
20 CrossTalk—May/June 2012

RAPID AND AGILE STABILITY

• Scrum teams, product development teams, component teams,
or feature teams spend almost all of their time fixing defects, and
new capability development is continuously slipping.

• Integration of products built by different teams reveals that
incompatibilities cause many failure conditions and lead to signifi-
cant out-of-cycle rework.

• Progress toward meeting milestones is unsatisfactory
because unexpected rework causes cost overruns and project
completion delays.

If part of the problem is due to a mismatch, in which ar-
chitectural decisions fail to support business goals including
agility, then part of the solution is to introduce architecture in
a coherent way. This does not mean to fall back to building all
of the architecture in advance of development. It is possible to
introduce the concept of incremental architectural development
into the agile development approach.

The solution can be described as a desired software develop-
ment state that enables agile teams to quickly deliver releases
that stakeholders value. When a product development starts, this
desired state does not necessarily exist. The teams themselves
typically define the desired state. It is their vision of the ideal
development infrastructure that they would like to work with. This
is a state in which platforms and frameworks, as well as tool envi-

Abstract. The essence of stability in software development is the ability to
produce quality software with infrastructure that will meet long-term business
goals. The essence of rapid and agile development is the ability to deliver capa-
bilities quickly based on customer priorities. Stability often requires cross-func-
tional analysis and infrastructure support that will build foundational technology
for the capabilities to stand on, which takes time and resources. But today’s
organizations must attend to both agility and enduring design. This article pres-
ents three tactics that support rapid and agile stability: aligning feature-based
development and system decomposition, creating an architectural runway, and
using matrix teams.

Felix Bachmann, SEI
Robert L. Nord, SEI
Ipek Ozkaya, SEI

Architectural
Tactics to
Support Rapid
and Agile
Stability

Today’s organizations must design, develop, deploy, and sustain
systems for several decades and manage system and software
engineering challenges simultaneously; neither agility nor at-
tention to enduring design can be dispensed with [1]. Systems
developed at such a scale go through several funding and review
cycles and are typically meant to operate for several decades, so
longevity and stability are key goals. Shrinking defense budgets
and continued demand for new capabilities add pressure to use
rapid and agile development and deployment. All software-inten-
sive systems relevant to the DoD fit this description due to the ex-
isting acquisition processes and the need to support the systems
for extended periods of time in the field in order to manage costs.

This article presents the lessons we learned from our interac-
tions with teams and individuals in the roles of Scrum master,
developer, project manager, and architect on projects from
organizations that develop embedded real-time software or
cyber-physical systems. We observed that the following symp-
toms surface from the lack of stability to sustain rapid and agile
software development:

Current State

Desired State

State of Agile Team Support

Time

Preparation Preservation

Figure 1: Infrastructure support for agile development teams over time

ronments and processes, exist that support efficient, independent
development of user features.

If the desired state does not yet exist, the agile teams first go
through a preparation phase (Figure 1). The goal of this phase
is to do all the preparation required to move to the desired state.
During this phase, the teams can deliver releases, but they will not
deliver as much value to the stakeholders as they would if they
were in the desired state. This is because many tasks focus on
maturing the platforms, frameworks, and tool environments.

Once they have achieved the desired state, agile teams enter
the preservation phase. The goal of this phase is to maintain the
desired state by dealing with technical debt, changing require-
ments, and new technologies. In this phase, it is critical to neither
over-optimize the development infrastructure nor to quit working
on it. Over-optimization incurs cost without much benefit for the

CrossTalk—May/June 2012 21

RAPID AND AGILE STABILITY

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Presentation Layer

Domain Layer

Data Access Layer
API

API
Common Services

Feature

Common Services

Feature

Common Services

Feature

Layered architecture with frameworks Layered architecture with plug-ins
(e.g. Eclipse)

