
8 CrossTalk—May/June 2012

RAPID AND AGILE STABILITY

Richard Carlson, Boeing
Philip J. Matuzic, Boeing
Robert L. Simons, Boeing

Applying Scrum
to Stabilize
Systems
Engineering
Execution
Abstract. Years before the Agile Manifesto [1] was created in 2001, effective
practices for managing projects were being applied to reduce project cycle times
and reduce costs while increasing productivity and quality. Agile [2] principles that
emerged from the manifesto promulgated rapidly throughout industry on software
development projects at first, and eventually into projects that were not software
centric. This article focuses on the application of Scrum [3], an agile project man-
agement method that uses simple practices to enable stability for the execution
of systems engineering (SE) activities and the development of requisite systems
engineering work products throughout the product development lifecycle.

•	 Mature designs vs. incremental development: Traditional
	 projects place too much emphasis on first completing mature 	
	 architecture and design including features and functions that
	 may rarely, if ever, be used. Agile thinking demands that the
	 product and its associated artifacts be developed incrementally
	 through a series of short iterations guided by frequent customer
	 feedback throughout product development.
•	 Command-and-control vs. empowered teams: Project managers
	 are trained (and certified through formal project management
	 training) to exercise authority and direction of project members in
	 order to accomplish predefined and measured goals. Agile
	 projects, with participation of the existing project management
	 authority, allow teams to self-manage and self-organize so they
	 can become increasingly synergistic and efficient.

Agile Project Planning
The goals of agile project planning are defined in four critical

artifacts: product vision, initial backlog of requirements, roadmap,
and release plan.

The product (or project) vision must be created by the project
visionary, typically the product owner. When implementing a
Scrum approach, the product owner coordinates with key stake-
holders to describe a desired state of the product in a series of
release increments. The vision should be a clear and succinct
statement describing the product’s capabilities and features that
set it apart from anything built in the past. The vision statement
must convey the expected value expressed by the customer or
as specified in the contract. It should also include the company’s
or project’s motivation of using Scrum to manage its develop-
ment, the product’s key features, potential, and most significant
risks with corresponding mitigation strategies.

The backlog, or product backlog as it is coined in Scrum, is a
prioritized list of tasks encompassing everything essential to the
success of the product. The priority of items listed in the backlog
is typically driven by the customer.

The product roadmap is a translation of the product vision into
product feature development terms. It describes “what” needs
to be completed or implemented, and it should map develop-
ment timelines of the product that reflect major features, a set
number of releases, both internal and external, and the number
of iterations planned for each release cycle. The roadmap should
be updated prior to the start of each release cycle to ensure
changes directed from the customer or as a result of product
backlog re-prioritization are communicated to the core project
team and its key stakeholders.

Release planning involves key stakeholders in determining
incremental releases for the product development. The release
plan describes the “how” and includes the details of the product
roadmap. It also includes details of product development that
extend throughout the lifecycle of the project.

About Scrum
Scrum is an agile framework for managing complex projects.

Originally Scrum was formalized for software development proj-
ects, but works well for any complex, innovative scope of work.
The possibilities are endless.

The Scrum framework is deceptively simple:

Introduction
The background and history of using agile on software

development projects are well documented by the IEEE, the
National Defense Industry Association conferences, and through
workshops, papers and technical articles published by the SEI.
The successes of agile software development projects have
attracted tremendous interest throughout the SE community.
There has been an upsurge within academia and industry
advocating the use of these practices and principles to imple-
ment agile SE and reports of successes are emerging. This
article identifies key drivers that are paramount in stabilizing
agile-based SE product development efforts, lessons learned
from empirical experience, specific areas of practice that were
difficult to implement, and requisite infrastructures that must be
in place before considering agile at the SE level.

Agile Systems Engineering Stability Drivers
There are some interesting contrasts between traditional (or

waterfall [4]) project management and agile project management:

•	 High overhead vs. focused work: Traditional projects suffer
	 excessive overhead caused by lengthy meetings that waste
	 valuable team time. Agile projects concentrate on guiding com-
	 mitted work in progress through short, time-boxed ceremonies.

