscation in Google Chrome

Figure 3: URL Obfuscation Warning in Mozilla Firefox

Figure 4: Custom HTML Code to Spoof Internet Explorer’s Status Bar

An active Internet Explorer test has been structured here [8].
This is a simple but generic problem in most of the browsers
and it is used quite often by attackers to trick users and create a
false sense of security.

Cross Site Scripting Attack Notification Bars –
Bypassing Filters

With the advent of new browser security protection mecha-
nisms, reflective Cross Site Scripting (XSS) filters have become
a part of the browser architecture. It is an inbuilt protection
mechanism that raises XSS attack notification bar for reflec-
tive XSS attacks and neutralizes them completely. This is the
actual motive behind the designing of XSS filters. However,
completely relying on filters as a fool proof protection against
XSS attacks creates a false sense of security. The XSS filters
in browsers are not well developed and can be bypassed easily
to execute successful XSS attacks. Primarily, a user believes
that now the browser is secure because of the presence of
XSS filters but attackers can exploit the design problem in XSS
filters to exploit the trust of users. For example, Internet Explorer
released a built-in XSS filter with Internet Explorer 8, but it can
be bypassed easily and no notification alert is raised. Moreover,
certain stealth XSS attacks were successfully executed in In-

32 CrossTalk—May/June 2011

PEOPLE SOLUTIONS TO SOFTWARE PROBLEMS

ternet Explorer. However, Internet Explorer’s XSS filter raised a
notification warning but was not able to sanitize the XSS attacks
appropriately. This type of behavior shows the inherent weak-
ness in client-side XSS filters. Moreover, NoScript is considered
a very good extension of Mozilla that prevents reflective XSS
attacks. However, there are certain bypasses that have been
released in it. The good point about this filter is that one can find
a lot of updates of this extension. Figure 5 shows a potential
attack against the XSS filter in Internet Explorer.

Figure 5: Successful bypass even after XSS notification

Figure 6: Spoofed Download Dialog Box

shown that it is possible to overlap the download dialog box with
an unauthorized pop-up window which restricts the functionality
of the download dialog box.

Primarily, the overlapped pop-up window forces the user to
click some malicious links embedded in it. The pop-up window
actually locks the authorized download dialog box and the user
fails to download the file directly. This attack is implemented in
order to force a user to interact with the rogue pop-up window.
In other words, it is a design bug in Internet Explorer that fails to
differentiate between the download dialog box and a rogue pop-
up window. Figure 6 shows the spoofed download dialog box in
Internet Explorer 8.

In the Figure 6 screenshot, a fake End User License Agree-
ment (EULA) pop up window overlaps the authorized download
dialog box. This fake EULA window is embedded with mali-
cious links and it locks the download dialog box completely. This
attack forces the user to interact with a EULA window prior to
downloading the file. In general, users are not aware of these
design problems and spoofing tricks which help an attacker to
launch attacks successfully. The figure clearly shows one of the
serious design bugs in graphical user components in browsers.

Clickjacking Browser Interface
Clickjacking [9],[10] is a UI redressing attack where an attacker

executes malicious functions by playing around with browser UI
components. The aim of this attack is to steal sensitive data and
extract information about a user’s activities in a stealthy manner.
Primarily, this attack uses two major UI components in a browser–
frames and buttons. The term clickjacking itself points to hijacking
mouse clicks in a browser window. In general terms, an attacker
designs a transparent UI component such as a button and makes it
hidden. When a legitimate user performs a mouse click in a brows-
er window, the hidden button is clicked and it executes the backend
command designed by the attacker to perform rogue functions.
This attack is considered one of the most sophisticated attacks.

Solutions
In order to prevent these attacks, here are some measures

that can result in mitigating the adverse attacks to some extent,
but it is hard to guarantee foolproof solutions:

1.	An appropriate browser-based filter should be used while surf-
ing the Internet. For example: NoScript [11] is a good choice. It only
works on Mozilla Firefox but it has some built-in capabilities to take
control of certain UI redressing attacks such as clickjacking.

2.	Browsers should be upgraded regularly and security
recommendations must be applied in a timely manner. Most
browser software vendors such as Microsoft, Apple, and Mozilla
release security advisories about potential vulnerabilities. These
security advisories contain an updated fix and patch that should
be installed in order to upgrade the requisite browsers. How-
ever, if automated updates are enabled, the system is updated
regularly against potential threats. A user can also download
individual security updates manually from vendor websites.

