
22 CrossTalk—November/December 2013

REAL-TIME INFORMATION ASSURANCE

Robert A. Voitle, Jr.,
Application Software Assurance Center of Excellence
Arthur J. Boote,
Application Software Assurance Center of Excellence
James “Woody” Woodworth,
Application Software Assurance Center of Excellence

Abstract. Software Assurance is the practice of designing secure software that
can safely and reliably operate in a hostile environment and resist attacks when
all other network defenses have failed. Real-time IA focuses on mitigating at-
tacks while within that hostile environment but can be greatly aided by Software
Assurance practices regardless of where an application is in its lifecycle. In 2012,
Yahoo suffered from an attack on an application initially developed by another
company and had Yahoo executed Software Assurance techniques on the
mature application, they could have prevented a compromise that resulted in the
release of more than 400,000 user names and passwords.

It Is Not Too Late
for Software
Assurance!

Technology, and Logistics and DoD Chief Information Office to
develop and implement a baseline Software Assurance policy
for the entire lifecycle of systems.

To fully comply with P.L. 112-239 and improve Mission Assur-
ance for the ever-increasing majority of software-enabled sys-
tems, enforcement mechanisms must be put in place to require
assessments prior to system fielding as well as throughout their
lifecycle. Current policy, guidance, enforcement mechanisms and
force structures are inadequate for full compliance.

In today’s ever-changing environments, Software Assurance is
Mission Assurance! Government and industry leaders in the soft-
ware security community have advocated for years for widespread
Software Assurance strategy implementation. They have struggled
with insufficient official guidance, the absence of dedicated funding
sources and lopsided emphasis on hardware and network security
instead of software, where industry analysts believe the majority of
attacks occur. Acquiring and building software without accounting
for security is no longer an acceptable risk.

The “way ahead” is simple…the DoD must proactively find,
identify, and assess weaknesses that may be in software de-
veloped and/or used by the warfighter before, during and after
fielding. By building security in early and often throughout the
software’s lifecycle, we tie security into the overall quality and
functionality of systems, which not only prevents malicious enti-
ties from hacking our systems proactively, but saves millions of
dollars per year in cost avoidance caused by flaws in the code,
work stoppage from system failure, re-engineering, patching and
re-fielding. Software Assurance is not just a “Just-In-Time” pro-
cess utilized for fielding new technologies but allows us to apply
techniques to identify and fix problems due to bloat, years of
various coding techniques, and vulnerabilities inherent in Legacy
Software, which houses the vast majority of our critical informa-
tion; thereby hardening the current infrastructure.

Case Study: Yahoo Voices
In July of 2012, a hacking group posted usernames and

passwords that had been pulled from a Yahoo sub-domain.
The group itself revealed that their attack, a SQL injection that
the attackers used to pass information retrieval commands to
Yahoo’s database servers, had allowed them to retrieve almost
half a million unencrypted email addresses and passwords [2].
As the details of the attack were released to the public, Yahoo’s
image suffered from both the mistakes that allowed the attack
to happen and from its poor damage control actions.

The problems date back before May of 2010, when Yahoo
purchased Associated Content for $100 million to rebrand as
its Yahoo Voices service. Associated Content provided a site for
writers and subject matter experts to have an official platform for
their articles and videos [3]. Unfortunately, Associated Content
had not built their platform securely and Yahoo had not fixed any
of the vulnerabilities after taking control of the application [4].

Over time, Yahoo moved the authentication scheme for Yahoo
Voices over to its own logon system but did not perform many secu-
rity fixes beyond that. Unfortunately, as was revealed in the attack,
they did not remove the unencrypted tables nor did they scan for
SQL injections in the application. These two issues, combined with

Introduction
In May of 2009, President Obama said, “Our technological

advantage is a key to America’s military dominance. In today’s
world, acts of terror could come not only from a few extremists
in suicide vests but from a few key strokes on the computer—a
weapon of mass disruption!”

So, how secure is your application? This is a question we ask each
program office before and after Software Assurance Risk Assess-
ments. At the start, programs are very confident with the security of
their “baby”; but, once we finish, that confidence is usually reduced. As
they discover, the good news is all can be fixed; and, with the proper
training, tools, techniques, methods and processes, they can ensure
continuous application security from within to couple with the real-time
Information Assurance efforts deployed by their hosts.