Plug-in Interfaces

Plug-in Interfaces

Plug-in Interfaces

Unimplemented feature

Feature

Figure 2: Horizontal versus vertical decomposition

Figure 3: Layered architecture supporting feature-based development

this vertical alignment because every component
of the system required for realizing the feature
is implemented only to the degree required by
the team. System decomposition could also be
horizontal based on the architectural needs of
the system, focusing on common services and
variability mechanisms (reuse). Figure 2 illus-
trates these two different approaches and how
they can coexist. The goal of creating a feature-
based development and system decomposition
approach is to provide flexibility in aligning teams
horizontally, vertically, or in combination and to
ensure progress by minimizing coupling.

Although organizations create products in
very different domains (from embedded systems
to enterprise systems), similar architectures
emerge when development teams need to sup-
port rapid and agile stability. The teams create a
platform containing commonly used services and
development environments either as frameworks
or platform plug-ins to enable fast, feature-
based development.

Figure 3 shows two generic examples of such
architectures. Here we have an architecture con-
sisting of three layers. Every layer has either a
framework (left side) or a plug-in interface (right
side) defined that implements the control logic
of that layer. Every layer also has a collection of
services that provide common functionality. To
develop a feature, the agile team implements
only the logic of that feature in each layer us-
ing the frameworks or plug-in interfaces. This
focuses the development on what is needed for
the feature implementation. The frameworks and
common services already include all the logic
of how to integrate new pieces of code into the
system, such as by using intra-layer communi-
cation protocols. This type of architecture also
minimizes the dependencies between different
feature implementations so that different teams
can implement features without coordination,
further enhancing stability, and rapid develop-
ment as users need new features.

Not every project has an existing architecture
that would support feature-based development
from the start. Since it is a fairly difficult task to
define the appropriate APIs, common services,
and plug-ins/frameworks up front, teams usually
choose an evolutionary approach.

In a large multiyear client-server development
project, we observed extensive use of align-
ing feature-based development and system
decomposition to manage agile stability. Using
Scrum, 25 teams participated in the develop-
ment effort. Some of the teams were colocated;

teams (waste), while not evolving the infra-
structure slows down the teams over time (also
waste).

To achieve the desired productivity, different
team structures must align with the desired
state. Three distinct tactics can help teams
move to and maintain the desired state: (1)
Align feature-based development and system
decomposition; (2) create an architectural
runway; (3) use matrix teams. We describe
these tactics in the following sections and then
show how they can be used together to deliver
software with agility when the agile team pays

explicit attention to the underlying infrastruc-
ture to support that agility.

Aligning Feature-Based Develop-
ment and System Decomposition

A common approach in agile teams is to
implement a feature (or user story) in all of a
system’s components. This gives the team the
ability to focus on something that has stake-
holder value. The team controls every piece of
implementation for that feature; therefore, they
do not have to wait until someone outside the
team has finished some required work. We call

22 CrossTalk—May/June 2012

RAPID AND AGILE STABILITY

other teams were located in different countries. There were teams
responsible for applications, others for the platform, and others for
architecture and quality assurance. In this project, the teams had
a platform-oriented focus at the beginning during the prepara-
tion phase and switched to a more application-oriented focus
later in the preservation phase, reflecting the change of focus in
their architecture with a hybrid approach of vertical and horizontal
decomposition.

Creating an Architectural Runway
An architectural runway can help provide the degree of

architectural stability required to support the next iterations of
development [2]. This stability is particularly important to
the successful operation of multiple parallel Scrum teams.
Making architectural dependencies visible allows them to be
managed and for teams to be aligned with them. The runway
supports the team decoupling necessary to allow independent
decision-making and reduce communication and
coordination overhead.

During the preparation phase, agile teams build a runway of
infrastructure sufficient to support the development of features
in the near future. Product development using an architectural
runway most likely occurs in the preservation phase. Dean Leff-
ingwell explains that intentional architecture is one of the key
factors to successfully scale agile [2]. Building and maintaining
the architectural runway puts in place a system infrastructure
sufficient to allow incorporation of near-term high-priority
features from the product backlog. This preparation allows the
architecture to support the features without potentially creating
unanticipated rework by destabilizing refactoring.