3.	Browser design requires a significant amount of change in
the way UI components are handled. However, it becomes hard
for the vendors to change UI on a regular basis. This is a para-

This attack simply projects how the design issues in XSS
filters result in exploitation of vulnerability.

Download Dialog Box Spoofing
Browsers use a download dialog box in order to download a

file from a server. This process acts as a notification to the user
about the characteristics of the file. The download dialog box is
displayed when a user clicks a hyperlink to download a specific
file. It is a type of GUI displayed to the user for raising an alert.
Attackers are spoofing download dialog boxes to trick users
into downloading malicious files instead of authorized files. This
attack is triggered on a wide scale to infect user machines with
malware. Recently performed tests on Internet Explorer have

PEOPLE SOLUTIONS TO SOFTWARE PROBLEMS

CrossTalk—May/June 2011 33

dox in the field of browsers, but vendors should take appropriate
steps to secure the design interface.

4.	Users should not visit those pages that they are not sure of.
Sometimes, being paranoid is a good way to be secure. Always
think twice about what you click. There are certain client-side
browser filters available that help users substantially to make
smart decisions if a potential threat is detected. For example,
the NoScript plug-in works as an inline component with Mozilla
Firefox to strengthen security. It enables the user to surf in a
secure manner and raises notification against insecure objects
and attacks such as XSS. Other browsers such as Internet
Explorer come with built-in client-side protection against XSS
attacks. Thus, potential combinations of client-side filters and
user awareness can lower the exploitation ratio of vulnerabilities.

5.	Users should be aware of the basic attacks on the Internet
that can help them in understanding exploitation attempts. There
are a number of websites such as Threatpost [12] , SecurityFo-
cus [13], and Register, [14] etc. that provide substantial informa-
tion about new research and attacks.

6.	Websites should use frame-bursting scripts [15] to avoid
framing of websites. This process is followed in order to avoid
loading a website into a frame which is used by a third party.
Frame-bursting scripts remove the frame when an attacker tries
to load the target website into a frame. This technique avoids the
hidden frames used in conjunction to launch clickjacking attacks.

7.	A good use of declarative security in HTTP response head-
ers [16,17,18] can circumvent some attacks. This is a potential
step in defeating clickjacking attacks. Restricting frames [19]
and running them in sandbox is also a good practice.

Conclusion

We discussed a number of cases of UI design flaws and how
they are exploited. During the course of this paper, we have
realized that UI is a very critical component of browsers. UI is
important because it provides direct functionality to users and
helps them to make decisions quickly. However, if UI design
flaws are exploited, it becomes much easier to launch attacks
as discussed previously. Of course, user ignorance and inappro-
priate knowledge enhances the chance of exploitation. These
design flaws are inherited in browsers to a great extent and it is
hard to remove them completely. It is hard to ensure a foolproof
solution, but if a reliable set of protective measures is applied,
impact can be moderated to some extent.

Aditya K. Sood is a security researcher, consultant, and Ph.D.
candidate at Michigan State University. He has worked in the
security domain for Armorize, COSEINC, and KPMG and
founded SecNiche Security. He has been an active speaker
at conferences like RSA, Toorcon TRISC, Hacker Halted, Eu-
SecWest, ExCaliburCon, EuSecwest, XCON, OWASP AppSec,
Security-Byte, CERT-IN and has written content for HITB
Ezine, ISACA, ISSA, Hakin9, and Usenix Login.
E-mail: adi_ks@secniche.org
Phone: 517-755-9911

Dr. Richard Enbody is an Associate Professor in the De-
partment of Computer Science and Engineering, Michigan
State University. He joined the faculty in 1987 after earning
his Ph.D. in Computer Science from the University of Min-
nesota. His research interests are in computer security,
computer architecture, web-based distance education,
and parallel processing. He has two patents pending on
hardware buffer-overflow protection, which will prevent most
computer worms and viruses. He recently co-authored a
CS1 Python book, The Practice of Computing using Python.

