
CrossTalk—January/February 2014 27

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Michael McLendon, SEI Carnegie Mellon University
Bill Scherlis, SEI Carnegie Mellon University
Douglas C. Schmidt, SEI Carnegie Mellon University

Introduction
Software is essential to the DoD. It delivers enhanced capability
to warfighters and provides competitive performance advantage
across the full spectrum of DoD systems. These systems range
from business information systems to complex C4ISR systems to
major defense weapon systems and cyber capabilities [1]. To at-
tain and maintain this advantage, it is imperative—and increasingly
urgent—to create and execute an enterprise strategy for software
innovation, development, and evolution that enhances affordability
and continually optimizes warfighter effectiveness.

Addressing
Software
Sustainment
Challenges for
the DoD

Addressing
Software
Sustainment
Challenges for
the DoD

This enterprise DoD strategy must recognize the extent to which :
•	 Mission effectiveness depends on the ability of software de-

velopers and teams to deliver capability affordably and support
the continual adaptation and enhancement of that capability

•	 Great value is provided to warfighters by enabling
software-intensive functionality across the lifecycle so systems
can operate interdependently and dependably in net-centric
and cyber environments

It is hard to achieve these goals, however, due to rapid
changes in mission environments and technology infrastructure,
along with a challenging fiscal environment.

As DoD systems continue to age [2]—and sequestration
and other budget constraints and uncertainties place greater
emphasis on efficiency and productivity in defense spending
[3]—it is increasingly important to create more efficient and
effective approaches to sustaining and advancing the competi-
tive edge that software provides. Software sustainment involves
coordinating the processes, procedures, people, information, and
databases required to support, maintain, and operate software-
reliant aspects of DoD systems [4]. This article summarizes key
software sustainment challenges faced by the DoD and high
lights key R&D activities needed to address these challenges.

Software Sustainment Trends and Challenges
The software acquisition process delivers operational perfor-

mance to meet identified warfighter requirements. Henceforth,
systems transition into the sustainment phase. During sustain
ment, software-engineering processes and practices are con-
tinuously applied to (1) assure the ongoing competitive military
advantage of a system and (2) ensure its seamless operation in
helping to evolve net-centric and cyber infrastructures and envi-
ronments. Various trends shape DoD policies and infrastructure
for sustaining software, including:

•	 rapid performance advances associated with Moore’s Law and
associated hardware innovations (cost and capacity for storage,
processing, and communications, and the consequent influence
on computing systems architectures) that accelerate technology
refresh cycles,

•	 the ever-increasing connectedness of systems, in which each
system becomes a node in a vast, complex information network,

•	 the prevalence of closed-source and open-source off-the-shelf
software technologies and practices, which commoditizes the
market for software engineers with modern skills but creates gaps
for projects that need staff with expertise in older technologies,

•	 the need to adapt software to address diminishing manufactur-
ing sources stemming from the loss of producers or suppliers of
hardware used in DoD systems,

•	 the challenges of modernizing and recapitalizing legacy DoD
systems in a constrained budget environment that increasingly
emphasizes greater efficiency and productivity in defense spending,

•	 the repurposing of systems to meet new threats, mission
requirements, and coalition configurations, and

•	 the increasing requirements for interoperability in
net-centric environments.

28 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

The Impact of Supply Chains on Software
Infrastructure and Sustainment

Compared to legacy systems, newer DoD systems tend to rely
more on software as a primary means to deliver functionality [1].
There are good reasons for this trend, which has rapidly acceler-
ated over the past decade in both national security systems and
commercial systems. In particular, the increasing use of—and
dependency on—software means there are fewer limits on what
capabilities can be enhanced and created in the future. For
example, the percentage of avionics specification requirements
that rely on software has risen from approximately 8 percent of
the F-4 in 1960 to 45 percent of the F-16 in 1982, 80 percent
of the F-22 in 2000, and 90 percent of the F-35 in 2006 [7], as
shown in Figure 1.

Software is ubiquitous in DoD systems, and it is increas-
ingly hard to identify sub-systems and components that are not
controlled or enabled by software. Ironically, in this increasingly
software-reliant environment, there is a growing bow wave of
software sustainment demands (of unknown size, complexity,
characteristics, and technical debt) that are neither recognized nor
understood by the acquisition community and the DoD enterprise.

For example, not only are we dealing with a growing soft-
ware base, but also the constantly evolving infrastructure in
which software runs. This infrastructure includes commercial
and open-source components, frameworks, and libraries, all of
which are increasingly necessary for modern software systems.
Moreover, there is increasing reliance on software supply chains
that provide and support this infrastructure.