Larger systems (and teams) need longer runways. Building and
rearchitecting infrastructure takes longer than a single iteration or
release cycle. Delivery of planned functionality is more predictable
when the infrastructure for the new features is already in place.
This requires looking ahead in the planning process and invest-
ing in architecture by including infrastructure work in the present
iteration that will support future features that the customer needs.

The architectural runway is not complete. The runway intention-
ally is not complete because of an uncertain future with changing
technology and requirements. This requires continuously extend-
ing the architectural runway to support the development teams.

We observed one Scrum team that had already benefitted
from an existing and proven platform. The architect of that
platform was the driver and Scrum master of the development
team. The team added features (vertical alignment) to the
product quickly on top of the existing infrastructure while
the architect, with temporarily assigned team members,
implemented additional platform changes required for future
features (horizontal alignment of the system into layers).
The growing platform provided them with a runway sufficient to
build the desired functionality for the complex embedded, real-
time system environment.

Using Matrix Teams and Architecture
In its simplest instantiation, a Scrum development environ-

ment consists of a single colocated, cross-functional team with

the skills, authority, and knowledge required to specify require-
ments and architect, design, code, and test the system. As
systems grow in size and complexity, the single-team model may
no longer meet development demands.

A number of different strategies can be used to scale up
the overall development organization while maintaining an
agile Scrum-based development approach. One approach is
replication, essentially creating multiple Scrum teams with the
same structure and responsibilities, sufficient to accomplish
the required scope of work. This is the approach advocated by
the Scrum Alliance. Some organizations scale Scrum through a
hybrid approach. The hybrid approach involves Scrum team repli-
cation but also supplements the cross-functional teams with tra-
ditional functionally oriented teams. An example would be using
an integration-and-test team to merge and validate code across
multiple Scrum teams. (Note that Scrum purists would most
likely label the hybrid approach an example of “Scrum But.”)

In general, we recognized two criteria used to organize the
teams. The first criterion is organizing the teams either horizon-
tally or vertically, assigning different teams the responsibility for
either components (horizontal) or features (vertical). The second
criterion is assigning the teams responsibilities according to
development phases.

Aligning the teams horizontally is a good idea during the early
stages of the preparation phase, while vertical alignment works
well during the preservation phase. Between those two states,
we find matrix structures in which the teams are aligned either
horizontally or vertically while some members within those teams
have the opposite responsibilities [3].

In another multiyear project, we observed two distributed
Scrum teams that worked in an environment where project
management and quality assurance were more waterfall ori-
ented, causing tension because the teams delivered incremental
results that were not aligned with the overall waterfall approach.
When the organization decided to switch the project manage-
ment and quality assurance groups to an agile approach, the
architects integrated into the Scrum teams. This helped them
achieve a matrix team structure to manage responsibilities for
developing components and features effectively.

Applying the Tactics in Concert
Let us see how these tactics work together to provide infra-

structure support for agile development over time. In Figure 4, we
marked points in the state of the product development that we
presented in Figure 1. These points are not exact. We use them
here to give an estimate of when certain development strategies
and team structures make sense.

Here we assume that when the product development starts no
(or minimal) support for agile teams is available. This means there
is no existing platform or frameworks, and the tool environment
may not be established yet.

