
8 CrossTalk—May/June 2013

LARGE SCALE AGILE

If the entire R&D group was only seven people, the impli-
cations of changing to adopt true one-team Scrum are not
dramatic, since many elements will “organically” be in place—as
in a startup. But when a traditional R&D group of 500 people
moves to Scrum, there are major change implications, and these
need full understanding and support by senior leadership and
hands-on producers. These include:

1)	Standard Scrum: A small (five to nine people) cross-
functional team of multi-learning team members that do every-
thing end-to-end to develop the product (a real feature team
[5]), and no specialized sub-groups within the team, with the
only title of “team member” [6].

Change/scaling implications:
•	 No separate analysis group, testing group, architecture group,

user experience group, platform group, etc. And no “tester” or
“architect” within the team. That implies the dissolution of existing
single-function groups and the management supervising roles,
and the elimination of traditional career paths and job titles.

2)	Standard Scrum: The business-person “owner of the
product” (such as, lead product manager) responsible for ROI
and cost, and who can independently decide and change the
content and release date becomes the Scrum product owner.
The owner of the product steers development directly based
on “inspect and adapt” and so is ultimately responsible for the
product release, since they have the steering wheel.

Change/scaling implications:
•	 Traditionally, the owner of the product negotiated a scope-

and-date milestone-based internal contract with R&D manag-
ers, who were thereafter responsible for the release. Since the
owner of the product now steers directly, there is no shifting
of responsibility to R&D to develop the release, and no internal
contract.

•	 Since the owner of the product steers development directly
and is responsible for the release, there is no separate R&D or
IT program/project manager responsible for the release; that
role is eliminated.

3)	Standard Scrum: Each two- to four-week Sprint, from
the first, the product increment must be done and potentially
shippable— a potentially shippable product increment. Each
Sprint the system must be implemented, integrated, fully tested,
documented, and capable to deploy.

Change/scaling implications:
•	 The concept of a “big release” and the constraint, “it is

not ready until the end” dissolves. This implies eliminating big
release management systems, practices, roles, and policies that
are predicated on a long phase of messy partially-done develop-
ment before the system is ready.

•	 Scrum is not for the programming phase after analysis and
before testing. There is no prior analysis phase or architecture
phase and no following integration/testing phase. Sequential
lifecycle development is eliminated, and with it, the groups that
were attached to each phase (the analysis group, ...).

Craig Larman, Bas Vodde

Abstract. Since 2005 we have worked with clients to apply the Scrum frame-
work and to help scale agile development to product groups involving from a few
hundred to a few thousand people, in multiple sites. This is organized as large-scale
Scrum frameworks 1 and 2, summarized in this article and elaborated on in our
two-volume book series on very large-scale agile development.

Scaling Agile
Development
Large and Multisite Product Development
with Large-Scale Scrum

Background
In 2003, when Craig Larman published Agile & Iterative

Development [1], many “knew” that agile development was
for small groups. However, we became interested in—and got
increasing requests—to apply Scrum to very large, multisite, and
offshore product development. So, since 2005 we have worked
with clients to scale up—often for “embedded” systems. Today,
the two large-scale Scrum frameworks described herein have
been introduced to big groups worldwide in disparate domains,
including telecom-infrastructure-equipment providers such as
Ericsson [2], and investment-banking clients such as Bank of
America-Merrill Lynch, plus many more.

To quantify “large”, we have seen our large-scale Scrum
framework-2 applied in groups of up to 1,500 people, involv-
ing seven developments sites spanning the globe. Our median
experience is perhaps around 800 people on one product at 5
sites, with about 15 million lines of source code, usually C++, C,
and Java.

Based on these experiences we published two volumes on
scaling agile development and the large-scale Scrum frame-
works summarized: (volume 1) Scaling Lean & Agile Develop-
ment: Thinking and Organizational Tools for Large-Scale Scrum
[3], that explains the leadership and organizational design
changes, and (volume 2) Practices for Scaling Lean & Agile
Development: Large, Multisite & Offshore Product Development
with Large-Scale Scrum [4], that explains concrete suggestions
for scaling, including in product management, architecture, plan-
ning, multisite, offshore, and contracting. This article summarizes
concepts expanded on in those books.

Large-Scale Scrum is Scrum: Change Implications
Scaling Scrum starts with understanding and being able

to adopt standard real one-team Scrum. Large-scale Scrum
requires examining the purpose of single-team Scrum elements
and figuring out how to reach the same purpose while staying
within the constraints of the standard “Scrum rules.”