CrossTalk—May/June 2012 9

RAPID AND AGILE STABILITY

•	 The product owner creates a prioritized feature wish list called
	 a product backlog.
•	 The team has a defined amount of time, called a sprint,
	 to complete its work. A sprint is usually two to four weeks
	 and the team meets each day to assess its progress (called the 	
	 daily Scrum).
•	 During a sprint [5] or iteration planning, the team pulls a small 	
	 quantity of tasks from the top of the wish list—the sprint back-
	 log—and decides how to implement those features during the
	 current sprint.
•	 During the sprint, the Scrum master keeps the team focused
	 on its goal.
•	 Task results at the end of the sprint are an executable increment
	 of the product which is potentially deployable to a customer, put
	 on a storage shelf, or demonstrable to a stakeholder.
•	 The sprint formally ends with a sprint review and team retrospective.
•	 The next sprint begins with sprint planning where the team
	 chooses another chunk of the product backlog and begins
	 working on the new features.

The cycle repeats until enough items in the product back-
log have been completed to finalize the product, the budget is
depleted, or a programmatic deadline arrives. Which milestone
marks the end of work is entirely specific to each project. No
matter which impetus stops work, Scrum ensures completion of
the most valuable work before the project ends.

Scrum employs an iterative and incremental method for
managing projects. Scrum has no ties to the Project Manage-
ment Institute [6] and it is not part of the Project Management
Body of Knowledge [7]. Although Scrum was originally recom-
mended for software development projects, it is easily applied to
just about any type of project. This means that Scrum can and
has been used as a framework to manage a wide range of non-
software-centric projects.

Scrum uses a set of simple practices that drive
development stabilization:
•	 Scrum relies on active customer participation. Open communica-
	 tion with the customer provides visibility into issues and problems
	 that may have adverse effects on project schedule, cost, and
	 product release. When the customer is multitasking or otherwise
	 not available to participate in technical interchanges, such as prod-
	 uct reviews, they invite problems that will cause things to go awry.
•	 Daily stand-up meetings are short, time-boxed meetings that
	 keep the team focused on communicating what they have ac-
	 complished since the last meeting with other team members,
	 what they plan to do next, and any impediments that are keeping
	 them from achieving planned work.
•	 Extensive planning is conducted prior to iteration activities to en-
	 sure development environments are available and that team
	 members have everything they need to complete their tasks.
	 Planning is conducted on the first day of each iteration so the
	 team knows the overall goal and can determine how all work
	 will be completed. Iteration planning assures the team commits to
	 an amount of work it can complete during the iteration with a
	 high probability of success.
•	 Estimating work in terms of requirements is conducted by all
	 key stakeholders at the beginning of every project, and

	 by the team at the start of each iteration throughout the project.
•	 Iterative development involves short, single passes through an
	 entire development lifecycle. Short iterations are necessary to
	 obtain early and frequent feedback from customers and other
	 key stakeholders.
•	 Prioritized work contained in a product backlog encompasses all
	 project requirements. Priorities are based on customer decisions
	 or are business driven to ensure that only requirements bringing
	 the most value to the customer are completed first.
•	 Reviews of work products completed during the iteration assure
	 that adequate verification and validation take place.
•	 Self-organized agile teams must be empowered to make
	 decisions, consult with domain and subject-matter experts, and
	 select work tasks in an appropriate and logical sequence.

The Scrum Process
Scrum is a simple framework with three roles, three

critical artifacts, and four low-overhead ceremonies (or
meetings). The roles are:

Product Owner: The product owner represents the voice
of the customer and is accountable to ensure that the team
delivers value to the business. The product owner is responsible
for taking all the inputs defining the product from the customer
or end-user of the product, as well as from team members and
stakeholders, and translating them into a product vision. In some
cases, the product owner and the customer are one and the
same; in other cases, the customer might actually be millions
of different people with a variety of needs. The product owner
writes customer-centric items, prioritizes them, and adds them
to the product backlog. Scrum teams should have one product
owner and, while they may also be a member of the develop-
ment team, it is recommended that this role not be combined
with that of the Scrum master. [Note: There are many instances
of multiple individuals filling the role of the product owner to
assure domain or technical knowledge is available to the team.]
The product owner role maps to the product (line) manager
position in many organizations.