At the starting point (point A in Figure 4), it makes sense to
organize the teams horizontally. Most of the teams’ responsibilities
involve getting the supporting infrastructure to a point at which
feature development can start. During this period, team members
will create a rough sketch of the architecture, make technology

CrossTalk—May/June 2012 23

RAPID AND AGILE STABILITY

Presentation Layer

Common Service

Common Service

Common Service

API

APIData Access Layer

Domain Layer

Scrum
Team A

Scrum
Team B

Scrum
Team C

Presentation Layer

APIDomain Layer

APIData Access Layer

Common
Services

Common
Services

Common
Services

Fe
at

ur
e

1

Fe
at

ur
e

1

Fe
at

ur
e

1

Scrum
Team A

Scrum
Team B

Scrum
Team C

Team member with feature responsibility

Scrum of
Scrums

Figure 4: Different team structures at different times

Figure 5: Layered architecture implemented with some common services and APIs

Figure 6: Feature development in parallel on top of a skeleton system; different teams assigned
to layers (horizontal alignment) with some team members assigned to implement features

Current State

Desired State

State of Agile Team Support

Time

Preparation Preservation

A

B

C

D

E decisions, establish the tool environment, and
so on. Typically, teams will use a small subset
of basic user features (user stories) to guide
the creation of the development infrastructure
consisting of basic common services and APIs
of the layers. Those basic features may not be
implemented during this phase. Sometimes the
resulting product is called a skeleton system.
The result of this phase of the project is a first
version of a platform that is good enough to be
used to develop the first features (see Figure 5
for a notional example), as described previously
in the feature-based development section.

As soon as the most important interfaces are
defined, some team members can start develop-
ing features (point B in Figure 4). We now start
seeing a matrix organization. During this time,
most team members will still have component-
oriented responsibilities. Therefore, the teams
are still horizontally organized, but some team
members now have the responsibility to start
implementing features using the development
infrastructure built so far. This pressures teams
to start organizing themselves according to
features and implementing them on top of the
skeleton system. In a Scrum of Scrums, the
team members assigned to implement features
coordinate with each other to ensure on-time
delivery of the features. This helps stabilize
the interfaces and provides the first ideas for
implementation frameworks that would support
feature development (see Figure 6).

With the interfaces getting more stable, the
time comes to switch most of the teams to verti-
cal (feature-oriented) development (point C in
Figure 4). In this situation, we found that some
team members still had horizontal responsibili-
ties because the development infrastructure
was far from complete and teams implemented
common services as well as framework and
interface enhancements continuously (Figure 7).

In doing so, the teams get closer to the
desired state in which they can focus on feature
development (point D in Figure 4). Now the
architecture has reached a level of maturity
and teams have the necessary infrastructure to
implement features quickly. The feature-based
development aims to better manage and dem-
onstrate end-to-end features and provides the
ability to assign features to teams without too
many dependencies between them. Especially
in a context where there is a high number of
Scrum of Scrums and many customer-facing
features, this approach can help align the teams
with the system structure. In one example where
we observed this approach, the number of

24 CrossTalk—May/June 2012

RAPID AND AGILE STABILITY

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Scrum
Team A

Scrum
Team B

Scrum of
Scrums

Team member with layer responsibility

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Scrum
Team A

Scrum
Team B

Temporary
Sprint Team

Figure 8: Different teams assigned to features (vertical alignment), with a temporary team
assigned to prepare layers and frameworks for future feature development

Figure 7: Different teams assigned to features (vertical alignment) with
some team members assigned to keep layers and frameworks consistent

teams participating on a Scrum of Scrums was
25; hence, the feature-based development and
system decomposition approach helped sepa-
rate team dependencies at the feature level.

At this point, the preservation phase starts.
Few team members, if any, will have horizontal
responsibilities. The goal of the preservation
phase is to continue to build the next piece of
the architectural runway that the system will
need in the future. Every product development
has to cope with changing requirements and
new technologies (point E in Figure 4).

In one project we analyzed during the pres-
ervation phase, the product architect had the
responsibility to look ahead and decide what the
system would need in the future. He then as-
sembled a team, and in a sprint they developed
the next piece of the runway. After the sprint,
the team was dissolved. Meanwhile, all the other
teams were still organized vertically, developing
features for their customer (Figure 8).