CrossTalk—May/June 2013 9

LARGE SCALE AGILE

4)	Standard Scrum: The team is self-organizing (self-
managing) and is empowered to independently decide how to
achieve their goal in the Sprint.

Change/scaling implications:
•	 There is no team lead or project manager that directs or

tracks team members, which implies the elimination of related
team-lead and project-manager roles.

•	 No organization-wide standard process that everyone
must follow.

This is simply standard one-team Scrum, but its adoption es-
pecially challenges traditional R&D assumptions and organiza-
tional design at scale. Therefore, most groups do not adopt real
Scrum, but instead customize it (into “fake Scrum” or “Scrum,
but...”) rather than change themselves.

Observations and suggestions:
•	 Real agile development with Scrum implies a deep change

to become an agile organization; it is not a practice, it is an orga-
nizational design framework.

•	 Start a large-scale agile Scrum adoption by ensuring
leadership understands the organizational implications, and they
have been proven adoptable in the small scale.

Two Agile Scaling Frameworks
After the aforementioned organizational-design changes are

understood by leadership and they flip the system, then one of
two large-scale Scrum frameworks can be adopted. Most of the
scaling elements are focusing the attention of all the teams to
the whole product instead of “my part”. Global and “end-to-end”
focus is perhaps the dominant problem to solve in scaling. The
two frameworks – which are basically single-team Scrum scaled
up – are:

•	 Framework-1: Up to 10 Scrum teams (of seven people).
•	 Framework-2: Up to a few thousand people on one product.

Framework-1 is appropriate for one (overall) Product Owner
(PO) and up to 10 teams. 10 is not a magic number for choos-
ing between framework-1 and framework-2. The tipping point
is context dependent; sometimes less. At some point, (1) the
PO can no longer grasp an overview of the entire product, (2)
the PO can no longer effectively interact with the teams, (3)
the PO cannot balance an external and internal focus, and (4)
the product backlog is so large that it becomes difficult for one
person to work with. When the PO is no longer able to focus on
high-level product management, something should change.

A group with seasoned people who know the product and
customers well and are co-located with the PO can handle more
teams with one PO. A newly formed outsourcing group in India
who do not know the domain, with a PO in Boston, will require
less teams.

Before switching to framework-2, first consider if the overbur-
dened PO can be helped by delegating more work to the teams.
Encourage teams to directly interact with real customers to
reduce handoff and reduce the burden on the PO. Most detailed
analysis and project management should be done by the teams;
the PO does not need to be involved in low-level details – they
should be able to focus on true product management.

1 day

2-4 week
Sprint

Sprint
Retrospective

Sprint
Review

Joint
Retro-
spective

Product Backlog
Refinement

Potentially
Shippable
Product
Increment

Sprint
Planning

Part 2

Sprint
Planning

Part 1

(2-4 h)

(15 min)

Product
Backlog

Product
Owner

(2-4 h)
(2-4 h)

 (5-10% of Sprint)

(1.5-3h)

(Feature)
Team

+
ScrumMaster

Sprint
Backlog

Daily
Scrum

Figure-1. Large-scale Scrum framework-1

What is the Same as One-Team Scrum?
•	 One product backlog (it is for a product, not a team)
•	 One definition of done
•	 One potentially shippable product increment
•	 One (overall) product owner
•	 Each team is a “team” (and there are no single-specialist teams)
•	 One Sprint
In summary, all teams are in a common Sprint to deliver a

common potentially shippable product increment.

What is Different?
•	 Role changes: none.
•	 Artifact changes: none; but to clarify: Sprint backlog and

Sprint goal per team.
•	 Meeting changes: The dominant difference in large-scale Scrum

framework-1 is the behavior of Scrum meetings, driven by coordina-
tion needs. This is illustrated in Figure-1 and explained next:

1.	 Sprint Planning Part 1: One meeting, and same maxi-
mum duration: one hour per week of Sprint. Rather than all team
members participating, limit it to two members per team, plus
the one overall PO. Let team representatives self-manage to de-
cide their division of product backlog Items, although if “compe-
tition” exists the PO can break a tie. End with the partial-teams
identifying dependencies (perhaps with a dependency matrix)
between PBIs and discussing coordination.

2.	 Sprint Planning Part 2: Independently (and usually
parallel) per team, though sometimes a member of team-A may
observe team-B’s meeting and make suggestions when there is
a coordination issue between the teams.

3.	 Daily Scrum: Independently per team, though a member
of team-A may observe team-B’s Daily Scrum, to increase infor-
mation sharing.

