
CrossTalk—May/June 2013 3

FROM THE SPONSOR

CrossTalk would like to thank NAVAIR for sponsoring this issue.

In the beginning, it was easy. Programming was
fun. Requirements were clear and concise. Programs
could be ripped out with pizza through an all-nighter.
We were solo computer programmers. Then the
group project appeared on the horizon. Most of us
angled to go it alone. We did not need anyone else!
We get stuck with two other people and do some
rudimentary planning. Things do not go well and in
the end, one person ends up doing 90% of the work
because they do not trust the others to get anything
done. Then we graduate from college and enter the
real world where teams are the norm and solo work
is almost non-existent. We enter a world for which
we are wholly unprepared—the world of teams and
the complexity it brings.

As I enter my 20th year as a professional
software developer, more and more I see software
projects like jigsaw puzzles in which the pieces are
being shaped at the same time they are being as-
sembled. If I am honest, software is probably more
like a Rube Goldberg machine, but you get the idea.
In fact, the slide in the DoD introductory acquisi-
tion training covering software project management
has a drawing of the contraption from the board
game Mousetrap, but I digress. Anyone who has
assembled a large jigsaw puzzle knows the drill:
look for the four corner pieces, find the edge pieces,
start building the edges, look for color blocks, and
so forth. The devilish thing about jigsaws is that they
have exponentially rising difficulty relative to the
number of pieces in the puzzle. Each piece has four
sides, so if you have twice as many pieces, you have
16 times as many possible interconnects.

Software is similar to jigsaws in having an ex-
ponential number of interconnects but adds many
more complications. The interfaces are flexible and
ever changing. The functionality of the parts is ill
defined. No one can lay all the pieces out on a large
table for everyone to see all at once. Unlike jigsaws,
and whether engineers (and their project manag-
ers) will admit it, engineering is a creative process. It
exists in the minds of the creators until it is commu-
nicated in some way whether verbal or written. That
is where the difficult project work begins.

Agile methods were originally developed to add
two long-sought project attributes: short-term
releasability and requirements churn flexibility. Agile
thrives in an environment with high levels of verbal
communication; the daily meetings; the on-hand

stakeholders; and the pair programming. In small-
scale agile, every member of the team knows what
every other member of the team is doing. Cycles
and tasks are short, and meetings are held often, so
problems do not fester. One of the problems with
agile methods are scaling up to large projects. You
end up with teams of teams leading to groups of
individuals not being on the same page. Program-
mers will know what their sub-team is working on
in detail, but the other sub-teams’ work will be more
opaque. A common solution is documentation in the
form of Interface Control Documents and formalized
designs.

While the Agile Manifesto does not rule out inter-
nal project documentation, the creation of such does
slow a project down and make it seem less agile.
You end up with things like requirements sprints and
architecture sprints before any usable product can
be released to a customer. Should it be any surprise
that a change in scale of a product would neces-
sitate a change in the process used to create it?
People get wrapped up in the pros and cons of one
method versus another. Just because Scrum by-the-
book does not fit your group does not mean that the
Rational Unified Process is your only other choice.

I’ve been a Team Software Process (TSP) coach
and I’ve been a ScrumMaster. At the moment, I am a
TSP advocate but I’ll be the first to admit that TSP is
not the best method for every situation. It does not
matter what you call your particular process. They all
include planning, estimation, tracking, meetings, and,
of course, writing software. Everything is tailorable.
Dr. Deming’s famous Plan-Do-Check-Act works
perfectly here. Pick a process, use it, measure the
results, and modify accordingly. Not one of the TSP
teams I know of, and there are many, use TSP ex-
actly by the book. They have all tailored the process
according to their circumstances and metrics.

In the end, we are all just looking to get
important work done on time, on budget, and with
high quality. And maybe, just maybe, have some fun
along the way.

Mark Stockmyer
Senior Computer Scientist
NAVAIR

