
CrossTalk—November/December 2012 3

 FROM THE SPONSOR

The Pros and Cons of Code Re-use

CrossTalk would like to thank
NAVAIR for sponsoring this issue.

Software represents a significant investment for any
organization and the quest to lower that upfront cost
to field a capability and make use of that investment
as technology evolves, delivery mechanisms change
and requirements “morph” is an ongoing effort for
all organizations.

Abstraction layers, containers and wrappers,
middleware, and application frameworks are some
of the approaches currently being used that allow
the re-use of software. The interface and boundary
layers in these systems and the degree to which the
design is modular, not tightly coupled and uses non
proprietary components and interfaces leads to the
open architecture label and impacts total cost over
the lifecycle.

The decision to re-use including COTS, GOTS
and “open source” versus developing new software
is an important consideration in the estimation and
planning process as an efficient design that meets
only your requirements can have a lower cost to
integrate and maintain over a module or application
that does multiple and potentially unknown func-
tions or is “tightly coupled” with other software.
With an efficient approach to the use of existing
code it is worth considering if the code is modified
versus re-used.

 A common assumption for re-use is that the
software is untouched at some module, app or
aggregate level and the cost savings in estimation
is based on the maturity level of the product being
re-used. Many times modified code is called re-use
or subtle distinctions are made that allow modified
to be called re-use when less than five percentage
change is made to the baseline code. It is difficult
to realize the expected savings for re-use when the
lineage of the code is untraceable and the artifacts
that go with a module or app like requirements, unit
test history and defect density either were never
tracked at that level or are no longer relevant at
least at the test level based on modification. Going
forward all software developers should be consider-
ing the partitioning of functionality and interfaces in
their designs that would allow efficient re-use. Mini-
mizing modification and the overall size of the end
product will lower the cost to integrate and maintain.

Defect density is not universally tracked and the
necessary reliability of the end product is driven by
the application. Safety, security, and reliability are all

end product application requirements that should
be addressed early in the development process.
Reliability and functionality to protect against errors
and failures is a driver for software cost based on
more stringent requirements, different or potentially
modified development processes, and increased test
requirements. It is worth considering the inherited
properties of the end product based on re-use and
the introduction of schemes that can provide isola-
tion and minimize risks. These system level design
considerations are difficult to make after the design
is complete and they need to be made early in
development at the architecture level.

No matter what software development process
you follow, waterfall, agile, etc., it is important to
understand the requirements and interfaces associ-
ated with the modules, applications or aggregate
software you are developing and integrating. When
decisions of make-or-buy and re-use including are
made, those interface and requirements are fixed
and cost will be a factor if changes are necessary.

The prospects for better-faster-cheaper prod-
ucts as we evolve to new delivery environments
and mechanisms is exciting, but on our journey to
develop “open” architectures that will allow us to re-
use the investments from many programs we cannot
lose sight of the actual product we are reusing as
it is this product at the lowest level that will be the
source of savings or inherited lifecycle costs.

Gary Graton
SW Engineering Manager
NAVAIR SW Engineering Division