Software Assurance is the discipline of defensively coding
software applications/systems in order to harden them from
compromise/hacking. While traditional software engineering
and coding practices emphasize user functionality and follow-
on sustainability: deferring security to systems-level design),
Software Assurance, by comparison, bakes security into the
software itself. It does not come at the expense of user func-
tionality or follow-on sustainability—it adds security up-front, in
a deliberate effort to make the systems as least-hackable as
possible, especially those operating in contested environments.

In addition to being a sound systems engineering practice,
Software Assurance is now a legislative requirement. More
specifically, Section 933 of Public Law 112-239 [1] requires
the Office of the Under Secretary of Defense for Acquisition,

CrossTalk—November/December 2013 23

REAL-TIME INFORMATION ASSURANCE

the amount of time the vulnerabilities were exposed to the Internet
at large meant that the attackers were able to discover information
about the databases used by Yahoo and the data stored within [5].

Once the information was in the wild, Yahoo lost the op-
portunity to become the primary source of information about
the attack. It was unable to control what was reported and
what details were released when the attackers themselves and
security experts began putting the pieces together and reporting
it themselves. The statements released by Yahoo were limited
to an acknowledgement of the posting and that there was an
investigation and fix action under way [6].

Real-Time Information Assurance
Modern network defense involves reconfiguring automated

defenses to prevent attacks and close holes uncovered in previous
attacks. Whenever an attack occurs, trained incident responders
comb the logs and network for any details about the attack. They
identify the exploit, possibly gather details about the attacker, and
refine the network devices to prevent that attack from happening
again. Whether it involves updating a blacklist, providing recommen-
dations for an emergency patch or evaluating if an application is so
insecure that a portion of it needs to be disabled or hidden to protect
the network as a whole, all of these techniques are used reactively.

In order to protect their infrastructure and security processes,
Yahoo released only the details that were required by law and
did not confirm or deny any additional details released by third
parties. Based on the responses and news releases following
the attack, we cannot say whether they followed industry best
practices when closing security holes identified in this attack,
but we can explain those best practices that Yahoo could have
followed in response to a compromise of their application.	

After an attack, a forensic investigation will be launched with
the goals of gathering as much information about the attack
to secure the network and application as well as gathering
information about the attacker’s origin and motives. During the
preservation and acquisition portions of the response network
hardware, servers, and other items which contain logs or infor-
mation about the attack will need to be protected from further
alteration. This may include disconnecting network systems
causing disruptions and outages of services. If all systems are
left connected to the network until all the evidence of the attack
is preserved, the network operators will need to ensure that the
live environment does not overwrite or alter critical information.
Identifying and maintaining data sources will require cooperation
between the application maintainer, the network support techni-
cians, and any other experts that may be able to provide inputs
into locations of potentially relevant data.

From the logs and application itself, the forensic expert or persons
responsible will have to compile all potentially relevant data and sift
through the log files to reconstruct a sequence of events. There
may be hundreds of thousands or millions of log entries captured
as part of the data collection process and the analyst will have to
identify which entries are normal operations and which entries are
potentially relevant. From those relevant entries, the analyst will build
a timeline of events in order to determine the extent and execution of
the attack. The sequence of events will also point to the weaknesses

used by the attacker to gain access to the compromised system and
identify any other compromised systems or planted malware.

Once the results of the forensic investigation are complete,
the network administrators can begin to patch holes at the net-
work layer by disabling IP addresses at the firewalls and limiting
traffic to the impacted system. One new protective measure
that has seen widespread press is the Web Application Firewall
(WAF). Just as a firewall sets up whitelists and blacklists which
allow or deny blocks of IP addresses and allowed ports, a WAF
is a device that learns expected HTTP commands and blacklists
HTTP commands that may contain malicious logic.

It is possible to configure a WAF by hand with the results of
a forensic investigation, and the WAF will forever prevent that
same attack from occurring again, but WAFs share the same
limitations as blacklists in that unknown vulnerabilities cannot be
prevented. To address this, existing vulnerability scan results can
be converted into a WAF rule set. A dynamic vulnerability scan
can test every field in an application for susceptibility to known
attacks such as SQL injection, cross-site scripting, and buffer
overflows. When integrated into a WAF, the results can then pro-
vide a basic level of protection against known types of attacks.