Scrum Master: Scrum activities are facilitated by a Scrum
master, also written as ScrumMaster, who is accountable for
removing impediments enabling the team to deliver the iteration
or sprint goals and deliverables. The Scrum master is not the
team leader but acts as a buffer between the team and any dis-
tracting influences. The Scrum master ensures that the Scrum
process is followed and is the enforcer of rules. A key part of
the Scrum master’s role is to protect the team from distraction
and keep them focused on the tasks at hand. The role has also
been referred to as servant-leader to reinforce these dual per-
spectives. The Scrum master is responsible for helping the team
be successful. The Scrum master is not the manager of the
team; he or she serves the team helping remove impediments,
facilitating meetings, and supporting the practice of Scrum.

Team: The team is responsible for developing and delivering
the product and is typically made up of five to nine people with
cross-functional skills. The team should be self-organizing and
self-managed. SE teams using Scrum should be staffed with
functional and technical SEs, a domain-knowledgeable architect
and software engineer, and testers.

10 CrossTalk—May/June 2012

RAPID AND AGILE STABILITY

Scrum Artifacts and Transparency Tools
The product backlog is a prioritized list maintained throughout

the entire project. It aggregates backlog items that are broad de-
scriptions of all potential features prioritized by business value as an
absolute ordering. The product backlog is “what” will be built, sorted
by importance. It is open and editable by anyone and typically
contains rough estimates of business value and/or development
complexity. Those estimates help the product owner gauge the
timeline and, to a limited extent, prioritize tasks.

The iteration backlog is the list of work the team must address
during the next iteration. Selected product backlog items are
broken down into tasks, which, as a best practice, should normally
be between four and 16 hours of work. With this level of detail, the
whole team understands exactly what to do. Tasks on the iteration
backlog are never assigned. Instead, tasks are selected by the team
members as needed, according to the set priority and team mem-
ber skills. This promotes self-organization of the team. The iteration
backlog is the property of the team, and all included estimates are
provided by the team. However, the Scrum master may prefer to
maintain this artifact to ensure it reflects iteration status in real-
time. Often an accompanying taskboard or work-in-progress (WIP)
board is used to view and change the state of the tasks during the
current iteration.

The taskboard is a transparency tool that shows tasks in work
during an iteration. The taskboard is updated by team members
as they complete each task. As the tasks are accepted by the
team members, they are checked out. Tasks are worked through
completion and must be verified by the product owner before
initiating another task. The team maintains the taskboard up to the
“To Be Verified” column. Verification is done by the product owner
and shown by the product owner moving the task to the completed
column. If a team member completes a task, he/she cannot take
credit until the product owner verifies it is complete. This is one of
the most simple yet best transparency tools used on agile projects!

The iteration burndown chart displays a metric of remaining work
in the iteration backlog. Updated every day, it provides a view of
ongoing iteration progress.

Scrum Ceremonies
The daily Scrum or stand-up meeting is conducted each day

and is facilitated by the Scrum master. During the meeting,
each team member responds to three questions:

•	 What have you done since the last stand-up meeting?
•	 What are you planning to do today?
•	 Do you have any impediments that would prevent you from 	
	 accomplishing your work?

The Scrum master facilitates resolution of these impediments,
although all resolution occurs outside the daily Scrum itself to
keep the meeting under 15 minutes. This meeting must always
start on time, be conducted at the same location and time every
day, and while anyone may attend, only team members are al-
lowed to speak. Management is not allowed to speak and topics
outside the strict agenda are scheduled for separate discussion.

Iteration planning for execution is conducted on the first day
of the iteration. The core Scrum team (i.e. product owner, team, and

Scrum master) meet to determine features that must be
completed during the next iteration. At the opening of the meet-
ing, the product owner explains the vision and product roadmap.
From the product backlog of Prioritized Backlog Items (PBIs) he/
she identifies “what” needs to be completed next. This meeting,
facilitated by the Scrum master, consists of detailed planning activi-
ties between the product owner and the team. PBIs, identified by
the product owner for the next iteration are estimated for effort and
complexity and then selected by the team. The number of PBIs
selected is dependent on the team’s capability or their availability
to complete selected PBIs during a single iteration. If the selected
PBIs can be completed with a high level of confidence during
the upcoming iteration, the team commits to those PBIs and the
Scrum master enters the items into the iteration backlog. If they
cannot be completed due to over-complexity or size, they are either
decomposed or deferred unless they are the next highest priority
items. During the second half of the iteration planning meeting, the
team determines “how” to complete the selected PBIs by breaking
down each item into quantifiable tasks and activities. This promotes
“systems thinking” and ensures that all requisite and value-added
steps are identified and implemented. As a standing rule for Scrum
teams, all tasks must be completed and verified before a PBI can
be declared “done” or available for deployment or delivery.