For example, there are supply chains for hardware/firmware
components, as well as integrated components, such as network
routers, operating systems, databases, and middleware [16].
A supply chain for COTS software products includes product
development organizations and their suppliers. Likewise, the
supply chains for custom-developed DoD acquisition systems
can include the prime contractors, subcontractors, and supply
chains for the COTS products used.

Software infrastructure typically evolves at a rapid pace, driv-
en by opportunities to increase capability, improve performance,
provide repairs and security enhancements, and exploit growth
in underlying hardware capability. This upgraded capability must
be integrated into existing systems. Likewise, software defects
and performance bottlenecks must continually be identified,
fixed, and optimized to provide full functionality.

Infrastructure also evolves due to improvements in its own
underlying infrastructure, (i.e., lower layers of the software/hard-
ware stack). A common example involves improvements in un-
derlying operating systems, cloud architectures, and storage and
processing capabilities that enable improvements to a database
framework. An important consequence of this—and a principal
driver of component-based and service-oriented software para
digms—is the speed and efficiency with which new capabilities
can be manifested. For example, talented undergraduate stu-
dents can apply modern software and hardware infrastructure
in a matter of weeks to create highly capable mobile software
apps that access dedicated cloud resources and can be widely
deployed and supported.

Figure 1: The Increasing Role of Software in Avionics Systems

The confluence of these and other trends impact the spec-
trum of acquisition and sustainment policies, programs, and
infrastructure. These trends also exacerbate the growth in total
ownership costs across program lifecycles [6].

Unfortunately, DoD acquisition programs have traditionally
discounted design and program planning considerations for
system sustainment until late in the acquisition phase (if at all).
This attitude stems partly from the difficulty involved in mea-
suring “sustainability attributes” in early phases of design and
implementation. This difficulty, in turn, impedes a style of evolu-
tionary enhancement during sustainment, where increments of
investment in a system yield increments of immediate value in
enhanced functionality, improved performance, etc.

Increasingly, however, the costs of software sustainment are
becoming too high to discount for several reasons:

•	 Sustainment costs account for 60 to 90 percent of the total
software lifecycle effort [5], which motivates the need to address
sustainment throughout acquisition program lifecycles and improve
the ability to measure—and ultimately reward—design and quality
attributes applied during development that favor sustainability.

•	 In an era where DoD new-start programs are being reduced in
favor of prolonging legacy systems, significant software sustainment
cost increases are themselves unsustainable [6].

The growing expense of legacy systems—and their prolonged
use—necessitate greater discipline, a sense of urgency, and atten-
tion to methods and technologies designed to improve sustainment.

To meet these challenges, software sustainment organizations
must have a resilient and properly resourced infrastructure that
integrates processes, practices, and people with evolving com-
petencies, tools, information, databases, and system-integration
lab capabilities. These infrastructure elements, in turn, must be
systematically refreshed throughout the life of a system to sup-
port, maintain, and operate in accordance with unique properties
of software in DoD systems.

For example, software does not follow the laws of physics
that bound hardware design and define failure [1]. Legislative
and DoD policies, however, have historically mandated a de
pot-centric maintenance paradigm based on relatively discrete
hardware aging/replacement models. Unfortunately, these mod-
els are not well-suited to understand the cost, effort, and quality
drivers of software sustainment, which is a continuing software
engineering process that lasts for decades.

CrossTalk—January/February 2014 29

LEGACY SYSTEM SOFTWARE SUSTAINMENT

The increasing reliance of DoD systems on software supply
chains extends well beyond the defense industrial base. This
trend is the subject of a 2007 Defense Science Board report [8]
regarding the challenges of testing and evaluating these supply
chains. Although software does not wear out, firmware and
hardware become obsolete rapidly, thereby driving changes in
software applications and infrastructure.

In mainstream commercial systems, these changes are
planned for and provide end users a steady flow of improve-
ments in performance and reliability derived from the underlying
infrastructure. Just as importantly, these changes create head-
room for improvements in function and capability.

The Relationship of Software Sustainment
to Modernization Efforts

The majority of software sustainment activity is better de-
scribed and managed as a modernization effort. This shift in
perspective is consistent with commercial development practices
and shifts in the business environment for defense systems [10].
The technical drivers discussed below—along with the ongoing
rapid growth in capability of software infrastructure discussed
above—have also enabled this move toward modernization.