If a dynamic scan is not run, most WAFs have a learning mode
that can identify expected behavior over a period of time. Unfor-
tunately, a deployed application may undergo constant attacks
and certain exploits might be allowed in rules created during that
learning period. Once the rules are created, they will be monitored
and the operator can view any requests that may violate them
to determine if a rule will cause issues. All of the rules and the
results of their monitoring phase will need to be evaluated.

In order to get the maximum utility out of a WAF, the opera-
tors must be knowledgeable in several areas that include the
specific application behavior and application security in order to
ensure that rules will close security vulnerabilities while maintain-
ing functionality of the application. Just as network firewall rules
implemented to improve security can prevent legitimate traffic
from passing, WAF rules can disable application functionality by
preventing legitimate data from passing. However, sometimes
functionality may need to be disabled in the name of security.

Once an attacker has identified a critical security vulnerability
that can bring down a system or reveal sensitive information, the
assumption is that they and other attackers will use that vulner-
ability again. Sometimes the hole that was used cannot be fixed
without rewriting source code or re-designing the application
and the only way to prevent the loss of further data is to disable
the vulnerable functionality. This is reserved for cases where a
self denial of service is preferable to further compromise.

Unfortunately the users are left to fill the gap in functionality
with workarounds or manual processes that can cost an orga-
nization more man hours than any investigation or hotfix action.
After taking into account the massive costs endured by an or-
ganization following a successful attack, the increased develop-
ment costs, schedule time, and additional coding requirements
of a rigorous software assurance process begins to make sense
for both software developers and their customers.

In Yahoo’s case, the vulnerability identified in their investigation
was fixed and the unencrypted username and password data-

24 CrossTalk—November/December 2013

REAL-TIME INFORMATION ASSURANCE

base was removed. However, had Yahoo executed a Software
Assurance Assessment prior to integration of the Yahoo Voices
application into their environment, the injection vulnerability and
the insecure database would have been identified before it was
exploited. By not proactively eliminating vulnerabilities, Yahoo’s
customers and public image suffered.

Software Assurance
Real-time information assurance tools such as a WAF offer

program offices a measure of security. They provide very spe-
cific protections to an application, but if an attack is not defined
by their threat identification systems and a security hole still
exists within the source code, that application is still vulnerable.
So how does a program office solve this problem? The integra-
tion of a Software Assurance policy that includes both dynamic
and static analysis of the application source code is essential to
preventing exploitation of those vulnerabilities not covered by
WAF rules and filters.

There are many ways Software Assurance can be integrated
into the development lifecycle of an application, but they all come
down to two core implementation methods: the deep dive approach
and the triage approach. Both have their merits and drawbacks. It
is up to program managers and technical leaders to discuss both
approaches and determine which is best for a given application.

The Deep-Dive Approach
The core idea behind the deep-dive approach is to identify

as many security issues as possible through a combination of
static and dynamic analysis and manual penetration testing.
Every method of every class in every file must be scrutinized and
declared vulnerability free. Even the system architecture, risk
management procedures, and systems engineering methodolo-
gies are evaluated for security vulnerabilities. No attack surface
is left unexamined. As a result, this approach is often quite time
consuming; taking anywhere from 8 to 12 weeks to complete.

A deep-dive is often conducted toward the end of a lifecycle
when active development has finished, but before QA testing
begins. Once done, the application can be expected to pass
rigorous security testing and is ready for deployment. This ap-
proach works best when used with large-platform, MAC I –type
systems utilizing more classical development lifecycles such as
the Waterfall lifecycle.

Because the costs in both true dollar amounts and man-hours
can be extensive, it is necessary to such programs to plan for deep
dive approaches in the planning and requirements phases of their
development lifecycles. Even with proper planning, the costs and time
needed to perform a deep dive security analysis makes this approach
prohibitive for most standard applications in use in the DoD today.

The Triage Approach
In today’s fast-paced development environments a Software

Assurance approach that takes weeks to complete just is not
feasible. Program offices utilizing RAD or Agile development
cycles simply cannot allocate more than a week to Software As-
surance practices. In such cases, a triage approach may be best.

Time is not the only resource saved by the triage approach

to Software Assurance. The material costs are also dramatically
lower. Triage is an overall cheaper alternative to the deep dive
security analysis of a system. As a result, it lends itself to legacy
systems (those systems that have entered into the maintenance
and sustainment portions of their lifecycles) where funding for
extensive testing, evaluation and repair is often not available.

