
CrossTalk—March/April 2012 27

SECURING A MOBILE WORLD

Introduction
The necessity of mitigating vulnerabilities in software applica-

tions is well understood by organizations today. To identify them
in existing applications, organizations can use vendor alerts
along with public resources such as the Common Vulnerabili-
ties and Exposures [1] and the Open Web Application Secu-
rity Project’s Top 10 Web Application Security Flaws [2] lists.
Programmers can help to avoid including them in new applica-
tions or maintenance of existing applications by consulting the
public Common Weakness Enumeration (CWE™) [3] and CWE/
SANS Top 25 Most Dangerous Software Errors [4] lists. Other
organizations (e.g., CERT [5] and MISRA [6]) have developed
public or private style guides to assist programmers in avoiding
application vulnerabilities.

An application vulnerability is a weakness in a software ap-
plication that permits exploitation by unauthorized persons or
contributes to safety hazards. The frequent patches provided by
our software vendors have alerted most of us to the problem of
vulnerabilities in software designs. Not as well known, however,
is that the programming languages in which software applica-
tions are written, also have vulnerabilities of their own that can
cause applications not to work as intended, behave in unpredict-
able ways, or lead to application vulnerabilities. Simply stated,

deficiencies in the design of programming languages encourage
programmers to code in a manner that creates application vul-
nerabilities. The consequences for organizations can be costly
as well as dangerous.

To address this problem, ISO [7] and IEC [8] issued a Techni-
cal Report entitled ISO/IEC TR 24772:2010, Information
technology—Programming languages—Guidance to avoiding
vulnerabilities in programming languages through language
selection and use [9], in September 2010 that lists 51 common
types of vulnerabilities found in programming languages, along
with suggestions for how to avoid them. The report also lists 20
application vulnerabilities that could be addressed by improved
language library routines.

No one language contains all of the vulnerabilities described
in the report, but most are very common. In addition, 17 of the
vulnerabilities detailed in the report also appear on the 2010
CWE/SANS Top 25 Most Dangerous Software Errors list.

Reduce Risk by Mitigating Programming
Language Vulnerabilities

By understanding the different ways in which their program-
ming languages might be vulnerable, writers of language
standards can eliminate or reduce those vulnerabilities in their
languages and thereby make them more secure. In turn, ap-
plication developers can know how secure a language is before
choosing it. Developers will also be able to ensure that the
potential for vulnerabilities in their applications are minimized
in their software applications, and that they have chosen the
most effective and comprehensive source code evaluation tools.
Project managers can use the guide to make better-informed
selections of programming languages and establish mitigations
for the risks inherent in the chosen language.

This	is	of	special	importance	to	those	who	develop,	maintain,	
and	regulate:
• Safety-critical applications that might cause loss of life,
 human injury, or damage to the environment.
• Security-critical applications that must ensure properties of
 confidentiality, integrity, and availability.
• Mission-critical applications that must avoid loss or damage to
 property or finance.
• Business-critical applications where correct operation is
 essential to the successful operation of the business.
• Scientific, modeling, and simulation applications that require
 high confidence in the results of possibly complex, expensive,
 and extended calculation.
Reducing risk in all of these areas will, over time, yield organiza-
tions cost savings due to less work, and ultimately lead to more
secure systems.

Types of Programming Language Vulnerabilities
When a programmer writes a software application, regard-

less of the programming language used—be it Ada, C, COBOL,
Fortran, etc.—the code should execute in a manner that can be
predicted by the developer. If it does not, and an attacker can
then make use of the mistake to access a system or network, it
is considered a vulnerability in the software code.

Abstract. A recent joint technical report from two major international stan-
dards bodies, the International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission (IEC), identifies classes of vulnerabilities
in programming languages—those features of the languages that encourage
or permit the writing of code that contains application vulnerabilities—and sug-
gests ways to avoid or mitigate them. According to the report, programming
language vulnerabilities should especially be avoided “in the development of
systems where assured behavior is required for security, safety, mission critical
and business critical software. [However], this guidance is applicable to the
software developed, reviewed, or maintained for any application.” This paper
provides a brief summary of the ISO/IEC Technical Report.