At the end of the iteration, team members conduct a review of
all completed work with key stakeholders to validate the fact that
requirements were interpreted accurately. The review sets up a
conversation between the participants about what was done, a
demonstration of prototypes completed, and a decision on what
to complete next. Required iteration review attendees include all
team members, the product owner, Scrum master (who facilitates
the review), relevant key stakeholders, customer or customer rep-
resentatives, users, and any interested engineers, domain experts,
and managers. Attendance by all is vital to ensure that everything
completed is presented, questions are properly responded to,
and that feedback is given and received. During the review, the
project is assessed against the iteration goal established during
the iteration planning meeting. The Scrum master ensures the
review does not exceed its time-boxed schedule (usually four
hours or less). The team should be prepared to discuss what was
done, how the iteration’s goals were met, and to demonstrate the
product in its current state. At the conclusion of the review, the
product owner acknowledges either acceptance of work products
presented or deferral of work until it is more mature or good
enough for release into product development or production.

Retrospectives are conducted to build team commitment,
transfer knowledge to the next iteration, and share informa-
tion with the customer, management, and other teams. The
retrospective is the structured reflective practice that enables
teams to learn and improve based on empirical experiences. It
is a time-boxed meeting held with the team members, product
owner, and Scrum master at the end of an iteration to:

•	 Discuss what was successful about the iteration or release.
•	 Realize what could be improved.
•	 Learn from experiences and plan for subsequent iterations.
•	 Plan to incorporate the successes and improvements in
	 future projects.

CrossTalk—May/June 2012 11

RAPID AND AGILE STABILITY

•	 Share and pass along the learning experience.
•	 Make changes for the next iteration.

Retrospectives are conducted at the end of the iteration;
however, a retrospective is very effective when conducted at the
end of any event, that is, any time there is value for the team to
pause for a few minutes to learn from its recent experiences.
But be very careful; retrospectives are not conducted to identify
mistakes and place personal blame or personal attacks. They
should not involve the resolution of issues and problems, and
should never become a planning meeting.

Agile Helps to Stabilize Systems Engineering Defects
Mapping the potential costs of defects found by various

detection techniques to common development strategies versus
the cost-of-change curve very clearly shows that using an agile
approach is less costly than traditional approaches. It has long
been realized that the earlier in the lifecycle a defect is cor-
rected, the less costly. In the chart below, errors detected early
and often by self-organizing teams who develop work products
iteratively are much cheaper to fix than latent defects detected
later in the project lifecycle. [Source: Numerous articles and
papers published on the subject.]

Agile/Scrum Practices for SE
Agile SE for software development was first implemented

in Boeing on two very large programs consisting of multiple
engineering domains. Agile SE teams defined and developed
requirements and functions in the form of user stories [8], devel-
oped and demonstrated prototypes and received real-time user
feedback, and created a product backlog for software develop-
ment.

Using agile to conduct SE activities and create SE work
products is a viable approach to reduce overhead and lengthy
schedules. Most of the agile principles and Scrum practices can
be applied to SE teams, for example:
•	 Conducting four-week “requirements iterations”: Considering the
	 amount of coordination and collaboration with domain and
	 subject-matter experts required, four-week iterations is a good
	 point of departure for requirements iterations. During project
	 execution, if the team feels they can improve productivity by
	 changing the iteration duration, then it should be allowed. Test for
	 a month or two to validate the increase in productivity is working.
•	 Staffing systems engineering teams with systems engineers,
	 business and/or functional analysts, tester, and at least one
	 domain-knowledgeable software engineer. Much of the verifica-
	 tion work is accomplished using this mix of expertise.
•	 Empowering the team by providing them with the requisite
	 authority and everything they need to be fully functional
	 and productive.
•	 Developing SE work products incrementally using the agile
	 principles and Scrum practices.
•	 Writing requirements in user story format including requisite
	 acceptance tests.
•	 Conducting iteration planning meetings on the first day of
	 every iteration.
•	 Conducting brief daily stand-up meetings (15 minutes or less).

