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Tom Lienhard, Raytheon Missile Systems

Abstract. Peer reviews are a cornerstone to the product development process. 
They are performed to discover defects early in the lifecycle when they are less 
costly to fix. The theory is to detect the defects as close to the injection point as 
possible reducing the cost and schedule impact. Like most, if not all companies, 
peer reviews were performed and data collected allowing characterization of 
those reviews. Data collected across the organization showed that more than 
30% of the engineering effort was consumed by reworking products already 
deemed fit for purpose. That meant for every three engineers a fourth was hired 
just to rework the defects. This was unacceptable!

Statistical Tune-Up of 
the Peer Review Engine 
to Reduce Escapes

Having been an engineer and process professional for more 
than 20 years, I knew (or thought I knew) what influenced the 
peer review process and what needed to be changed in the 
process. But when we began the process, I kept an open mind 
and used Six Sigma tools to characterize and optimize the peer 
review process.

The Thought Process Map was needed to scope the 
project, keep the project on track, identify barriers, and docu-
ment results. It was useful to organize progress and eliminate 
scope-creep.

Figure 1

The major contributor to this rework was defects that escaped 
or “leaked” from one development phase to a later phase. In 
other words, the peer reviews were not detecting defects in the 
phase during which they were injected. Defect leakage is cal-
culated as a percentage, by summing the defects attributable to 
a development phase that are detected in later phases divided 
by the total number of defects attributable to that phase. Defect 
leakage leads to cost and budget over-runs due to excessive 

rework. For some development phases, defect leakage was as 
high as 75%. By investigating the types of defects that go unde-
tected during the various development phases, corrections can 
be introduced into the processes to help minimize defect leak-
age and improve cost and schedule performance. An organiza-
tional goal was then set at no more than 20% defect leakage.

To perform this investigation and propose improvements, a 
suite of Six Sigma tools were used to statistically tune-up the 
peer review process. These tools included Thought Process 
map, Process Map, Failure Mode and Effect Analysis, Product 
Scorecard, Statistical Characterization of Data, and a Design  
of Experiments.

Figure 2

The Process Map was used to “walk the process” as it is 
implemented—not as it was defined in the command media. 
Inputs, outputs, and resources were identified. Resources were 
categorized as critical, noise, standard operating procedure and 
controllable. The Process Map was extremely useful because 
it quickly highlighted duplicate activities, where implementation 
deviated from the documented process, and was used as an in-
put to the Failure Mode and Effect Analysis (FMEA) and Design 
of Experiments (DOE).

The FMEA leveraged the process steps from the Process 
Map to identify potential failure modes with each process step, 
the effect of the failure, the cause of the failure, and any current 
detection mechanism. A numerical value was placed on each of 
these attributes and a cumulative Risk Priority Number (RPN) 
was assigned to each potential failure. The highest RPNs were 
the potential failures that needed to be mitigated or eliminated 
first and would eventually become the factors for the DOE.

The Product Scorecard contained all of the quantifiable data 
relating to the peer reviews. It showed the number of defects in-
troduced and detected by phase, both in raw numbers, percent-
age, and by effort. Using Pareto Charts, it was easy to determine 
where defects entered the process, where defects were found 
by the process, and even which phases had the most impact 
(rework) to the bottom line. Surprisingly, 58% of the total de-
tects were found in test, well after the product is deemed “done”. 
Additionally, three phases accounted for greater than 92% of 
rework due to defects.
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Figure 3

An improvement goal was set by the organization. The immedi-
ate goal was set around finding the defects earlier in the lifecycle 
rather than trying to reduce the number of defects. If the process 
could be improved to find the defects just one phase earlier in the 
lifecycle, the result would be many hundreds of thousands of dol-
lars to the bottom line!

Figure 4

The data from the Product Scorecard was plotted to create a 
distributional characteristic of the process capability. Visually, this 
highlighted the lifecycle phases that were well below our goal of 
finding 80% of defects in phase, as seen in the figure below.

