
CrossTalk—November/December 2011 11

PUBLISHER’S CHOICE

Software
Architecture

Introduction
In many fields, there is often a gap between theory and

practice. Software engineering is no different. Misconceptions
about software architecture, particularly by practitioners, make
it difficult to communicate software architectures effectively.
SEI’s website [1] demonstrates the astounding diversity that ex-
ists with respect to the definition of software architecture. This
website lists two modern definitions, eight classical definitions,
18 bibliographical definitions and numerous community defini-
tions. The first three categories indicate a general agreement on
the definition of the term by theoreticians and academicians. It is
the wide variety of definitions held by those in the last category
that is troubling, specifically because they appear to represent
practitioners. And such confusion can make it difficult, if not
impossible, to use the concept in a practical fashion.

This article attempts to show how sound software architec-
tures can be produced quite practically, in a repeatable and
understandable fashion, by adopting a widely held definition for
the concept of software architecture, adopting a model for cre-
ating software architectures, and by using the de-facto standard
software engineering modeling tool, UML (v2.0), to convey a
software architecture.

Theory
Kruchten, et. al. [2] provide an excellent presentation on the

history of software architecture. Their paper traces the develop-
ment of software architecture theory from the time the paper
was published back to its origins and before. Mary Shaw and
David Garlan [3] published one of the earliest books on the
subject. It is fitting that they begin their book with the question,
“What is Software Architecture?”

Both the theory and practice of software architecture must be
rooted in a clearly expressed and universally accepted defini-
tion of the term. What is needed is a definition that succinctly
and cogently expresses the concept of software architecture.
Moreover, such a definition must express the concept in such
a way that it can be used practically. We turn to the myriad of
definitions compiled by SEI to extract the essence of the mean-
ing of software architecture. Many if not most of the definitions
published on the SEI website have three things in common; 1)
organization of a system, 2) components, and 3) relationships.
While there are many other concepts conveyed, it is these three
terms, or synonyms thereof, that persist throughout the defini-
tions provided and are at the core of the theory. As a result,
the definition provided by Bass, et. al. [4], that is, “The software
architecture of a program or computing system is the structure
or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the
relationships among them,” is adopted herein since it contains
each of the three common concepts cited above and comple-
ments the techniques that can be used for creating the software
architectures described below. It is assumed that “structure” and
“elements” in Bass’s definition are synonyms for organization
and components respectively, as used on SEI’s website.

Also needed to build sound, practical software architectures,
is a theoretical model that places software architecture within
the larger context of software design. Such a model is provided
by Mowbray and Malveau [5]. Their Scalability Model (SM)
represents the software design continuum as a series of design
levels, each representing the software under consideration at
a different level of abstraction. Mowbray and Malveau describe
each of these levels thus:

• The global level is concerned with the design issues that
are applicable across all systems (enterprises).

• The enterprise level is focused upon coordination and com-
munication (of systems) within a single organization.

• The system level deals with the coordination and communi-
cation across applications (and libraries) and sets of applica-
tions (and libraries).

• The application level is focused upon the organization of
applications developed to meet a set of user requirements.

• The macro component level is focused on the organization
and development of application frameworks.

• The micro component level is centered on the software
components that solve recurring software problems.

• The classes level is concerned with the development of
reusable objects and classes.

While their model was created to provide the foundation of
their work in Common Object Request Broker Architecture
design patterns, it is most relevant to object-oriented software
development but is certainly abstract enough to be applied to

Theory and Practice
Abstract. There is often a gap between widely accepted software
engineering theory and practice. This is also true for the concept of
software architecture. While the concept of software architecture has
been in existence for quite some time, there is still a great deal of confu-
sion over just what software architecture actually is. Moreover, lack of
a clear understanding of the concept of software architecture makes it ex-
tremely difficult to work with pragmatically. This article attempts to show
how sound software architectures can be produced quite practically and
documented consistently. A definition of software architecture is adopted
and a model for creating software architectures by using the de-facto
standard software engineering modeling tool, UML (v2.0), is introduced.

Michael Tarullo, L-3 Communications

12 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

Figure 1:

other methods of software development as well. In this discus-
sion we will use a modified version of the SM (see Figure 1)
and architectural issues will focus on the global, enterprise and
system levels.

Having established a sound definition of software architecture
and a model for constructing such architectures, the practical
application of these concepts can now be discussed.