•	 Conducting peer reviews for all significant work products.
•	 Ensuring systems and sub-systems integrated verification
	 and validation.
•	 Holding iteration reviews of SE work products including
	 prototypes, documentation, trade studies, analyses, user stories,
	 and groomed product backlogs.
•	 Conducting iteration retrospectives at the end of each iteration,
	 and encouraging holding frequent mini-retrospectives.
•	 Holding Scrum of Scrums meetings with Scrum master and
	 other stakeholders at least two or three times a week.
•	 Establishing an active product owner core team consisting of
	 multiple product owners on multiple domain projects, and
	 projects that require multiple product owners to provide sufficient
	 domain and subject-matter expertise.
•	 Supporting geographically distributed teams with simple trans-
	 parency tools to enable a highly collaborative and visible
	 working environment.
•	 Implementing agile on large programs across multiple
	 engineering domains.

Key Things Learned Using Agile/Scrum

The following are examples of what was learned imple-
menting agile on SE projects:

•	 Scrum is a natural approach to managing a project, and teams
	 like the simplicity of the Scrum framework.
•	 Close collaborations improve significantly between team
	 members and key stakeholders using Scrum.
•	 Impediments, issues, problems, and potential risks are identified
	 early and often in real-time through short, daily stand-up meetings.
•	 Retrospectives can become boring and mundane if action plans
	 are not implemented aggressively and followed through.
•	 Periodic Scrum of Scrums meetings on large programs optimize
	 communications and information sharing across project teams
	 and the greater organization.
•	 Product owners with sufficient domain knowledge and overall
	 understanding of the product are hard to find and retain.
•	 Scrum masters are daunted when attempting to facilitate more
	 than two teams.
•	 Adoption of agile on SE projects is slow due to an overall
	 resistance to change.
•	 Simple inexpensive transparency tools are very effective
	 (e.g. WIP board, backlogs, burndown charts).

Figure 1 – Defect Cost Varies By Feedback Cycle

12 CrossTalk—May/June 2012

RAPID AND AGILE STABILITY

Figure 2 – SE V Diagram With Agile

The Systems Engineering “V” and Agile Enablers
An effective way to see where agile can be applied to SE

is to revisit the SE V-model (see below). The fundamental SE
processes include:

•	 Requirements analysis
•	 Functional analysis and allocation
•	 Synthesis and integration
•	 Verification and validation
•	 Systems analysis and control

The left side of the “V” involves identification and decomposi-
tion of requirements, functions, and design. The right side of
the “V” includes the integration and characterization of product
development. All of the attributes supporting the fundamental
SE processes either have been or can be enabled using Scrum’s
simple practices.

During early system development an initial examination of cus-
tomer needs, often referred to as a statement of need, is always
necessary, but is especially critical if initial customer requirements
are not available. The first product generated from examination of
the statement of need is a feasibility analysis. The application of
Scrum at this early stage introduces the framework for developing
follow-on functional system requirements.

Alternative technology options and design considerations can
quickly be identified and assessed during product backlog develop-
ment activities. Because the customer’s view is represented through
the product owner, the team has this perspective available to them as
they quickly identify, assess, and document their findings.

The strength of the Scrum process of infusing customer
insights through the product owner throughout the planned series
of iterations performed is important. Quality Function Deployment
(QFD) [9] is often used in systems engineering customer engage-

ment activities. The QFD is designed to establish a communica-
tions dialog and elicit customer input on end-state goals and
objectives. The findings of a QFD are used to frame the contents
of the statement of need and reflect the customer’s perspec-
tive in the feasibility analysis report. A fundamental weakness of
QFD is that it is almost exclusively performed as a single activity,
usually early in the feasibility analysis timeline. Because this is
an instant-in-time view of the customer’s perspective, emerging
customer concerns and needs are lost. The Scrum framework
of continual customer participation throughout an incremental
lifecycle provides the most current customer view for the system
development process. Applying a disciplined Scrum approach
ensures the feasibility analysis has customer buy-in throughout
the study. The resultant Scrum-based feasibility analysis estab-
lishes a customer-aligned baseline that drives the development of
operational user requirements, conceptual designs, and follow-on
system-level requirements and specifications.

