
CrossTalk—January/February 2013 33

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Tom Lienhard, Raytheon Missile Systems

Abstract. Peer reviews are a cornerstone to the product development process.
They are performed to discover defects early in the lifecycle when they are less
costly to fix. The theory is to detect the defects as close to the injection point as
possible reducing the cost and schedule impact. Like most, if not all companies,
peer reviews were performed and data collected allowing characterization of
those reviews. Data collected across the organization showed that more than
30% of the engineering effort was consumed by reworking products already
deemed fit for purpose. That meant for every three engineers a fourth was hired
just to rework the defects. This was unacceptable!

Statistical Tune-Up of
the Peer Review Engine
to Reduce Escapes

Having been an engineer and process professional for more
than 20 years, I knew (or thought I knew) what influenced the
peer review process and what needed to be changed in the
process. But when we began the process, I kept an open mind
and used Six Sigma tools to characterize and optimize the peer
review process.

The Thought Process Map was needed to scope the
project, keep the project on track, identify barriers, and docu-
ment results. It was useful to organize progress and eliminate
scope-creep.

Figure 1

The major contributor to this rework was defects that escaped
or “leaked” from one development phase to a later phase. In
other words, the peer reviews were not detecting defects in the
phase during which they were injected. Defect leakage is cal-
culated as a percentage, by summing the defects attributable to
a development phase that are detected in later phases divided
by the total number of defects attributable to that phase. Defect
leakage leads to cost and budget over-runs due to excessive

rework. For some development phases, defect leakage was as
high as 75%. By investigating the types of defects that go unde-
tected during the various development phases, corrections can
be introduced into the processes to help minimize defect leak-
age and improve cost and schedule performance. An organiza-
tional goal was then set at no more than 20% defect leakage.

To perform this investigation and propose improvements, a
suite of Six Sigma tools were used to statistically tune-up the
peer review process. These tools included Thought Process
map, Process Map, Failure Mode and Effect Analysis, Product
Scorecard, Statistical Characterization of Data, and a Design
of Experiments.

Figure 2

The Process Map was used to “walk the process” as it is
implemented—not as it was defined in the command media.
Inputs, outputs, and resources were identified. Resources were
categorized as critical, noise, standard operating procedure and
controllable. The Process Map was extremely useful because
it quickly highlighted duplicate activities, where implementation
deviated from the documented process, and was used as an in-
put to the Failure Mode and Effect Analysis (FMEA) and Design
of Experiments (DOE).

The FMEA leveraged the process steps from the Process
Map to identify potential failure modes with each process step,
the effect of the failure, the cause of the failure, and any current
detection mechanism. A numerical value was placed on each of
these attributes and a cumulative Risk Priority Number (RPN)
was assigned to each potential failure. The highest RPNs were
the potential failures that needed to be mitigated or eliminated
first and would eventually become the factors for the DOE.

The Product Scorecard contained all of the quantifiable data
relating to the peer reviews. It showed the number of defects in-
troduced and detected by phase, both in raw numbers, percent-
age, and by effort. Using Pareto Charts, it was easy to determine
where defects entered the process, where defects were found
by the process, and even which phases had the most impact
(rework) to the bottom line. Surprisingly, 58% of the total de-
tects were found in test, well after the product is deemed “done”.
Additionally, three phases accounted for greater than 92% of
rework due to defects.

Reduce SW
Defect Leakage

Minimize Defects
from entering into

the SW
development

process

Improve the in-
phase defect

detection process

What is the
process?

Process Map
current process What are the

possible
weaknesses?

FMEA/CE
Postmortems

What is the current
leakage ? Gather data What data?

My GreenBelt
Other BlackBelts

What about older projects?
No, data not available

unless using SSDP Rev C

Data from
Program Tracking

System

Organize data to
effectively analyze

What data?
What want to know?

Estimate rework
by phase

% Leakage by Phase/Total
by Phase/Tota
effort by Phase/Tota
$ by Phase/Tota
Where introduced
Where found

How do we
measure the
process?