10 CrossTalk—May/June 2013

LARGE SCALE AGILE

4.	 (addition) Inter-team coordination meeting: Several
times per week, team representatives may hold an open space,
town hall meeting, or Scrum of Scrums, to increase information
sharing and coordination.

5.	 (addition) Joint light product backlog refinement:
Maximum duration: 5% of Sprint. Only two representatives per
team. Splitting, analysis, and estimation for soon-to-develop
PBIs. Analysis is lightweight; for example, if using Specification
by Example, only three examples per item. Note that the cross-
team estimation ensures a common baseline for estimation
across teams. Note that this meeting increases product-level
learning and team agility – the ability of any team to take on
any PBI.

6.	 Product Backlog Refinement: For this mid-Sprint
meeting preparing for future Sprints, for co-located teams, hold
this at the same time in one big room with all team members;
each team facing a separate wall with their own learning tools
(whiteboards, projectors, ...). Apply rotation writing and other
large-group workshop techniques so that all members across
all teams are eventually exposed to analyzing all items, which is
critical for more team flexibility.

7.	 (optional addition) In-Sprint PBI Inspection: When
possible, informally seek out early feedback from the PO or
other stakeholders on finished PBIs as soon as possible during
the Sprint, to reduce the inspection and discussion that would
otherwise be required at the Sprint review; this does not elimi-
nate the Sprint review.

8.	 Sprint Review: One meeting, and same maximum dura-
tion: one hour per week of Sprint. Limit it to two members per
team, plus the PO and other stakeholders. Rather than only a
common inspection of the running potentially shippable product
increment, consider a “bazaar” or “science fair”-style phase dur-
ing the middle of the Review: a large room has multiple areas
with computers, each staffed by team representatives, where
the features developed by a team are shown and discussed. In
parallel, stakeholders visit areas of interest and team members
record their feedback. However, begin and end the Sprint Re-
view with everyone in a common discussion, to increase overall
feedback and alignment.

9.	 Team Retrospective: Independently per team; no change.
10. (addition) Joint Retrospective: Maximum duration:

45 minutes per week of Sprint. Since the team retrospective
ends the Sprint, this Joint Retrospective is held early in the first
week of the subsequent Sprint. ScrumMasters and one repre-
sentative of each team meet to identify and plan improvement
experiments for the overall product or organization.

Agility Across Teams
Notice that large-scale Scrum increases learning across

teams; most can flexibly do any Product Backlog item. This is
in contrast to “team A can only do A-type work”, and critical for
agility when scaling, so that teams are responsive to change,
and all can focus on the highest-value work, rather than con-
strained by single specialty. Remember: agile development is for
agility (flexibility) over efficiency.

Coordination
When scaling, a dominant issue is coordination. In traditional

scaling, this is (poorly) handled with major upfront “fixed” specifi-
cations and planning, private-code component teams, and extra
managers. In scaling agile development, coordination is handled
more by increased coordination in shared code and self-organiz-
ing teams. Besides meetings, what other coordination elements
are in large-scale Scrum?

•	Continuous integration: All code, across all teams, is
integrated continuously (many times per day) and verified with
automated tests, with a “stop and fix” culture of rapidly fixing a
broken build.

•	Internal open source: Rather than private-code compo-
nents and “component teams”, there is collective code owner-
ship or “internal open source.” Many open-source practices
apply, such as standard coding style.

•	Feature teams: Scrum feature teams develop end-to-end
“vertical” customer-centric features across all shared code.

•	Communities of practice (CoPs): To handle cross-team
concerns (architecture, user experience, standards, ...) CoPs are
established (and all that implies), with membership from the Scrum
teams (not from external people). For example, a Design/Architec-
ture CoP for the key concern of good design at scale; this is not
composed of a separate “architecture group”, but by volunteering
regular Scrum team members with the skill and passion.

•	Team-controlled build system: Rather than a separate
“build group”, regular Scrum teams rotate responsibility for main-
taining their common build system.

•	More talking!
Notice as a theme that coordination is handled by self-or-

ganizing teams (rather than more managers), and with fast-
feedback integration cycles in code (rather than more planning
and separated code).

Multisite
If an entire product group is seven people in four sites then a

co-located team is difficult. But when 50 people, it is possible to
create co-located teams of five to nine people: three teams in
Boston, etc. Therefore:

•	Co-located teams: Although different co-located teams
may be in different sites, avoid a single dispersed team with
scattered members. The motivation for dispersion is usually
specialist bottlenecks (“only Mary knows X”) but a key value in
Scrum is to increase learning and multi-skill to reduce bottle-
necks, rather than accept them.