In general, software sustainment involves the following
pattern of repair, enhancement, and adaptation:

•	 Repair in response to defects and vulnerabilities related
to functional, quality, and security attributes.

•	 Enhancement in response to demands for increased
functional capability and performance, driven by competitive
pressure (in the commercial world) and changes in mission
profile (in defense).

•	 Adaptation in response to improvements, changes, new
opportunities in the underlying stack of software and hardware
infrastructure, and the mission benefits of increased interop
erability among software-reliant systems in the enterprise.

This pattern is pervasive in commercial software. In recent
years, this software sustainment pattern—and the tempo at
which that pattern has been applied—has been amplified be-
cause many applications and data repositories have migrated to
cloud-based systems [9]. This transformation is evident across
the spectrum, from mobile apps (which tend to rely on cloud-
based resources) to large-scale data-intensive applications.

The sustainment community has shifted from primarily empha-
sizing repair to focusing on enhancement and adaptation [6]. This
shift stems from various mission and business considerations, not
the least of which is the reduced deployment of new systems in

Understanding and Mitigating the Cost Drivers
of Software Sustainment

To craft a more effective and efficient approach to software
sustainment, organizations must examine and understand the
complexities and costs of the software infrastructure envi
ronment. This complex nexus of activities has historically been
neglected. Recent studies [2][6], however, indicate that the DoD
is expending more time and effort sustaining software, often
more than originally anticipated due to uncertainties encoun-
tered during initial program cost estimation.

For example, a 2011 Air Force Scientific Advisory Board study
[6] showed that total weapon system software sustainment costs
have doubled in less than 10 years, as shown in Figure 2. Like
wise, software sustainment hours at the three Air Logistics Cen-
ters over the past eight years have also increased significantly.

	

Figure 2:
Increase in
Software
Sustainment
Costs Over
the Past
Decade

favor of sustaining legacy systems. It is also a result of the DoD’s
growing ability to manifest increasing levels of functionality in
software, which in turn is a consequence of the rapid pace of in-
novation in tools, languages, models, and processes.

Indeed, cloud-based software applications may have a much
greater tempo in their update cycle. The term “DevOps” arose in
the context of commercial systems to refer to the rapid iteration
of development, quality assurance, and operations. This iteration
is most evident in cloud-based applications due to the relative
ease—and transparency—of deployment, especially when quality
practices are integrated into development efforts.

On a larger scale, the Office of the Deputy Assistant Secre-
tary of the Army for Cost and Economics—in collaboration with
the Air Force and the Navy—is sponsoring critical and founda
tional research into understanding the myriad of activities that
occur in what the DoD calls “software depot maintenance.” SEI
at Carnegie Mellon University has also initiated research [14]
that addresses the uncertainty of cost estimates early in the
lifecycle and the dynamics of decision making associated with
choices about sustainment strategies.

Various factors contribute to the high costs of software
sustainment. For example, functionality (such as fly-by-wire)
originally provided by hardware may be replaced by software,
which must then be sustained. Periodic software upgrades and
enhancements throughout the lifecycle of DoD systems may
also result in unanticipated increases in sustainment costs.
Moreover, software maintainers must expend costly and
time-consuming effort to understand original designs and
carefully make changes to avoid degrading design integrity
or negatively impacting key quality attributes. In addition, the
scale and complexity of software are growing significantly to
meet the expanded threat spectrum [11], which exacerbates
sustainment costs.

As sustainment costs have increased, the DoD has struggled
to support all its legacy systems—especially its weapon systems
platforms—many of which will remain in the operational inventory
much longer that planned due to budget constraints. Examples

30 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

of weapon systems platforms include the physical airframes,
hulls, chassis, and their associated parts such as engines, weap-
ons, sensors, and computing/communication units. Economic
strategies for understanding and addressing these rising costs
are affected by a key difference between the software running
in DoD weapon system platforms and the platforms themselves.

Sustainment costs have historically been attributed to the
following factors:

•	 the number of systems in the operational inventory,
•	 the operating tempo (optempo) of systems (flying

	 hours, driving miles, number of deployments, etc.),
•	 the number of different configurations,
•	 parts count, and
•	 failure rates.
The wear and tear on hardware at the platform-, sub-sys-

tem-, and component-levels represents a significant mainte-
nance expense. Through the years, the DoD has developed
a finely tuned set of heuristics for estimating field and
depot maintenance costs, budgets, and the relationships of
maintenance funding and backlogs to operational readiness.
In the face of declining budgets, the DoD has traditionally
handled these costs by shrinking its force structure inven-
tory and the operational tempo of forces, (e.g., by retiring
and/or reducing the numbers of aging aircraft, ship, and
vehicle platforms) [6].