Look for different
requirements
Different customers
Multiple perspective

Involve multiple projects
Multiple disciplines

Use modified S/W Workshhet
Want more than just overall

percentage leaked
(Scorecard.xls)

Defect #s, Types,
Phase intro/Detected

Defined in SSDP Rev C

BARRIER-
Lack of data?

Red - Question or expected result Blue - Answer or actual result

Out Of Scope

What is a defect?
What is leakage?
(Use definitions
from Scorecard)

Effort associated for
each cell of worksheet

BARRIER-
Lack of data?

Use Industry Numbers
 for effort by phase
(Bob Rova - Motorola,
TI, Hughes)

How?

Is there one?
SW4205760, Rev C How Determine? What are

x's, y's?
How
tell?

Severity, Occurrence, Detection
Highest RPN

What's important to "customer"
What have we learned?

Data for
FMEA

Underlined - Barrier

How well is it
working now?

(Org/RJ/NGC Scorecard.xls)

(Industry Costs.xls)

What is data
showing us?

Refine estimate as site data
becomes available

Drill down into the
data/NEM/Control

Charts

Is the data any
good?

How good classification?
How good categorize?

Validate Measurement
System MSE(KAPPA/ICC

or Nested Design)

DOE

Update process to
ensure data has

higher confidence
rate/ train

Not
Adequate

Improve the definition/
classif ication of defects
Train reviewers

What are
important factors?

BARRIER-
People's time

Time?
Training?

Eval criteria?
Process?

Attendees?

Determine action
Based on data Make and

communicate
improvements

Did change cause
improvement?

Set up control
plan and Use

Control Charts to
Monitor

Effectiveness of
Improvements

Adequate

Newsletters
Liaison Meetings

Common checklists
SQA Process Evals.
Updated training
Req't people
Roles/respons.

BARRIER-
Projects not

 required to follow?

Roles& Respons upfront
Standard checklists

Better data collection system
Concentrate upfront

Resonable product size
Right moderator

Appropriate team
Adequate checklists
Process knowledge

(FMEA.xls)

X Bar R Chart shows prediction range by phase
Shows variation within/between phases
Pareto charts show defect types, where intro, found
(X Bar Range and Pareto.xls)

BARRIER-
People's time

BARRIER-
People's time

Choice of factors

Design new process
Redesign existing process

Stable process

Yes

Remove Common cause

Identify and
Remove Special

Causes

No C Chart for process
C Chart for phases

Characterize
Optimize
Process

Updated training, Common checklists, # of people, Moderator

Green - Update

ICC .88

Training
Experience
No Criteria

34 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

$0	

$50,000	

$100,000	

$150,000	

$200,000	

$250,000	

$300,000	

$350,000	

$400,000	

Phase Detected	

C
um

ul
at

iv
e

C
os

ts
	

Existing Detection	

Improved Detection	

Baseline defect cost profile	

Goal defect cost profile	

Same	
 number	
 of	
 total	
 defects	
 introduced	
 in	
 the	
 same	
 phases	

IMPACT	
 ON	

BOTTOM	
 LINE	

Planning	
 Customer	
 Rqmts.	
 	

Analysis	

Design	
 Implement	

a8on	

Test	
 Formal	
 	

Test	

Customer	
 	

Before	
 TOTAL	
 Leaked	

Planning	

2.03	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 2.03	
 0	

Customer	

0	
 1.8	
 1.4	
 0	
 4.06	
 0	
 16.15	
 0	
 23.41	
 21.61	

Rqmts.	
 	