•	Continuous integration across all sites: And related...
•	Free open-source (FOSS) tools: Especially when multi-

site, we observe frictions in groups using commercial tools... “We
cannot have more licenses”, “Wait for purchasing” etc. FOSS
tools (Subversion, Git, GNU tools, Eclipse, Java, etc.) eliminate
friction, reduce costs, and are usually superior.

•	Free “Web 2.0” information tools: Multisite requires more
software tools; use FOSS wikis, Google Docs, and other free
“pure Web” tools for information (lists, requirements, etc.), rather
than commercial and pre-Web document-based tools such as
Word, SharePoint, DOORS.

CrossTalk—May/June 2013 11

LARGE SCALE AGILE

IPv6

performance 10x

HSDPA

performance stats

configuration of cells

new NMS solution

speed-up of build

improved upgrading support

stability to 99.999%

Product Backlog

performance 10x

performance 10x

...

Performance Area Backlog

IPv6

IPv6

HSDPA

...

Protocols Area Backlog

switch hardware

optimize DSP

...

simple connect

data sending

failed call

...

•	Free ubiquitous video: Rapport and trust—critical! And it is
degraded when people do not see each other, so replace phone
calls with video. Use free, ubiquitous tools such as Google Video
Hangouts and a projector.

•	Multisite Sprint Planning Part 1: How? The PO is with local
representatives. Other sites use video and web tools. The PO offers
items via a web tool (e.g., Google Spreadsheet). Parallel discussion
on the items happens on different wiki pages or chat sessions.

•	Multisite Product Backlog Refinement: As in Planning Part
1, emphasizes video and web tools. If estimating with Planning
Poker, use (for example) a Google Spreadsheet with different
members typing estimates into different cells.

•	Multisite Sprint Review: As above.
•	Multisite communications CoP: Good communication re-

quires meta-communication.

Requirement Areas
With 1,000 people on one product, divide-and-conquer is

unavoidable. Traditional development divides into single-function
groups (analysis, ...) and architectural-component groups (UI-
layer group, ...), yielding slow inflexible development with high
levels of waste (inventory, work-in-progress, handoff), long-
delayed ROI, and weak feedback. And it is organized “inward”
around function and architecture, rather than “outward” around
customer features.

In large-scale Scrum framework-2, we do not divide by
architecture; rather, we divide around major areas of customer
requirements – requirement areas. For example: fault manage-
ment or options trading. Then, we add a “requirement area”
column to the Product Backlog and classify each item in one
area (Figure-2). A filter on one Product Backlog shows distinct
Area Backlog views (Figure-3).

New Role: (Requirement) Area Product Owner
To deal with the overwhelming complexity for one PO, we intro-

duce a new role: an area PO, who focuses on one area backlog.
The one overall PO plus all area POs form the product

owner team.

IPv6

performance 10x

HSDPA

performance stats

configuration of cells

new NMS solution

speed-up of build

improved upgrading support

stability to 99.999%

Backlog Item Requirement Area

protocols

performance

management

protocols

management

continuous integration

upgrades

management

reliability

Product Backlog

Figure-2. Requirement Areas

Figure-3. (Requirement) Area Backlogs

Backlog Item 1

…

...

Product Backlog

Backlog Items 1

Backlog Items 2

...

Performance

Backlog Item 3

Backlog Item 4

...

Protocols

feature

team

performance area feature teams

protocols area feature teams

Area

Product

Owner

feature

team
feature

team

feature

team

feature

team
feature

team

feature

team

feature

team
feature

team

feature

team

feature

team

Area

Product

Owner

Figure-4. Area PO and Teams

Area Teams
A set of three to 10 teams (area teams) are dedicated to one

area PO, all who specialize in one requirement area (Figure-4).
Each team is cross-functional and cross-component, doing end-
to-end customer-centric feature development.

The Big Idea?
Large-scale Scrum framework-2 is a set of several frame-

work-1 groups (one per requirement area) working in parallel in a
common Sprint (Figure-5).

12 CrossTalk—May/June 2013

LARGE SCALE AGILE

Figure-5. Large-Scale Scrum Framework-2

3.	 Overall Sprint Review: A review is needed at the prod-
uct level, not merely each area. It is not possible to review all
items of all areas, so the focus is on a subset of interest to the
overall PO or to many area POs.

4.	 Overall Sprint Retrospective: For system-level im-
provement, a retrospective is needed at the product level, not
merely each area. This happens earlier in the subsequent Sprint,
after area-level joint retrospectives.