A triage approach to Software Assurance emphasizes iden-
tifying and remediating low-hanging fruit through static and/or
dynamic analysis. In this approach, it is not so important to iden-
tify and remediate every single security threat, only the easiest
or those deemed to be the highest risk should be considered.
As each iteration of the lifecycle completes, more and more is-
sues will be identified and remediated.

While this issue takes significantly less time than the deep-
dive approach to Software Assurance, there is one glaring flaw:
if a high-risk security issue is not properly identified, the ap-
plication could remain vulnerable through several development
iterations. This is where real-time IA measures, like WAFs, can
help mitigate the risk to an application.

Consider the Yahoo case study presented earlier: Associated
Content was not a large mega-corporation capable of spending
millions of dollars to implement a deep-dive Software Assur-
ance program. At the time of their acquisition by Yahoo in May
of 2010, the triage approach to Software Assurance was still in
its infancy, but it could have saved Yahoo from both the financial
and reputation losses it undoubtedly suffered.

A triage of the Associated Content software would have revealed
the SQL Injection vulnerability that allowed attackers to retrieve the
unencrypted passwords and e-mail address of the systems users.
Real-time Information Assurance measures could have been put
into place that would have prevented the exploitation while Yahoo
developers took a closer, more analytical, look at the vulnerability that
would have revealed the lack of proper encryption of the data stored
in the legacy database. Unfortunately, many of the developers, man-
agers, and Information Assurance personnel at Yahoo may not have
known that a Software Assurance plan was a necessity because
they lacked the proper training to identify such risks.

Education is Key
Regardless of which approach is used to identify, catalog,

and remediate security vulnerabilities, it may all be wasted ef-
fort without proper education and training of program person-
nel. While security is becoming a hot topic to teach as part of
a software and computer engineering program, the majority
of programmers have not yet had much exposure to software
security and secure development training. Ideas such as data
validation for security and whitelists are foreign concepts to a
large percentage of the software development workforce. As a
result, it becomes necessary to ensure that everyone involved in
the development lifecycle receives a degree of training concern-
ing Software Assurance. It is imperative that developers and tes-
ters understand how to identify security risks to the application
and how to remediate those risks.

In the end, it is equally important that IA personnel and pro-
gram management learn the language of Software Assurance
so they can communicate openly with the developers and tes-

CrossTalk—November/December 2013 25

REAL-TIME INFORMATION ASSURANCE

ters about the sort of risks associated with dif-
ferent vulnerabilities. This can only be achieved
through repeated exposure to education and
training materials, and an open dialog about the
overall security profile of an application.

Combining Software Assurance and Real-
Time Information Assurance measures helps
to ensure that security gaps in an application’s
source code are covered, at least temporarily, by
the rules governing the WAF. But, once a WAF
is in place, why bother repairing those gaps? As
mentioned earlier, WAFs and other Real-Time
Information Assurance measures essentially
amount to security blacklists: defining what
harmful information should look like and block-
ing it at the server and/or application layers. As
attackers refine their techniques and new, more
creative methods to defeat these blacklists are
created, the rules governing what tainted or
harmful data looks like will need to change.

If security flaws are not fixed at the source,
engineers will find themselves in an arms race
trying to keep Real-Time Information Assur-
ance rules updated to defend against current
attack vectors. Repairing the security holes
at the source, when done correctly using
whitelists and proper data validation, puts
an end to the arms race by eliminating the
security threat. But may all be for naught if the
developers, testers, program management, and
Information Assurance staff are not properly
educated regarding Software Assurance and
the risk that not integrating such principles into
the development lifecycle can bring.

Software Assurance is not just an option to
secure our critical software applications, it is an
absolute necessity. The DoD must be proactive
when it comes to identifying and assessing
the weaknesses present in software in use by
the warfighter and our national infrastructure.
Building Security in to the software lifecycle
is critical to this task, especially if it is built in
early and often. Doing so will prevent cyber
attacks to critical systems and save millions of
dollars each year. Not just a solution for new
software being developed, triage approaches
to Software Assurance allow legacy systems to
incorporate these techniques into their sustain-
ment plans improving the preparedness of the
nation as a whole to all cyber threats.

Disclaimer: The views expressed in this
article are those of the authors and do not
necessarily reflect the official policy or position
of the US Air Force, Department of Defense or
the U.S. Government.