Conclusion
The Scrum agile approach is by far the most widely used and

implemented technique [10] adopted by software and systems
development teams because of its simple practices and empiri-
cal process control [11]; but Scrum is a significant cultural shift
from more traditional ways of project management. Scrum roles
differ significantly from traditional roles and frequently cause
confusion among general engineering and business communities
alike. Scrum terminology is foreign to most and change from the
status quo is not only difficult, but is often initially resisted. Scrum
is most effective when used as a wrapper for the organization’s
existing engineering practices and improved as necessary during
product delivery or deployment increments. Scrum provides an
environment where everyone can feel good about their job, their
contributions, and that they have done their very best.

CrossTalk—May/June 2012 13

RAPID AND AGILE STABILITY

1.	 Agile Manifesto
	 <www.agilealliance.org/the-alliance/the-agile-manifesto>
2.	 Agile Alliance <www.agilealliance.org>
3.	 Scrum Alliance
	 <www.Scrumalliance.org/learn_about_Scrum>
4.	 Waterfall model <http://en.wikipedia/Waterfall_model>
5.	 Sprint <http://en.wikipedia.org/wiki/Sprint_(Scrum)>
6.	 Project Management Institute <www.pmi.org>
7.	 Project Management Body of Knowledge
	 <www.pmi.org/PMBOK-Guide-and-Standards.aspx>
8.	 User stories <http://en.wikipedia.org/wiki/User_story>
9.	 What is QFD?
	 <http://www.qfdi.org/what_is_qfd/what_is_qfd.htm>
10.	Figure 1 - Agile Is Primary Approach
	 <http://www.practiceagile.com/>
11.	 What’s Unique About Scrum?
	 <http://scrummethodology.com/>

REFERENCES
Dick Carlson has worked for Boeing for more than 7 years. He retired from the U.S.
Army where he spent the bulk of his career in communications-electronics and systems
engineering. After the Army, Dick worked as a consultant and employee focused on the
development of software systems and engineering technologies supporting DoD, com-
mercial, and private industry.

He has been active for nearly 15 years in the implementation of agile practices on
a variety of software development and non-software centric projects. Dick spends
most of his work time coaching, mentoring, and training Boeing engineers on the
application of agile implementation and deployment. Dick has a Bachelor of Science
degree from the University of Maryland, and is recognized by the Scrum Alliance as
a Certified Scrum Professional and Certified Scrum Master, and is certified in Lean-
Agile Project Management.

E-mail: richard.carlson2@boeing.com
Phone: 714-350-9946

Philip J. Matuzic is an Associate Technical Fellow at the Boeing Company Satel-
lite Development Center, in El Segundo, California, where he is Chief Software
Technologist and lean-agile modeling proponent. Philip also consults and provides
technical training for Boeing, IBM, Northrop Grumman, Raytheon, Lockheed, and
the U.S. Government. Mr. Matuzic has a MS in Software Management from Carn-
egie Mellon University, and a Project Management Certificate from the California
Institute of Technology.

E-mail: philip.j.matuzic@boeing.com
Phone: 310-364-7387

Robert (Rob) Simons is a Boeing Technical Fellow in Boeing’s Defense Sys-
tem’s System Engineering organization in St. Louis. Rob is responsible for systems
engineering and analysis supporting C4I, Network Centric, and homeland security
activities. He holds multiple roles in program, project and team initiatives, and leads
several academic collaboration initiatives. Rob holds MS degrees in Telecommu-
nications and Engineering Management and an Graduate Certificate in Project
Management from Washington University in St. Louis, an MBA from Lindenwood
University and an MA in International Relations from Webster University.

E-mail: robert.l.simons@boeing.com
Phone: 314-234-3107

ABOUT THE AUTHORS

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
the area of emphasis we are looking for:

Virtualization
Nov/Dec 2012 Issue

Submission Deadline: June 10, 2012

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.agilealliance.org/the-alliance/the-agile-manifesto
http://www.agilealliance.org/
http://www.scrumalliance.org/learn_about_Scrum
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Sprint_(scrum)#Sprint
http://www.pmi.org
http://www.pmi.org/PMBOK-Guide-and-Standards.aspx
http://en.wikipedia.org/wiki/User_story
http://www.qfdi.org/what_is_qfd/what_is_qfd.htm
http://www.practiceagile.com
http://scrummethodology.com
mailto:richard.carlson2%40boeing.com?subject=
mailto:philip.j.matuzic%40boeing.com?subject=
mailto:robert.l.simons%40boeing.com?subject=
http://www.practiceagile.com/
http://scrummethodology.com/
http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