Takeaways
Achieving rapid and agile stability for fast yet

steady development is a matter of aligning the
right practices with the needs of the develop-
ment effort. No one tactic can bring success to
any project. The principles of both agile software
development and software architecture provide
improved visibility of project status and better
tactics for risk management in order to cre-
ate higher quality features within the required
time frames and optimum use of resources. In
this article, we described three tactics: aligning
feature-based development and system decom-
position, creating an architectural runway, and
using matrix teams and architecture. Harmoni-
ous use of these tactics is critical, especially in
DoD-relevant systems that must be in service
for several decades, that are created by several
teams and contractors, and that have changing
scope due to evolving technology and emerging
new needs.

Disclaimer:
Copyright 2012 Carnegie Mellon University

	
This material is based upon work funded and
supported by the DoD under Contract No.
FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software En-
gineering Institute, a federally funded research,
and development center.

	

CrossTalk—May/June 2012 25

RAPID AND AGILE STABILITY

Felix H. Bachmann is a senior member of
the technical staff at the Software Engineer-
ing Institute (SEI) in the Architecture Centric
Engineering Initiative. He is coauthor of the
Attribute-Driven Design Method, a contributor
to and instructor for the Architecture Tradeoff
Analysis Method® Evaluator Training, and
coauthor of Documenting Software Architec-
tures: Views and Beyond. Before joining the
SEI, he was a software engineer at Robert

Bosch GmbH in Corporate Research for small and large
embedded systems.

Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA
E-mail: fb@sei.cmu.edu
Phone: 412-268-6194

ABOUT THE AUTHORS (continued)
Robert L. Nord is a senior member of the technical staff
at SEI and works to develop and communicate effective
methods and practices for software architecture. He is co-
author of the practitioner-oriented books Applied Software
Architecture and Documenting Software Architectures:
Views and Beyond and lectures on architecture-centric
approaches.

E-mail: rn@sei.cmu.edu
Phone: 412-268-1705

	
Ipek Ozkaya is a senior member of the technical staff at
SEI and works to develop empirical methods for improv-
ing software development efficiency and system evolution
with a focus on software architecture practices, software
economics, and requirements management. Her latest
publications include multiple articles on these subjects fo-
cusing on agile architecting, dependency management, and
architectural technical debt. Ozkaya serves on the advisory
board of IEEE Software.

E-mail: ozkaya@sei.cmu.edu
Phone: 412-268-3551

REFERENCES
1.	 Brown, N., R. Nord, and I. Ozkaya. “Enabling Agility Through Architecture.”
	 CrossTalk 23.6 (2010): 12-17.
2.	 Leffingwell, D. Scaling Software Agility. Upper Saddle River, NJ: Addison-Wesley, 2007.
3.	 Reinertsen, D. G. Managing the Design Factory: A Product Developer’s Toolkit. New York: The
	 Free Press, 1997.

No Warranty:	
This Carnegie Mellon University and Software Engineering
Institute material is furnished on an “as-is” basis. Carnegie
Mellon University makes no warranties of any kind, either ex-
pressed or implied, as to any matter including, but not limited
to, warranty of fitness for purpose or merchantability, exclusiv-
ity, or results obtained from use of the material. Carnegie Mel-
lon University does not make any warranty of any kind with
respect to freedom from patent, trademark, or
copyright infringement.

ABOUT THE AUTHORS

NAVAIR Process Resource Team (PRT)
(760) 939-6226

NAVAIR Vision Statement:
“Sailors and Marines, Armed and

Operating with Confidence”

Because we develop, deliver, and sustain aircraft, weapons, and
systems—on time, on cost, with proven capability and reli-
ability—so they cost effectively succeed in every mission and
return home safely.

mailto:fb%40sei.cmu.edu?subject=
mailto:rn%40sei.cmu.edu?subject=
mailto:ozkaya%40sei.cmu.edu?subject=

