
32 CrossTalk—July/August 2013

25th AnniversAry issue

significant. Some estimates have it consuming more than 60%
of the time and cost of the process.3

Our experience at IDT shows that using virtual test envi-
ronments with automated testing using Automated Test and
Re-Test (ATRT) can help reduce testing infrastructure cost for
testing areas such as interoperability, system testing, functional
testing, component and unit testing. Additional benefits of
automated testing in a virtualized environment include a more
reliable system, improved testing quality, and reduced test effort
and schedule. A more reliable system results from improved
performance testing, improved load/stress testing, and improved
system development life cycle through automated testing. The
quality of the test effort is improved through better regression
testing, build verification testing, multi-platform compatibility
tests, and easier ability to reproduce software problems. Test
procedure development, test execution, test result analysis,
documentation and status of problems are also activities ben-
efiting from automated testing.

ATRT in a virtual test environment can provide a stable, scal-
able, affordable and accessible automated testing infrastructure
that extends across one or many server farms, across one or
many System(s) Under Test (SUTs) and works with a common
set of cloud computing concepts to support a broad virtualized
enterprise automated test environment. This specific testing
setup allows the use of virtualization in a specialized way to
reduce the need for purchasing, storing and maintaining various
expensive test environment hardware and software. Proper vir-
tualization setup provides a multi-user access automated testing
solution that allows users to implement and reuse ATRT, along
with all testing artifacts, on a provisioning basis. Additionally all
related automated testing activities and processes, i.e. test case
and requirements import; requirements traceability, automated
test creation and execution, and defect tracking take place in
this virtualized environment.

Combining ATRT test efficiency with the hardware cost
savings implementing in a virtualized/cloud environment, the
resulting estimated savings are tremendous. For example 20
Virtual Machines (VMs) fit on 1 server in our virtual environment
example – allowing for huge savings in the test environment,
i.e. in this case a 20 to 1 cost savings. Additionally, in the virtual
environment, the SUT VM can be located anywhere on a con-
nected network and does not need to be located physically in
the same VM as the testing VM.

Examples of automated software testing in a virtualized test
environment include:

1. Automatic provisioning of a virtualized automated test
environment

2. Automatic provisioning of the entire automated testing
lifecycle for any type of SUTs

3. Continuous integration using virtualized environments

Sections 2.0 through 4.0 provide technical overviews of the
various embodiments of the present ATRT/Virtual Test Environ-
ment (VTE) implementation.

Elfriede Dustin, IDT
Tim Schauer, IDT

Abstract. Using automated testing in a virtual test environment can reduce
the time and effort required to complete test execution and data analysis,
significantly reduce test suite costs, and at the same time increase the
thoroughness of system testing.

Efficiencies of
Virtualization in
Test and Evaluation

Section 1: Introduction
NIST produced a report in 2002 titled, “The Economic Im-

pacts of Inadequate Infrastructure for Software Testing.”1 This
report “estimates the economic costs of faulty software in the
U.S. to range in the tens of billions of dollars per year and have
been estimated to represent approximately just less than 1% of
the nation’s gross domestic product.” The report goes on to state
that “based on the software developer and user surveys, the na-
tional annual costs of an inadequate infrastructure for software
testing is estimated to range from $22.2 to $59.5 billion.”

Also in 2004 the Chief of Naval Operations (CNO) Guidance
included direction to the Commander, Operational Test and Eval-
uation Force (COMOPTEVFOR) to lead a collaborative effort
among Navy, OSD, and contractors to reduce the costs of Test &
Evaluation (T&E) by 20%. In developing a response to the CNO
Guidance for 2004, COMOPTEVFOR surveyed programs and
included the following as T&E cost drivers:

• Redundant testing
• Significantly increased levels of regression testing

 driven by technology insertion
• Increasing complexity of computer software testing, to

 include systems of systems
• Interoperability testing and certification
Based on the COMOPTEVFOR findings, more effective ap-

proaches for testing are needed to be able to meet the CNO
Guidance to reduce T&E by 20%.

A GAO Report to the Congressional Committees dated June
2012, describes that “recent defense acquisitions have experi-
enced from 30% to 100% growth in software code over time.”2

With the increased size and complexity of systems of systems
testing, requirements for unique / duplicate test facilities and
test-beds for major Navy product areas, software testing is
rapidly becoming the “very longest and most expensive pole in
the tent” when it comes to fielding new capabilities. Because
of many reasons including organizational boundaries, lagging
technologies, unique requirements, and testing methodologies,
the testing of new capabilities being fielded has become a sig-
nificant cost and time element of the process and without some
form of change to the current process, could become even more

CrossTalk—July/August 2013 33

25th AnniversAry issue

Section 2: Automatic Provisioning of a Virtualized
Automated Test Environment

As shown in Figure 1, the virtualized setup allows for a stable,
scalable automated testing infrastructure that extends to one
or many SUTs or one to many automated testing tool installa-
tions (in this example ATRT). This virtualized test environment
setup is a highly scalable solution whether a user needs to run
10 or 10000s of tests connecting to N number of SUT displays
and servers over days or weeks and whether the user needs to
analyze 100s of test outcomes or 10000s or more.