Analysis	
 0	
 0	
 7.32	
 12.04	
 32.77	
 41.6	
 56.09	
 0.79	
 150.61	
 143.29	

Design	

0	
 0	
 0.13	
 41.99	
 8.2	
 23.2	
 118.94	
 5.28	
 197.74	
 155.75	

Implement	

a8on	
 0	
 0	
 0.17	
 0.5	
 154	
 90.3	
 88.88	
 23.3	
 357.15	
 203.15	

Test	

0	
 0	
 0	
 0.16	
 0.03	
 19.92	
 4.5	
 0	
 24.61	
 4.69	

Formal	
 	

Test	
 0	
 0	
 0	
 0	
 0	
 2.34	
 149.25	
 0	
 151.59	
 2.34	

Customer	
 	

Before	
 0	
 0	
 0	
 0	
 0	
 0	
 2.7	
 13.6	
 16.3	
 13.6	

TOTAL	
 2.03	
 1.8	
 9.02	
 54.69	
 199.06	
 177.36	
 436.51	
 42.97	
 923.44	
 544.43	

Phase	
 Detected	

Ph

as
e	

In
tr
od

uc
ed

	

Figure 3

An improvement goal was set by the organization. The immedi-
ate goal was set around finding the defects earlier in the lifecycle
rather than trying to reduce the number of defects. If the process
could be improved to find the defects just one phase earlier in the
lifecycle, the result would be many hundreds of thousands of dol-
lars to the bottom line!

Figure 4

The data from the Product Scorecard was plotted to create a
distributional characteristic of the process capability. Visually, this
highlighted the lifecycle phases that were well below our goal of
finding 80% of defects in phase, as seen in the figure below.

Going into this project, my belief was that a program could
be identified that was conducting peer reviews effectively
across the entire lifecycle and that program’s process could be
replicated across the organization. The Control Chart showed
something quite different. All the programs were conducting
peer reviews consistently, but the variation between lifecycle
phases ranged widely. When the data was rationally sub-
grouped by phase, the data became stable (predictable) within
the subgroups, but there was extensive variation between the
subgroups. This meant the variation came from the lifecycle
phases not the programs. It would not be as simple as finding
the program that conducted effective peer reviews and replicat-
ing its process across the organization.

1	
 0	
 0	

9	
 0	

8	
 0	

7	
 0	

6	
 0	

5	
 0	

4	
 0	

3	
 0	

2	
 0	

Pe
rc
en

t	
 D
ef
ec
ts
	
 F
ou

nd
	
 In
	
 P
ha
se
	

Goal	

Pl
an
ni
ng
	

Cu
st
.	
 P
la
n	

Re
q’
ts
	

De
sig

n	

Im
pl
em

.	

Te
st
	

Fo
rm

al
	
 T
es
t	

Cu
st
om

er
	
 	

These	
 3	
 phases	
 account	

for	
 >	
 92%	
 of	
 rework	

Figure 5 Figure 6

321

0.55

0.45

0.35

0.25

0.15

0.05

Sample Number

P
ro

po
rti

on

P Chart for In Phase

P=0.3020

3.0SL=0.5198

-3.0SL=0.08420

321

1.005

0.995

0.985

0.975

0.965

0.955

0.945

Sample Number

P
ro

po
rti

on

P Chart for In Phase

P=0.9787

3.0SL=1.000

-3.0SL=0.9492

321

1.0

0.5

0.0

Sample Number

P
ro

po
rti

on

P Chart for In Phase

P=0.8000

3.0SL=1.000

-3.0SL=0.00E+00

CrossTalk—January/February 2013 35

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

The Analysis of Variation confirmed that 72% of the process
variation was between the subgroups (lifecycle phases) and only
28% was within the subgroup (programs). Since the data was
only a sample of the population, Confidence Intervals were con-
ducted to find out the true range of the population. This quickly
showed that for the Requirements Phase, the best the process
was capable of achieving was detecting 37% of defects in
phase. In fact, if no action was taken it was 95% certain that the
Requirements Phase will find between 21% - 37% of defects
in phase, the Design Phase will find between 42% - 88% of
defects in phase, the Implementation Phase will find 59% - 78%
of defects in phase. This helped focus where to concentrate the
improvement resources.