James W. Moore, The MITRE Corporation
John Benito, Blue Pilot
Larry Wagoner, National Security Agency

New ISO/IEC
Technical Report
Describes
Vulnerabilities in
Programming
Languages

28 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

With programming languages, vulnerabilities arise in six
main ways:

Incomplete or Evolving Programming
Language Behavior

Programming language standards are continuously evolv-
ing with new releases and features, resulting in issues that
might affect predictability. Such issues include the need for
compatibility with previous releases, and the interaction of that
language’s features, separately and in any combination, under
all foreseeable circumstances.

Choice of compiler can also have an effect. Compilers are
used by programmers to transform their source code to a binary
code (commonly called object code). However, unless the com-
piler comes from a trusted source and was developed according
to agreed standards, it could inadvertently or maliciously insert
bad code into the binary, resulting in a potential vulnerability.
This is especially important to avoid because this type of vulner-
ability would then be inserted into every piece of software that
the compiler processes.

Unspecified behavior must also be avoided. While most
behavior is specified by programming languages, unspecified
behaviors can result when a programming language construct is
specified to have two or more possibilities of behavior. In such a
case, different compilers may generate different behaviors from
the same source code, resulting in a vulnerability. The problem
is exacerbated if the compiler(s) are run on different computers;
if the compilers use different software libraries; or if they run on
different operating systems, different releases of an operating
system, or different configurations of an operating system.

Another issue is implementation-defined behavior. Program-
ming languages sometimes allow compilers to support a variety
of behaviors for a single language feature, or combination of
features, that may enable usage on a wider range of hardware
or enable use of the language in a wider variety of circumstanc-
es. However, there is a requirement that each implementation
document the behavior. Vulnerabilities can occur when the pro-
grammer does not take into account this documented behavior
or ports code from one machine to another without considering
changes in implementation-defined behavior.

Undefined behavior is also a threat. Programming languages
sometimes specify that program behavior is undefined or simply
leave some behavior undefined. Common examples include recovery
from an error in the software, and use of the value of a variable that
has not yet been assigned. In some cases, attackers can use expert
knowledge to stimulate behavior that can lead to a vulnerability.

Human Cognitive Limitations
Programming languages are created with different purposes,

some are for general use and others for specific tasks or needs,
but all are created as tools to be used by software programmers
to manipulate data and produce a desired result. This means
the intended audiences for the languages are different. For
instance, C was created for programmers implementing system
software, while COBOL was created for programmers writing
business applications.

Because everyone is different and each person has their own
levels of understanding and areas of expertise, vulnerabilities
can occur because of the abilities of the person writing the code

as well as by those who maintain it. Programmers may choose
syntaxes that make the most sense to them, even though the
language provides another syntax that would accomplish the
same task, or may have performed the function more efficiently.
Also, as people, programmers have to deal with the stresses of
their personal and professional lives, any of which may have an
impact on the quality of code that person writes, which could in
turn result in a potential vulnerability.

This can be addressed by standardizing and simplifying as
much as possible, and by improving documentation and resourc-
es, including project coding standards and review processes,
that directly deal with these issues.

Lack of Portability and Interoperability
In addition to potential issues resulting from how code is

written and from variations in the compilers or configurations of
the same compiler, other factors can result in potential vulner-
abilities when the application is run, such as if the application
is used with different software libraries, on different operating
systems, or on different hardware.

Developers must be aware of these possibilities and plan for
them, for instance, by using only semantics specifically defined
by the language, and by using software libraries specifically cre-
ated for the language whenever possible.

Inadequate Intrinsic Support in the Language
Although using specified software libraries for an application

can reduce risk, sometimes no libraries are specified by the pro-
gramming language or the libraries used are not validated to the
same standard as the compiler and the applications being devel-
oped, are proprietary and inclined to change in later releases, or
are discontinued and no longer supported by the vendor. Such
instances can lead to potential vulnerabilities.

A programmer can reduce this risk by using stronger types or
controls to perform certain operations, though this may reduce
the performance and flexibility of the application. Therefore, the
developer must strike a balance between the intrinsic support
provided by the language to help avoid vulnerabilities and the
ultimate utility of the application.

Language Features Prone to Erroneous Use
In some programming languages the syntactic constructs

used by the language are simple and straightforward to use,
while others in that same language are extremely complex.
Vulnerabilities can result when language constructs are used
improperly, when complex constructs are misused in acceptable
but unintended ways, or when complex constructs that can be
substituted for by a series of simpler constructs are used with-
out an understanding of the full effects of the constructs.

Such vulnerabilities can be reduced by those creating the
language by identifying such constructs, and providing standard-
ized ways for dealing with them.