In order to support a virtualized automated test environment,
it is critical the automated testing solution itself be scalable. For
example, the ATRT technology allows for N number of concur-
rent tests to run or N number of serial tests, depending on the
test type required. All of the tests and test outcomes are stored
in the ATRT database/repository for access by any subscriber
(or user) of the ATRT virtualized environment. A subscriber/user
can be a developer or tester or anyone on the program with
ATRT user access privileges.

This virtualized test environment example setup supports
live migration of machines; load balancing; easy movement of
machines to different servers without network interruption and
allows any upgraded VM to run on any server. As a result, it is
also important that in a virtualized environment an automated
testing solution is not only scalable but portable. ATRT can test
systems independent of OS or platform so it is able to support
applications running on both Windows and Linux providing flex-
ibility to migrate machines without the constraint of the OS the
automated test solution can support.

Additionally, an automated testing tool should be selected
that does not need to be installed on the SUT. ATRT is an
example of a solution that does not need to be installed on the
SUT and instead is communicating with the SUT via a VNC
Server or the RDP protocol which transmits the SUT images
back to the tester to the ATRT client. Few tools exist that do not
need to be installed on the SUT. The typical automated testing
tool needs to be installed on the SUT so it can link to the GUI
coding libraries to get the object properties of the GUI widgets
and/or pull information out of the Operating System’s window
manager in order to create an automated test baseline. Installing
an automated testing tool on the SUT however is generally not
desired, because 1) the installation modifies the system environ-
ment (the testing system environment should be identical to the
production system environment) and 2) it does not lend itself to
cloud computing because of the additional tool installation on
each SUT.

In this VTE the SUT VM can be located anywhere on a con-
nected network and does not need to be located physically in
the same VM as the ATRT VM. This allows for tremendous flex-
ibility, for example multiple ATRT VMs can run in the VTE con-
necting to 100s of SUT VMs. However, in the typical automated
testing setup where the tool needs to be installed on the same
machine as the SUT, a 1 : 1 setup is required, i.e. 1 Automated
Testing tool for each 1 SUT, negating some of the savings
expected in a VTE.

Figure # 1: Top-Level Block Diagram of the Automated Provisioning of the
ATRT virtualized Test Environment

Section 3: Automatic Provisioning of the Entire
Automated Testing Lifecycle for any Type of SUTs

One or many users can access a VTE one at a time or
concurrently with any device such as a laptop, iPad, iPhone, etc.
with nothing installed on their device but a network connection
enabling the capability to login to an IP address to connect to
the ATRT virtual environment.

Users can then request one or more instances of a VM along
with the automated testing tool. The automated provisioning
meets a user’s changing needs without the users being required
to make any software modification on their end as required to
conduct the automated test. The VTE in this example can spawn
an instance of ATRT which then allows the user to access any
automated testing artifact and execute the automated testing
lifecycle. The user can then conduct any activity that is part of
the automated testing lifecycle, i.e. create an automated test
case, reuse or troubleshoot an existing automated test case cre-
ated by any user, import requirements, produce a requirements
traceability report. The VTE provides any additional features
and capabilities required to support the SQA process and help
improve Quality, such as Unit Testing and Code Coverage.

Exemplary features of this process include:
• Developers update the code on the development VMs
• Developers check in their code into Version Control
• Build Server conducts automated nightly checkouts
• Build Server compiles and packages a new build

 for deployment
• Nightly automated tests are run
• Users are notified of the automated test outcome
• Build Server deploys the new build to the QA nodes
• Testers access the QA nodes and create and/or run

 their automated tests
• Testers, Developers, and all users conduct the

 automated testing lifecycle activities and maintain
 all ATRT test artifacts in the virtual environment

34 CrossTalk—July/August 2013

25th AnniversAry issue

Using the virtualized test environment a single engineer may
control an entire test of complex systems with only his/her iPad,
laptop, etc. and only requires access to the network.

Section 4: Continuous Integration Using Virtual-
ized Environments

Continuous integration is an industry adapted software
engineering best practice in which any change to the code or
environment is tested and reported on as soon as feasible. In
most cases this involves nightly software builds and nightly au-
tomated test runs to allow for quick look reporting on any newly
introduced issues. Virtualized test environments play a major role
in this best practice.

The development environment that makes this possible is one
of a virtualized environment combined with both regular work-
stations and laptop computers networked together.

1. Developers first review the system level requirements
and create a set of automated tests. Code is locally edited /
compiled/linked and then checked in to a virtualized version
control repository, such as SVN. From here other developers can
check out both updated code off of the trunk or from code from
specific branches to support different build.

2. Upon code checkin, a continuous build server, such as the
Hudson Continuous Build virtual server is triggered to start a
complete build/check/test/report cycle. Hudson will perform
the following tasks:

a. Update the latest code from SVN
b. Compile the code and check for compile errors
c. Link the code, check for any link errors
d. Perform source code style checks and copyright checks

Figure 2. Continuous Integration Environment Example

e. Start a series of both internal and external
regression tests:

i. Internal regression tests will execute auto-
mated tests to verify key use case tests to verify
results are as expected and also ensure that code
that was updated has not adversely affected the
existing functionality.

ii. External regression testing can then utilize
any automated testing capability on another virtu-
alized node to perform tests as an end user would
be expected to do (i.e. through a GUI interface).
Each test can then analyze hundreds of system
level requirements. Each requirement may itself
be verified hundreds to thousands of times. Exter-
nal regression testing again compares its results
against a known good set of results.