Going into this project, my belief was that a program could 
be identified that was conducting peer reviews effectively 
across the entire lifecycle and that program’s process could be 
replicated across the organization. The Control Chart showed 
something quite different. All the programs were conducting 
peer reviews consistently, but the variation between lifecycle 
phases ranged widely. When the data was rationally sub-
grouped by phase, the data became stable (predictable) within 
the subgroups, but there was extensive variation between the 
subgroups. This meant the variation came from the lifecycle 
phases not the programs. It would not be as simple as finding 
the program that conducted effective peer reviews and replicat-
ing its process across the organization.
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The Analysis of Variation confirmed that 72% of the process 
variation was between the subgroups (lifecycle phases) and only 
28% was within the subgroup (programs). Since the data was 
only a sample of the population, Confidence Intervals were con-
ducted to find out the true range of the population. This quickly 
showed that for the Requirements Phase, the best the process 
was capable of achieving was detecting 37% of defects in 
phase. In fact, if no action was taken it was 95% certain that the 
Requirements Phase will find between 21% - 37% of defects 
in phase, the Design Phase will find between 42% - 88% of 
defects in phase, the Implementation Phase will find 59% - 78% 
of defects in phase. This helped focus where to concentrate the 
improvement resources.

Figure 7

Remember the high RPNs from the FMEA? These were used 
as the factors in a DOE. There were four factors (experience, 
training, review criteria, and number of reviewers). The response 
variable for the DOE was the percentage of defects found in a 
peer review. There were 16 runs, which made it a half-factorial 
DOE. 

There were some limitations with this DOE. The products 
reviewed were different for each run; there were restrictions on 
randomization; and by the latter runs it was hard to find a peer 
review team that fulfilled the factor levels. For example, once 
somebody was trained they could not be untrained.

When analyzing data, always think golf  (PGA = practical, 
graphical, and analytical). Practical analysis looked at the result 
of each for anything of interest. It was not until then the runs 
were sorted by response did any trends appear. The highest five 
runs all had no criteria, the lowest four consisted of inexperi-
enced team members and six of the top seven were trained 
teams. 

Figure 8

Graphical analysis included a normal probability plot and a 
Pareto chart of the main effects, two-way and three-way effects. 
This clearly showed that training, criteria, and experience were the 
influential factors. 

Figure 9

Analytical analysis not only showed the same influential factors 
but also quantified the effect and indicated whether to set the fac-
tor high or low. Training was the most influential, followed closely by 
experience. The process was relatively robust with respect to the 
language and number of people. If peer reviews are just as effec-
tive with half the people, this alone could have a big savings to the 
bottom line. The eye-opener here was that the peer review process 
was more effective without criteria. This went against intuition, but 
was based on data. 

Figure 10
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Figure 11

Figure 12



CrossTalk—January/February 2013     37

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Further investigation revealed that the use of criteria was re-
stricting what the reviewers were looking for in the peer reviews. 
Training was developed to educate the reviewers on how to use the 
criteria. The criteria became a living document and as defects were 
found the checklist were updated. 

The results showed remarkable improvements. The number of 
defects introduced before and after improvements were in the 
same order of magnitude (1947 vs. 1166) so that comparisons 
could be made between the “before” and “after” states. If you only 
look at the percentage of defects found in phase, as a lot of organi-
zations do, the results can be misleading. It shows that five of eight 
phases actually found fewer defects in phase. Analyzing the data 
this way assumes all defects are created equal (it takes the same 
amount of effort to fix the defect) and does not take into effect the 
number of phases the defect leaked.

If the defects are transformed into the amount of rework, a 
completely different profile is observed. In those five phases that 
found a smaller percent of defects in phase the amount of rework 
decreased by 75%. Looking at the three phases that accounted for 
92% of the rework, the improvements are dramatic. It can be con-
fidently stated that two of the three phases will exceed the goal of 
finding 80% of defects in phase. The third phase only allowed 1% 
of the defects to make it to test, whereas before the improvements, 
14% made it to test. This reduced the rework from 156 days to a 
mere 13. Remember, measure what are you trying to improve—is it 
number of defects or rework?

The bottom line savings exceeded the goal by more than 20%. 
There was a nominal increase in cost in the early stage but, as 
can be seen by the graph, the cost of rework leveled off after the 
implementation phase. This means almost no defects leaked into 
the testing phase or beyond. Imagine your organization having no 
defects leak beyond the implementation phase. It can be done!

Disclaimer:
CMMI® and CMM® are registered in the U.S. Patent and Trade-

mark Office by Carnegie Mellon University. 
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