Robert A. Voitle, Jr. has been a contractor working as a Senior Software
Assurance Analyst for the Air Force at the Application Software Assur-
ance Center of Excellence since 2008, and is regarded as an expert
on Software Assurance and application security. He has worked as a
consultant for Fortify Software, Aspect Security and, currently, Cigital
Inc. He has authored several works that range in scope from informal
news articles to white papers. Robert is a graduate of Auburn University
where he studied Journalism and Technical and Professional Commu-
nication.

E-mail: rvoitle@cigital.com

First Lieutenant Arthur J. Boote is currently assigned to the Business
& Enterprise Services PEO, Gunter Annex in Montgomery, Alabama
serving as the Chief Technology Officer for the Application Software
Assurance Center of Excellence. 1Lt Boote has previous experience as
a Cyberspace Crew Commander for the 561 NOS and Digital Foren-
sics technician prior to joining the Air Force. 1Lt Boote was instrumental
in the publication of the Secure Programming Best Practices Guide
for Department of Defense programmers. 1Lt Boote has a degree in
Computer Engineering from Florida State University.

E-mail: arthur.boote@gunter.af.mil

James “Woody” Woodworth is a Department of the Air Force Civilian
currently assigned to the Business & Enterprise Services PEO, Gunter
Annex in Montgomery, Alabama serving as the Chief of the Application
Software Assurance Center of Excellence (ASACoE). He has served
in the Air Force for 33 years, the first 20 years on active duty in the
Air Force JAG Corps and the remaining 13 as a civilian in a variety of
software development positions. He has been assigned to the ASACoE
since its stand-up in 2007, first as the Operations Chief and then as
Chief upon his return from deployment to Iraq. He is considered one of
the leading Software Assurance Subject Matter Experts in the Depart-
ment of Defense.

E-mail: james.woodworth@gunter.af.mil

ABOUT THE AUTHORS

REFERENCES

1.	 National Defense Authorization Act (NDAA) for Fiscal Year 2013. Pub. L. 112-239 §933. 2 Jan 2013.
2.	 Schwartz, Mathew. “Yahoo Hack Leaks 453,000 Voice Passwords.” InformationWeek. UBM Tech, 12 Jul 2012. Web. 29 May 2013.
	 <http://www.informationweek.com/security/attacks/yahoo-hack-leaks-453000-voice-passwords/240003587>.
3.	 Heist, Matt. “What Yahoo needs to do with Associated Content.” The Digital Content Blog. Guardian News and Media Limited, 08 Jun 2010.
	 Web. 29 May 2013. <http://www.guardian.co.uk/media/pda/2010/jun/08/yahoo-associated-content>.
4.	 Arthur, Charles. “Yahoo Voice hack leaks 450,000 passwords.” thegaurdian. Guardian News and Media Limited, 12 Jul 2012. Web. 29 May 2013.
	 <http://www.guardian.co.uk/technology/2012/jul/12/yahoo-voice-hack-attack-passwords-stolen>.
5.	 “Yahoo! Voices Website Breached 400,000 Compromised.” TrustedSec. TrustedSec, 11 Jul 2012. Web. 29 May 2013.
	 <https://www.trustedsec.com/july-2012/yahoo-voice-website-breached-400000-compromised/>.
6.	 Prince, Brian. “Yahoo Confirms 400,000 Passwords Stolen in Hack.” eWeek. Quinstreet Enterprise, 07 Jul 2012. Web. 29 May 2013.
	 <http://www.eweek.com/c/a/Security/Yahoo-Confirms-400000-Passwords-Stolen-in-Hack-112338/>.

mailto:rvoitle@cigital.com
mailto:arthur.boote@gunter.af.mil
mailto:james.woodworth@gunter.af.mil
http://www.informationweek.com/security/attacks/yahoo-hack-leaks-453000-voice-passwords/240003587
http://www.guardian.co.uk/media/pda/2010/jun/08/yahoo-associated-content
http://www.guardian.co.uk/technology/2012/jul/12/yahoo-voice-hack-attack-passwords-stolen
https://www.trustedsec.com/july-2012/yahoo-voice-website-breached-400000-compromised/
http://www.eweek.com/c/a/Security/Yahoo-Confirms-400000-Passwords-Stolen-in-Hack-112338/