Practice
This section will illustrate a process that can be used to build

and graphically document software architectures. A discussion
of the capturing of major architectural decisions is beyond the
scope of this paper. For a discussion of this topic consult the
work of Tyree and Akerman [6]. Also, the textual description of
a software architecture that would be included in a formal soft-
ware architecture document is only briefly mentioned.

This section does discuss the practical application of the modi-
fied SM shown in Figure 1. A practical application of the original
model is provided by Tepfenhart [7]. This paper describes a
rather strict application of UML (v2.0) to several of the concepts
presented by Tepfenhart [7]. The basis for the usage of UML
described here can be found in several sources [8, 9, 10].

Mowbray and Malveau [5] state that, “One of the key benefits
of architecture is the separation of concerns … the SM sepa-
rates concerns based upon scale of software solutions. The
model clarifies the key levels inherent in software systems and
the problems and solutions available at each level.”

This approach fosters decomposition, a major practice used to
control complexity in large (or any size for that matter) software
systems. The following summarizes how the SM provides a
guideline for the architectural decomposition process. This is
followed by an abstract example of how UML would be used to
document the global, enterprise and system levels.

In the modified SM shown in Figure 1, we treat each level as
a container that holds components that are elements of the next
level above. That is, the global level is a container for enterprise
components, the enterprise level is a container for system com-
ponents, and so on for each level of the model. It is important to
note here that the term component is used throughout in both
a traditional [11] (e.g. software component) and non-traditional
sense. We will examine this again when describing the process
used to document architectures later in this paper.

To decompose a large software system for the purpose of
creating an architectural model, we start with the global level.
The global level architecture is composed of enterprise com-
ponents. Enterprises are the identifiable business units or
organizations whose software will interact to achieve some com-
putational goal. The business unit or organization sponsoring the
software development is identified as well as business partners,
customers, or suppliers—in short any business entity that may
interact with the sponsoring organization.

The enterprise level consists of the organization sponsoring
the software development and is composed of all the systems
that will be employed to achieve the project goals and require-
ments. Systems identified at this level are not confined to just
systems that will be developed as part of the software develop-
ment effort. In-house legacy systems and COTS products, either
existing or that need to be purchased as part of the present ef-
fort, are also identified. In this way no effects from unanticipated
interfaces should occur during detailed design. For each system
that will be developed, the architecture clearly demonstrates col-
laboration with other systems, either under development, already
existing, or with plans to be purchased.

The next step in the process is the decomposition of the
systems to be developed that were identified at the enterprise
level. The components at this architectural level are either sub-
systems, applications or libraries. In UML v2.0 libraries are rep-
resented as artifacts. Here, we choose to represent libraries as
components. Almost invariably, libraries are the manifestation of
components and stereotyping components for the various levels
of the SM is a natural and more than acceptable method of
presentation. Applications are defined as standalone executable
software components while libraries though standalone, rely on
applications for their run-time execution. Libraries may be either
internal or external to applications.

To graphically document a software architecture defined in
this way, we use the UML component diagram. The component
diagram is perfect for representing the architectural elements at
each level of the SM. Furthermore, it is also a perfect compan-
ion to the component-oriented definition adopted here. Since
the components at several levels of the SM are not software
components as defined by the UML, we use stereotypes to
indicate the components at each level. Only the components
at the system level and above are software components in the
sense of the UML definition. We use interfaces, direct connec-

CrossTalk—November/December 2011 13

PUBLISHER’S CHOICE

Figure 2

Figure 3

tions, and delegation connectors to indicate the relationships
between components at all levels. Direct connections are used
to represent interfaces between components that may not be
call level interfaces, such as shared files or non-digital medium.
This is necessary because, as we have seen, not all components
in the model represent software.

Figure 2 illustrates a UML component diagram at the global
level for a software system under consideration. It conveys to
the viewer that the global architecture consists of four enter-
prises. Assume that Enterprise X is the enterprise for which the
software under consideration is being designed. Furthermore,
assume that Enterprise W, Y and Z are not part of the same
organizational unit (corporation, government agency, etc.) as
Enterprise X. This component diagram clearly indicates that
Enterprise X needs some functionality or data provided by
Enterprise Z, and is provided by Enterprise Z through Interface
Z. It also clearly indicates that Enterprise X will provide some
functionality through Interface X that will be used by Enterprise
Y. This component diagram also shows that Enterprise X has a
relationship to Enterprise W through the direct connection XW.
This component diagram shows no relationships among Enter-
prise W, Y and Z. This does not mean that such relationships do
not exist; it only means that such relationships, if indeed they do
exist, are not important to the architectural description of Enter-
prise X, and therefore do not need to be included.

