
CrossTalk—May/June 2013 35

BACKTALK

“Space ... the final frontier. These are the voyages of the
Starship Enterprise. Its five-year mission: to explore strange new
worlds, to seek out new life and new civilizations, to boldly go
where no man has gone before.”

If you are a reader of CrossTalk, it is a pretty safe bet that
you recognize the quote above.

Did you notice the problem lurking in the above quote that
has vexed English speakers and writers for almost 200 years?
Yes, it is the dreaded split infinitive. It should be “…to go
boldly….” The split infinitive is still the subject of disagreement
among native English speakers as to whether it is grammatically
correct. According to Wikipedia, no other grammatical issue has
so divided English speakers since the 19th century, when the
split infinitive was declared to be incorrect.

 As part of my profession, I write articles—and have done so
for over 25 years. I consider myself a pretty decent wordsmith.
I have taken several college courses in Technical Writing. Back
in 2007, an associate editor at a journal noticed a split infinitive
in one of my drafts, and sent me a note jokingly saying, “You
should know better.” The associate editor was “old school.” I,
on the other hand, thought nothing about it—because I do not
really feel that grammatical rules that originally applied to Latin
grammar 2,000 years ago should dictate how I write English
today. Modern English usage guides seem to agree—most have
dropped their opposition to the split infinitive. Split infinitives
were considered wrong 50 years ago, but today they are ac-
cepted as correct.

 Which brings me to agile programming. I hate to admit
it—I was “old school.” If the term “2167A” does not make you
tremble, you were not developing software 25 years ago. 2167A
was a DoD standard, published in 1988. It established, “uniform
requirements for software development that are applicable
throughout the system lifecycle.”

One criticism of 2167A was that it was biased toward the wa-
terfall model. While it did include, “the contractor is responsible
for selecting software development methods (for example, rapid
prototyping),” 2167A also required “formal reviews and audits”
that seemed to lock the vendor into designing and documenting
the system before any implementation began. 2167A focused
on design documents, rather than the use of accepted CASE
tools. Vendors would often use CASE tools to design the soft-
ware, but then be forced to write 2167A-required documents
to describe the CASE-formatted data. The result was that as
the system evolved, the CASE tool products could be updated
easily, but not the documents. Over time, the design documents
required by 2167A became obsolete (assuming they were ever
of any real use).

Software development methodologies evolved. In the 1990s we
had the CMM®. I was and am a CMM proponent, but let me quote
from Wikipedia, “The model was originally intended to evaluate the
ability of government contractors to perform a software project. It
has been used for and may be suited to that purpose, but critics
pointed out that process maturity according to the CMM was not
necessarily mandatory for successful software development. Real-
life examples where the CMM was arguably irrelevant to successful
software development include many shrinkwrap companies (also
called commercial-off-the-shelf or “COTS” firms or software pack-
age firms). Such firms would have included Claris, Apple, Symantec,
Microsoft, and Lotus. Though these companies have successfully
developed their software, they have not considered, defined, or
managed their processes as the CMM described as level 3 or
above, and so would have fitted level 1 or 2 of the model.”

In other words, companies using CMM could develop good
software, but good software did not depend on the company
using CMM.

You see, the role and nature of software development keeps
evolving. Early languages had different rules, different purposes, and
different focuses. It is hard to imagine agile development in COBOL
and Fortran. Modern languages, like C#, Ruby, Perl, and Java have
a very close relationship with component libraries, system-supplied
support libraries, and higher-level abstractions. It becomes more and
more possible to quickly develop something that works—and still
have quality software. As long as the software meets good software
engineering standards—reliable, understandable, modifiable, and ef-
ficient—agile development can get the job done.

Just like Latin grammar rules, perhaps older software devel-
opment rules are sometimes a bit less relevant nowadays. Back
in the 90s, the mere mention of agile sent large-scale software
developers screaming “disbeliever” and running for holy water to
throw on the heretics. 20 years later, it is a generally accepted
way to perform large-scale system development and achieve
quality results.

It is all about meeting customer needs and producing quality
software. I am not saying the old ways will not work anymore—I
am just saying the new ways work, too.

It is the 2010s. Maybe it is time for you “to boldly go” where
you have never gone before. Split infinitive or not.

David A. Cook, Ph.D.
Stephen F. Austin State University
cookda@sfasu.edu

CMM® is registered in the U.S. Patent and Trademark Office
by Carnegie Mellon University.

Star Trek, Split Infinitives,
and Agile Programming

mailto:cookda@sfasu.edu