Figure 7

Remember the high RPNs from the FMEA? These were used
as the factors in a DOE. There were four factors (experience,
training, review criteria, and number of reviewers). The response
variable for the DOE was the percentage of defects found in a
peer review. There were 16 runs, which made it a half-factorial
DOE.

There were some limitations with this DOE. The products
reviewed were different for each run; there were restrictions on
randomization; and by the latter runs it was hard to find a peer
review team that fulfilled the factor levels. For example, once
somebody was trained they could not be untrained.

When analyzing data, always think golf (PGA = practical,
graphical, and analytical). Practical analysis looked at the result
of each for anything of interest. It was not until then the runs
were sorted by response did any trends appear. The highest five
runs all had no criteria, the lowest four consisted of inexperi-
enced team members and six of the top seven were trained
teams.

Figure 8

Graphical analysis included a normal probability plot and a
Pareto chart of the main effects, two-way and three-way effects.
This clearly showed that training, criteria, and experience were the
influential factors.

Figure 9

Analytical analysis not only showed the same influential factors
but also quantified the effect and indicated whether to set the fac-
tor high or low. Training was the most influential, followed closely by
experience. The process was relatively robust with respect to the
language and number of people. If peer reviews are just as effec-
tive with half the people, this alone could have a big savings to the
bottom line. The eye-opener here was that the peer review process
was more effective without criteria. This went against intuition, but
was based on data.

Figure 10

36 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Figure 11

Figure 12

CrossTalk—January/February 2013 37

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Further investigation revealed that the use of criteria was re-
stricting what the reviewers were looking for in the peer reviews.
Training was developed to educate the reviewers on how to use the
criteria. The criteria became a living document and as defects were
found the checklist were updated.

The results showed remarkable improvements. The number of
defects introduced before and after improvements were in the
same order of magnitude (1947 vs. 1166) so that comparisons
could be made between the “before” and “after” states. If you only
look at the percentage of defects found in phase, as a lot of organi-
zations do, the results can be misleading. It shows that five of eight
phases actually found fewer defects in phase. Analyzing the data
this way assumes all defects are created equal (it takes the same
amount of effort to fix the defect) and does not take into effect the
number of phases the defect leaked.

If the defects are transformed into the amount of rework, a
completely different profile is observed. In those five phases that
found a smaller percent of defects in phase the amount of rework
decreased by 75%. Looking at the three phases that accounted for
92% of the rework, the improvements are dramatic. It can be con-
fidently stated that two of the three phases will exceed the goal of
finding 80% of defects in phase. The third phase only allowed 1%
of the defects to make it to test, whereas before the improvements,
14% made it to test. This reduced the rework from 156 days to a
mere 13. Remember, measure what are you trying to improve—is it
number of defects or rework?

The bottom line savings exceeded the goal by more than 20%.
There was a nominal increase in cost in the early stage but, as
can be seen by the graph, the cost of rework leveled off after the
implementation phase. This means almost no defects leaked into
the testing phase or beyond. Imagine your organization having no
defects leak beyond the implementation phase. It can be done!

Disclaimer:
CMMI® and CMM® are registered in the U.S. Patent and Trade-

mark Office by Carnegie Mellon University.

Figure 13

ABOUT THE AUTHOR
Tom Lienhard is a Sr. Principal Engineer at
Raytheon Missile System’s Tucson facility
and a Six Sigma BlackBelt. Tom has partici-
pated in more than 50 CMM® and CMMI®
appraisals both in DoD and Commercial
environments across North America and
Europe and was a member of Raytheon’s
CMMI Expert Team. He has taught Six
Sigma across the globe, and helped various
organizations climb the CMM and CMMI
maturity levels, including Raytheon Missile
System’s achievement of CMMI Level 5.

He has received the AlliedSignal Quest
for Excellence Award, the Raytheon Tech-
nology Award and the Raytheon Excellence
in Operations and Quality Award. Tom has a
BS in computer science and has worked for
Hughes, Raytheon, AlliedSignal, Honeywell
and as a consultant for Managed Process
Gains.