We would now move on to a decomposition of Enterprise X
into its constituent system components. The result of such a
process would be a component diagram for Enterprise X like the
one shown in Figure 3. This diagram conveys to the viewer that
Enterprise X consists of five systems, Systems A, B, C, D and E.
System A provides Interface A that is used by System C. Also,
System B provides Interface B1 and Interface B2 which are used
by System A and System D respectively. System A has a relation-
ship to System E through direct connection AE. The viewer can
also determine that System C is the system within Enterprise X to
which access to Interface X by Enterprise Y is delegated; and that
Enterprise X delegates to System D use of the external Interface
Z that is provided by Enterprise Z. Furthermore, Enterprise X dele-
gates access to Enterprise W to System E via the delegation con-
nection to port Connection XW. It can also be seen that System A
and System C are both providers and users of various interfaces,
while System B is only a provider of interfaces and System D is
only a user of interfaces. But more than this, the viewer knows
exactly which interfaces and connections are provided by which
systems and likewise which interfaces and connections are used.

Next, each system component identified at the enterprise
level would be decomposed into applications and/or libraries.
We will assume that analysis has shown that Systems A, B and
C will be part of a new development project. Furthermore, we
will assume that System D will be a COTS product and System
E is a legacy system that is being retained, unchanged. For this
discussion we will only describe the decomposition of System
A. We also know, from the component diagram for Enterprise X,
the relationships System A has to all the other systems at the
enterprise level and we will discuss these as well.

14 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

Figure 4 shows the decomposition of System A into its
component applications and libraries. This component diagram
shows that system A consists of four applications, Application
A1, A2, A3 and A4 and one library, Library L1. Application A1
has a relationship to two other components that are a part of
System A, that is Application A2 and Library L1. Application
A1 provides Interface A that is used by Application A2. Recall
that one of the system level interfaces provided by System A,
and used by System C, is also Interface A. We say that System
A delegates the implementation of Interface A to Application
A1, as indicated in the diagram by the delegation connection
that connects the external port for Interface A with the provided
interface of Application A1. It should be noted that Interface
A connected to the external port of System A and Interface A
connected to Application A1 are in fact the same interface. Con-
ceptually, one may think of the System A external port connec-
tion for Interface A as the access point to the interface provided
by Application A1. In fact, neither System A nor Application A1
is actually capable of implementation of Interface A. Application
A1 would actually delegate implementation of this interface to a
specific class.

Application A1 also uses Interface L1, the provided interface
of Library L1 through its required interface. Library L1 is an
example of an external library component. Its implementation
would be highly dependent on the programming language used
to write the code for System A (e.g. in C++ on Windows it could
be a Dynamic Link Library, .dll file). The concept of a library as a
component more closely approximates the traditional use of the
term software component used by Lau and Wang [7]. In their
interpretation of the term we would build applications by as-
sembling components, either preexisting or built specifically for
the application. Libraries as components, in the context of the
SM can consist of a single class or multiple classes. The internal
implementation is not significant. From the user of the library’s
point of view, only the interfaces provided are important.

Figure 4

Application A3, like Application A1, also has a required inter-
face that uses Interface L1. We know from the enterprise level
that System A also interfaces to System B through Interface B1.
In Figure 4 we can see that System A delegates this responsi-
bility to Application A3.

Application A4, while having no relationship with any of the
other applications in System A, does have the responsibility of
providing the interface with System E. We can see that System
A has delegated this responsibility to Application A4 by the
delegation connection to the external port Connection AE. This
is an example of a direct connection. The nature of this relation-
ship would be described in the architecture document interfaces
section or in a separate interface design document.

One very important point to note is the relationship of System
A the container to System A the component of the Enterprise X
container. In the Enterprise X component diagram System A has
a relationship to three other systems; two are interface relation-
ships, one provided and one required, and the other is a direct
connection. System A, the container, maintains those relation-
ships as indicated by the external ports, Interface A, Interface
B1 and Connection AE.

The formal software architecture document for this soft-
ware would contain these diagrams as well as detailed textual
descriptions of each component, interface and connection at
each level. For the interfaces these would describe the nature
of the interface such as data exchange or direct program-to-
program communication. It might also include a reference to any
standards that might apply. As for the components, specifically
the system components of the enterprise level for example,
the text description would provide information about which
systems will be developed and which might be COTS products.
Clearly not all information can be conveyed in just the compo-
nent diagrams alone. However, it has been demonstrated that a
great deal of information can. More importantly, the information
that is provided is exactly the kind of information that might be
overlooked had the design started without any consideration of
software architecture.