ABOUT THE AUTHORS

1.	 Wu, Yongdong, Ma. Di and Sheng, Chnag Xu. “Browser Spoofing”.
	 <http://dspace.lib.fcu.edu.tw/bitstream/2377/1421/1/ce07ics002002000204.PDF>. 2002
2.	 Law, Eric. Combating Clickjacking with X-Frame options”. <http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/
	 combating-clickjacking-with-x-frame-options.aspx>. 23 March 2010
3.	 Sood, Aditya K. “User Interface Security- Google Chrome: HTTP AUTH Dialog Spoofing through Realm Manipulation “. 	
	 <http://zeroknock.blogspot.com/2010/08/google-chrome-http-auth-dialog-through.html>. 23 August 2010
4.	 Sood, Aditya K. “Google Chrome: HTTP AUTH Dialog Spoofing through Realm Manipulation (Restated) “.
	 <http://www.securityfocus.com/archive/1/513243/100/800/threaded>. 23 August 2010
5.	 Sood, Aditya K. “Google Chrome MetaCharacter URI Obfuscation Vulnerability“.	
	 <http://www.securiteam.com/windowsntfocus/6L00O1FN5S.html>. 25 November 2008
6.	 Sood, Aditya K. “Google Chrome URI Obfuscation Vulnerability“.
	 <http://www.secniche.org/gcuri/>. 2009
7.	 Sood, Aditya K. “Internet Explorer 8 – Anti Spoofing is a Myth “. <http://www.secniche.org/ie_spoof_myth/>. 2009
8.	 Sood, Aditya K. “Internet Explorer 8 – Anti Spoofing is a Myth - Demonstration”.
	 <http://www.secniche.org/ie_spoof_myth/script.html>. 2009
9.	 Hansen, Robert. and Grossman, Jeremiah. “ClickJacking”.
	 <http://www.sectheory.com/clickjacking.htm>. 12 September 2008
10.	 Guya. “Malicious Camera Spying using ClickJacking”.
	 <http://blog.guya.net/2008/10/07/malicious-camera-spying-using-clickjacking/>. 20 October 2008
11.	 Maone, Giorge. “FAQ’s - NoScript Client Side Protection Filter”. <http://noscript.net/faq>
12.	 Threatpost, “Latest Computer Security News Portal”. <http://www.threatpost.com>
13.	 SecurityFocus, “Security News Portal Website”. <http://www.securityfocus.com>
14.	 The Register, “Security News Portal Website”. <http://www.register.com>
15.	 Wikipedia. ”Frame Killer”. <http://en.wikipedia.org/wiki/Framekiller>
16.	 Lawrence, Eric. “IE8 Security Part VII: ClickJacking Defenses”.
	 <http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx>. 27 January, 2009
17.	 Sood, Aditya K. and Enbody, Richard J. ”Conundrum of Declarative Security in HTTP Response Headers –
	 Lessons Learned”. <http://www.usenix.org/event/collsec10/tech/full_papers/Sood.pdf>. 10 August 2010
18.	 Coates, Michael. “X-Frame Options”. <http://blog.mozilla.com/security/2010/09/08/x-frame-options/>. 9 August 2010
19.	 Lawrence, Eric. “Using Frames More Securely”.
	 <http://blogs.msdn.com/b/ie/archive/2008/01/18/using-frames-more-securely.aspx>. 18 January, 2008

REFERENCES

mailto:adi_ks@secniche.org
http://dspace.lib.fcu.edu.tw/bitstream/2377/1421/1/ce07ics002002000204.PDF
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx
http://zeroknock.blogspot.com/2010/08/google-chrome-http-auth-dialog-through.html
http://www.securityfocus.com/archive/1/513243/100/800/threaded
http://www.securiteam.com/windowsntfocus/6L00O1FN5S.html
http://www.secniche.org/gcuri/
http://www.secniche.org/ie_spoof_myth/
http://www.secniche.org/ie_spoof_myth/script.html
http://www.sectheory.com/clickjacking.htm
http://blog.guya.net/2008/10/07/malicious-camera-spying-using-clickjacking/
http://noscript.net/faq
http://www.threatpost.com
http://www.securityfocus.com
http://www.register.com
http://en.wikipedia.org/wiki/Framekiller
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://www.usenix.org/event/collsec10/tech/full_papers/Sood.pdf
http://blog.mozilla.com/security/2010/09/08/x-frame-options/
http://blogs.msdn.com/b/ie/archive/2008/01/18/using-frames-more-securely.aspx