3. The internal and external testing results are
then reported back to the Hudson server. Upon
completion of successful internal and external
regression testing, the Hudson server continues
to now build an installer package that will be
available to the end user at fielded locations. Ad-
ditionally, key statistics are gathered on the entire
process and saved for later retrieval.

4. Finally, Hudson provides the developer with
reports on the entire sequence of testing. The

NOTES
1. See <http://www.nist.gov/director/planning/upload/report02-3.pdf>
2. <http://gao.gov/assets/600/591608.pdf>
3. Hailpern and Santhanam, 2002 (The cost of providing [the assurance that a software
program will perform satisfactorily in terms of its functional and nonfunctional specifica-
tions within the expected deployment environments] via appropriate debugging, testing, and
verification activities can easily range from 50 to 75 percent of the total development).

developer can then use the results of the testing to make ap-
propriate code changes.

Section 5: Summary
Using automated testing in a virtual test environment we have

been able to demonstrate the ability to reduce the time and
effort required to complete test execution and data analysis, sig-
nificantly reduce test suite costs, and at the same time increase
the thoroughness of system testing. An increase in software
testing thoroughness equates to a reduction of defects found in
the field and reduced total ownership cost. Automated testing
in a virtualized test environment will also enable much earlier
identification of integration and interoperability characteristics
of any software products that must interact with other systems.
Identification of software specific integration characteristics in
products in-stride with software development cycles enables the
identification of issues to also be decoupled from the delivery of
the final hardware configuration.

http://www.nist.gov/director/planning/upload/report02-3.pdf
http://gao.gov/assets/600/591608.pdf

CrossTalk—July/August 2013 35

25th AnniversAry issue

Elfriede Dustin is Director of Solutions at IDT where
she works on developing new ideas and discovering
new approaches to the requirements based automated
software testing challenge. Software development is
still an art and that makes automated software testing a
special challenge. IDT (www.idtus.com) strives to meet
that challenge by producing a reusable automated test-
ing framework that includes reusable automated testing
components, starting with requirements through the en-
tire software testing lifecycle to defect closure. Elfriede
has a B.S. in Computer Science with over 20 years of
IT experience, implementing effective testing strategies,
both on Government and commercial programs. She
has implemented automated testing methodologies
and testing strategies as an Internal SQA Consultant at
Symantec, worked as an Asst. Director for Integrated
Testing at the IRS Modernization Efforts, implemented
testing strategies and built test teams as a QA Direc-
tor for BNA Software, and was the QA Manager for the
Coast Guard MOISE program.

She is the author and co-author of 6 books related to
Software Testing, i.e. author of the book “Effective Soft-
ware Testing” and lead author of “Automated Software
Testing” and “Quality Web Systems,” and co-authored
the book “The Art of Software Security Testing,” together
with Chris Wysopal, Lucas Nelson, Dino D’ai Zovi, which
was published by Symantec Press, Nov 2006.

Together with IDT CEO Bernie Gauf and IDT FSO and
Sys Admin Guru Thom Garrett she wrote her latest book
“Implementing Automated Software Testing.”

E-mail: edustin@idtus.com

ABOUT THE AUTHORS
Tim Schauer graduated from the University of
Wisconsin-Madison in 1985 with a Bacholor
of Science degree in Physics and a B.S. in
Astro-physics. He received his commission in
the US Navy and worked as both the weapons
officer and communications officer on the
USS Shenandoah. After the Navy, Mr. Schauer
worked on Tactical Software for the SPY-
1A Phased Array radar at the Naval Surface
Weapons Center in Dahlgren, VA. He then
became testing lead and lab manager for the
SeaWolf Class / BSY-2 integration facility in
Moorestown, NJ. Later, he worked as senior
logistics analyst for US Pacific Command at
Camp Smith, Hawaii.

Tim Schauer has been working with Virtual
Servers since first being introduced to them at
Pacific Command (PACOM) in the late 1990’s.
He continued to develop virtual systems while
working at the San Diego Data Center for the
County of San Diego and Children’s Hospital
of Los Angeles. He has virtualized over 90% of
the Beaufort County, South Carolina, library’s
IT system, greatly reducing cost while increas-
ing productivity. Finally, Tim is currently working
on virtualizing a US Navy Tactical Weapons
System to facilitate ongoing ATRT automated
testing at the IDT facilities in Arlington, VA.

E-mail: tschauer@idtus.com
Phone: 843-473-5465

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required).
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
309SMXG.SODO@hill.af.mil

or call (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

mailto:edustin@idtus.com
mailto:tschauer@idtus.com
http://www.idtus.com
mailto:309SMXG.SODO@hill.af.mil
http://www.facebook.com/309SoftwareMaintenanceGroup