Concluding Remarks
While the methodology described here can go a long way to

improving our software engineering design drawings and docu-
ments, further work is needed to refine the methodology. More
consideration needs to be given to the application layer and
the macro and micro components layers of the original model.
A formal method for the validation and verification of models
created with this methodology is also needed. These offer only a
few areas for further research.

This paper has attempted to close, or at least reduce the width
of, the gap between software architecture theory and practice.
A methodology was described which demonstrates how to use
UML component diagrams as a way to document and communi-
cate software architectures clearly and in a reproducible fashion.
This methodology leverages one of the two modern definitions of
software architecture found on SEI’s website and a lesser-known
model for producing software architectures.

CrossTalk—November/December 2011 15

PUBLISHER’S CHOICE

If software engineering is ever to achieve the same status
as other engineering disciplines, or even approach that status,
practitioners must be able to produce universally understood
and reproducible design documents. The history of previous
work in the area of software architecture has provided a rather
stable theoretical foundation. UML, the de-facto standard for
creating software engineering design diagrams provides the
tools. It is up to us, the practitioners, to use these tools in the
way they were intended. It is hoped that this paper demon-
strates how to do just that.

Acknowledgements
The author wishes to thank Bob Nicholson, Steve Chappell,

Mike Watts and Dr. Jiacun Wang for their review of this paper as
well as their thoughtful comments.

Michael Tarullo has 29 years of experience
in software design and development. Approxi-
mately half of this time was spent develop-
ing software in the mainframe environment.
The remainder of his career has been spent
designing and developing object-oriented
software in C++, C#, and Java. He is currently
an Enterprise Architect at L-3 Communications
supporting System Wide Information Manage-
ment, the FAA SOA initiative for the NextGen
Air Traffic Management system. He also is an
adjunct professor of Software Engineering at
Monmouth University, where he teaches both
undergraduate and graduate courses in Java
Programming and Software Design. Mr. Tarullo
has a Bachelors Degree in Geoscience from
The New Jersey City University and a Masters
Degree in Software Engineering from Mon-
mouth University.

L-3 Communications
Contractor, FAA William J. Hughes
Technical Center
Atlantic City, NJ 08405
Phone : (609) 485-5294
E-mail: michael.ctr.tarullo@faa.gov
E-mail: michael.tarullo@l-3com.com

ABOUT THE AUTHOR

1. <http://www.sei.cmu.edu/architecture/start/definitions.cfm>
2. Kruchten, P., Obbink, H. and Stafford, J.; The Past, Present and Future of Software Architecture;
 IEEE Software; March/April 2006
3. Shaw, M. and Garlan, D.; Software Architecture – Perspectives On An Emerging Discipline; Prentice Hall; 1996
4. Bass, L., Clements, P. C. and Kazman, R.; Software Architecture in Practice; Addison-Wesley; 2003, 2nd edition
5. Mowbray, T. J and Malveau, J.; CORBA Design Patterns; John Wiley & Sons; 1997
6. Tyree, J. and Akerman, A.; Architecture Decisions: Demystifying Architecture;
 IEEE Software; v.22, no.2, 2005
7. <http://bluehawk.monmouth.edu/~btepfenh/Courses/SE505/Sections/principlesdesign.html>
8. Booch, G., Rumbaugh, J. and Jacobson, I.; The Unified Modeling Language User Guide; Addison Wesley;
 2nd Edition; 2005
9. Rumbaugh, J., Jacobson, I. and Booch, G.; The Unified Modeling Language Reference Manual; Addison Wesley;
 2nd Edition; 2005
10. Booch, G., Maksimchuk, R. A., Engle, M. W., Young, B. J., Conallen, J. and Houston, K. A.; Object-Oriented
 Analysis And Design With Applications; Addison Wesley; 3rd Edition; 2007
11. Lau, K. and Wang, Z.; Software Component Models; IEEE Transactions On Software Engineering;
 October 2007, vol. 33, no. 10

REFERENCES

mailto:michael.ctr.tarullo@faa.gov
mailto:michael.tarullo@l-3com.com
http://www.sei.cmu.edu/architecture/start/definitions.cfm
http://bluehawk.monmouth.edu/~btepfenh/Courses/SE505/Sections/principlesdesign.html