The common strand throughout all of the causes listed
above is lack of knowledge. With perfect knowledge, the ex-
ecution of code can be predicted, but this is seldom the case.
Expert attackers can exploit superior knowledge to “trick” the
code into executing function that the code’s developer did not
intend or foresee.

CrossTalk—March/April 2012 29

SECURING A MOBILE WORLD

Example Vulnerabilities
An example of a vulnerability described in the Technical Re-

port would be the following:
When subexpressions with side effects are used within an

expression, the unspecified order of evaluation can result in
a program producing different results on different platforms,
or even at different times on the same platform. For example,
consider

 a = f(b) + g(b);

where f and g both modify b. If f(b) is evaluated first, then the
b used as a parameter to g(b) may be a different value than if
g(b) is performed first. Likewise, if g(b) is performed first, f(b)
may be called with a different value of b.

Other examples of unspecified order, or even undefined
behavior, can be manifested, such as

 a = f(i) + i++;
or

 a[i++] = b[i++];

Parentheses around expressions can assist in removing
ambiguity about grouping, but the issues regarding side effects
and order of evaluation are not changed by the presence of
parentheses; consider

 j = i++ * i++;

where even if parentheses are placed around the i++ subex-
pressions, undefined behavior still remains. (This example uses
the syntax of C; the effects can be created in any language
that allows functions with side effects in the places where the
example shows the increment operations.)

In this case, the report suggests that programmers should
decompose the expression into sequential statements so that
the order of evaluation can be controlled.

The unpredictable nature of the calculation means that the
program cannot be tested adequately to any degree of confi-
dence. A knowledgeable attacker can take advantage of this
characteristic to manipulate data values triggering execution
that was not anticipated by the developer.

An example of an application vulnerability included in the
report would be storing a password in vulnerable cleartext be-
cause the programming language did not provide a library func-
tion for encrypting the password. For this problem, the project
should acquire a subroutine library that provides the functionality
missing from the language library.

A Catalog of Language Vulnerability Types
Vulnerabilities included in the report were identified and

selected using two different analyses. A bottom-up analysis
surveyed application security vulnerabilities observed “in the
wild” and identified language characteristics that can serve as
root causes of the application vulnerabilities. A top-down analy-
sis surveyed existing language style and usage guides for the
production of safety-related software.

All language vulnerabilities in the ISO/IEC report are de-
scribed in a language-independent manner allowing readers to
quickly comprehend and utilize the information.

Programming Language Vulnerability Description
Each type of programming language vulnerability is described

in a uniform format to permit easy reference. Information in the
description includes:
• An arbitrary three-letter identifier that can be used to identify
 the vulnerability.
• A brief summary of the programming language vulnerability.
• Cross-references, such as CWE identifier.
• A description of the mechanism of failure, giving the link
 between the programming language vulnerability and resulting
 application vulnerabilities.
• A list summarizing the characteristics of languages for which
 this vulnerability is applicable.
• A brief description of how application developers can avoid
 the vulnerability or mitigate its negative effects.
• Comments regarding how the maintainers of the language’s
 specification might make improvements.

Application Vulnerability Description
The report also lists a handful of application vulnerabilities

that might be mitigated if better support were provided in
programming language libraries. These are described similarly
to the language vulnerabilities, except that the comments to
language maintainers are omitted.

An Ongoing Process
The list of vulnerabilities detailed in the ISO/IEC report is not

complete. With new vulnerabilities being discovered regularly,
the process will always be ongoing. The report therefore only
describes those programming language vulnerability types that
were determined to have sufficient probability and significance
to date.

In addition, the following five subject areas were not ad-
dressed in this initial release but will be addressed in future
editions of the report:
• Object-oriented language features, though certain simple
 issues related to inheritance are discussed.
• Concurrency.
• Numerical analysis, though certain simple items regarding the
 use of floating point are discussed.
• Scripting languages.
• Inter-language operability.

The second edition of the Technical Report will also add
annexes describing how the vulnerabilities appear in particular
programming languages. Currently, annexes are planned for
Ada, C, Python, Ruby and SPARK. Future editions will add more
language-specific annexes as well as describing additional
vulnerabilities.