Potentially
Shippable
Product

Increment

Product
Owner

Area
Product
Owner

Area
Product
Backlog

Product
Backlog

Sp
rin

t R
et

ro
sp

ec
tiv

e

Sp
rin

t R
ev

ie
w

Jo
in

t R
et

ro
sp

ec
tiv

e

1 day

2-4 week
Sprint

Product Backlog
Refinement

Sprint
Planning

Part 2

Sprint
Planning

Part 1

(2-4 h)

(15 min)

(2-4 h)

 (5-10% of Sprint)

(Feature)
Team

+
ScrumMaster

Sprint
Backlog

Daily Scrum

What is the Same as Framework-1?
One product backlog, one definition of done, one potentially

shippable product increment, one (overall) product owner, one
Sprint. All teams in one Sprint with one delivery.

What is Different?
•	 Role changes: area PO.
•	 Artifact changes: “Requirement areas” in product backlog;

area backlog views.
•	 Meeting changes: Framework-2 is a set of parallel (per

requirement area) framework-1 Sprint executions; therefore ...
1.	 Pre-Sprint Product Owner Team Meeting: Before

each area PO meets in their own Sprint planning Part-1 meeting
with their area Teams, they need to coordinate together and with
overall PO – who focuses on product-level rather than area-lev-
el optimization. This coordination must happen before the Part-1
meetings, usually late in the prior Sprint.

2.	 Area-Level Meetings: As in normal framework-1, Sprint
planning part 1, joint product backlog refinement, Sprint review,
and joint retrospective need to occur for each requirement area.

Craig Larman is an organizational-design
consultant for enterprise adoptions and very
large-scale product development with large-
scale Scrum, especially in embedded systems
domains, and investment banking. He serves
as chief scientist at Valtech, and is the co-
author (with Bas Vodde) of Scaling Lean &
Agile Development: Thinking & Organizational
Tools and Practices for Scaling Lean & Agile
Development: Large, Multisite, & Offshore
Product Development with Large-Scale
Scrum, and Agile & Iterative Development.

E-mail: craig@craiglarman.com
Website: www.craiglarman.com

Bas Vodde is a coach, consultant, trainer,
and author in modern agile and lean product
development. When coaching, he works on
three levels: organizational, team, individual/
technical practices. He has trained thou-
sands of people in software development,
Scrum, and agile practices for over a decade.
He is the co-author of two books on large-
scale Scrum and agile development, with
Craig Larman. Bas works for Odd-e, which
supports organization in improving product
development, mainly in Asia.

E-mail: basv@odd-e.com
Website: www.odd-e.com

ABOUT THE AUTHORS

REFERENCES
1.	 Larman, Craig. Agile & Iterative Development: A Manager’s Guide. Addison-Wesley, 2003.
2.	 Ericsson R&D Center Finland, “How we learn to stop worrying and live with the
	 uncertainties”. <https://www.cloudsoftwareprogram.org/results/deliverables-and-
	 other-reports/i/27891/1941/ericsson-journey-of-change>
3.	 Larman, Craig & Vodde, Bas. Scaling Lean & Agile Development: Thinking &
	 Organizational Tools for Large-Scale Scrum. Addison-Wesley, 2008.
4.	 Larman, Craig & Vodde, Bas. Practices for Scaling Lean & Agile Development:
	 Large, Multisite, and Offshore Product Development with Large-Scale Scrum.
	 Addison-Wesley, 2010.
5.	 Larman, Craig & Vodde, Bas. Feature Team Primer. <http://www.featureteamprimer.org/>
6.	 Vodde, Bas. “Specialization and Generalization in Teams”. <http://www.scrumalliance.
	 org/articles/324-specialization-and-generalization-in-teams>

mailto:craig@craiglarman.com
http://www.craiglarman.com
mailto:basv@odd-e.com
http://www.odd-e.com
https://www.cloudsoftwareprogram.org/results/deliverables-and-other-reports/i/27891/1941/ericsson-journey-of-change
https://www.cloudsoftwareprogram.org/results/deliverables-and-other-reports/i/27891/1941/ericsson-journey-of-change
https://www.cloudsoftwareprogram.org/results/deliverables-and-other-reports/i/27891/1941/ericsson-journey-of-change
http://www.featureteamprimer.org/
http://www.scrumalliance.org/articles/324-specialization-and-generalization-in-teams
http://www.scrumalliance.org/articles/324-specialization-and-generalization-in-teams