The report is available for purchase from <http://www.iso.
org> and <http://www.ansi.org>. Individual users can obtain the
report for free at <http://standards.iso.org/ittf/PubliclyAvail-
ableStandards/index.html>.

http://www.iso.org
http://www.iso.org
http://www.ansi.org
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://www.ansi.org

30 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

About ISO/IEC Standards
and Technical Reports

There are three major international standards associations
that bring together national bodies from participating nations,
as well other international governmental and nongovernmental
organizations, to focus on the development of international
standards for business, government, and society—the ISO, IEC,
and International Telecommunication Union [10].

While the primary work of ISO and IEC is to prepare interna-
tional standards, some subjects are not appropriate for stan-
dardization but are suitable for technical reports that provide
guidance and information that have been formed via consensus.

The ISO/IEC report about programming language vulnerabil-
ity types discussed in this article, Technical Report 24772:2010,
was published by a subcommittee working group of the ISO/
IEC Joint Technical Committee for the field of information tech-
nology that is responsible for, “programming languages, their
environments, and system software interfaces.”

ABOUT THE AUTHORS

REFERENCES
1. <http://www.cve.mitre.org/>
2. <http://www.owasp.org/index.php/OWASP_Top_Ten_Project>
3. <http://www.cwe.mitre.org/>
4. <http://cwe.mitre.org/top25/index.html>
5. <http://www.cert.org/>
6. <http://www.misra-c.com/>
7. <http://www.iso.org/>
8. <http://www.iec.ch/>
9. <http://www.iso.org/iso/catalogue_detail.htm?csnumber=41542>
10. <http://www.itu.int/>

James W. Moore is a 40-year veteran of software engineer-
ing in IBM and, now, the MITRE Corporation. He is a leader in
software and systems engineering standardization for the IEEE,
serving as its liaison to ISO/IEC JTC1/SC7 and as a member
of the Executive Committee of the IEEE Software and Systems
Engineering Standards Committee. He serves as a member of the
IEEE Computer Society’s Board of Governors. He was an Execu-
tive Editor of the Society’s 2004 “Guide to the Software Engi-
neering Body of Knowledge” and a member of the Editorial Board
of the revision of the “Encyclopedia of Software Engineering.” The
IEEE Computer Society has recognized him as a Charter Member
of their Golden Core, and the IEEE has named him a Fellow
of the IEEE. His work on software engineering standards has
been recognized by the International Committee on Information
Technology Standards (INCITS) with their International Award, by
the Computer Society with the Hans Karlsson Award, and by the
IEEE with the Charles Proteus Steinmetz Award. His latest book
on software engineering standards was published in 2006 by
John Wiley & Son. He holds two US patents and, dating to times
when software was not regarded as patentable, two “defensive
publications”. He graduated from the University of North Carolina
with a B.S. in Mathematics, and Syracuse University with an M.S.
in Systems and Information Science.

E-mail: James.W.Moore@ieee.org
Phone: 301-938-0260

John Benito is an independent consultant providing software
development, project management, and software testing. He
is the current Convener of ISO/IEC JTC 1/SC 22/WG14 the
ISO group responsible for Standard C, the Convener of ISO/
IEC JTC 1/SC 22 WG 23 (was OWG Vulnerabilities), the proj-
ect editor for the Technical Report 24772, and a member of
the INCITS PL22.11 (ANSI C) technical committee. He previ-
ously was a member of INCITS PL22.16 (ANSI C++) and the
ISO Java Study group. He has been in software development,
project management, and testing for over 35 years. Mr. Benito
has been participating in International Standard development
for the past 22 years, and is the recipient of the INCITS Ex-
ceptional International Leadership Award.

E-mail: benito@bluepilot.com
Phone: 831-427-0528

Dr. Larry Wagoner has served in a variety of technical and/
or analytic organizations within the National Security Agency
for over 25 years. Before coming to the Information Assur-
ance Directorate, he worked primarily in the Signals Intel-
ligence Directorate and the Research Directorate. He has a
Ph.D. in computer science from the University of Maryland,
Baltimore County.

E-mail: l.wagone@radium.ncsc.mil

http://www.cve.mitre.org
http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.cwe.mitre.org
http://cwe.mitre.org/top25/index.html
http://www.cert.org
http://www.misra-c.com
http://www.iso.org
http://www.iec.ch
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41542
http://www.itu.int
mailto:James.W.Moore@ieee.org
mailto:benito@bluepilot.com
mailto:l.wagone@radium.ncsc.mil
http://www.cve.mitre.org/
http://www.cwe.mitre.org/
http://www.cert.org/
http://www.misra-c.com/
http://www.iso.org/
http://www.iec.ch/
http://www.itu.int/