This approach worked when sustainment costs were large-
ly a function of the hardware for weapon system platforms.
In contrast, software has essentially no expenses related
to manufacturing or wear-and-tear. As a result, software
sustainment costs are insensitive to the traditional hardware-
maintenance cost drivers. In fact, software sustainment costs
are primarily driven by the function a system or sub-system
exists to perform, the multiple configurations of systems in
the inventory (each with their own software variant), and the
increasing degree of interoperability among systems in
net-centric environments.

For example, a class of ships, planes, or vehicles may
have scores of software variants reflecting different sen-
sor, processing hardware, operating system, and network/
bus configurations; different algorithms; and different security
profiles for customers from different countries. Sustaining all
these variants affects the time and effort required to assure,
optimize, and manage the system throughout the lifecycle.
These factors then inform the size, configuration, and capabili-
ties required of the software sustainment infrastructure.

A critical workforce challenge is the need to reconsider
current legislative and policy mandates concerning the
organic and contractor share of sustainment across the DoD
enterprise [6]. The pace of technological change—coupled
with the continuous need to deliver greater performance to
the warfighter at an affordable level of investment—creates
significant pressure to assess, at the DoD-enterprise level,
how to plan, organize, and perform software sustainment.
This assessment should create more effective, efficient, and
continually refreshed software-sustainment strategies and or-
ganizations, and the alignment of those organizations around
portfolio and product-lines.

The Importance of Architecture in Enabling Effective
and Efficient Sustainment

Software variability inevitably grows in legacy systems unless
a concerted effort is made to rein it in. Unchecked, it becomes
increasingly hard to avoid adding unnecessary variability, re-
implementing variation mechanisms more than once, selecting
incompatible or awkward variation mechanisms, and missing
required variations. This bloat can be overcome through explicit
attention to architectural features and encapsulation of the vari
ous separate dimensions of variability [12], which is a principal
feature of software architecture [13].

In modern software-reliant systems, the concept of architec-
ture includes commitments regarding the structure and content
of the interactions among system components [1]. Structural
commitments generally focus on which components can interact
and how information exchanged between components is repre-
sented, scaled, and transmitted via data models and protocols.
Other commitments may include critical quality attributes, such
as performance and availability expectations, security consider-
ations, usability, and so on.

In short, architecture is the set of critical design commitments
that regulate what may and may not happen within an overall
system [12]. There are two key perspectives on architecture that
are essential for effective and efficient software sustainment:

•	 From a management perspective, architecture embod-
ies anticipation of change: in the rapidly evolving technology
infrastructure, in capabilities that will be delivered to users over
a period of 5 to ten years, and in policy and business rules.
Interoperability problems are evidence of missing or inadequate
architectural planning, often compounded by misaligned incen-
tives among development teams or contractors.

•	 From a technical perspective, architecture provides a frame-
work for coordinating data exchange within an enterprise and for
systematically addressing quality attributes. Good architectural
designs anticipate change by encapsulating variability to reduce
cost and risk. In this approach, change-prone areas (such as
hardware and communication infrastructures) are accessed
via stable interfaces whose implementations can be replaced
without undue side-effects on other software components.
Many software patterns [13][15] exist entirely for this purpose.

Architectural decisions thus regulate the overall interplay
among systems within an enterprise. In many enterprises,
“architecture” may be the result of incremental decisions over
time, where a sequence of local decisions determines overall
organizational outcomes, for better or worse.

Failure to attend to architecture often leads to the loss of intel-
lectual and configuration control that is manifested via terms such as
“software rot” or “bloatware.” In the absence of an architecture-cen-
tered approach, the DoD will face “sticker shock” because software
sustainment costs are unlikely to decrease by shrinking inventory
alone. For example, since the cost drivers for software sustainment
relate more to the (combinatorial) number of configurations and vari-
ants, approximately the same level of effort is needed regardless of
whether there are 100 or 10,000 hardware platforms.

To address these issues, the DoD needs different strategies
for understanding and alleviating rising software sustainment
costs by considering architecture-based approaches early

CrossTalk—January/February 2014 31

LEGACY SYSTEM SOFTWARE SUSTAINMENT

in the system-acquisition process. Architecture must there-
fore be an explicit consideration in the systems engineering
trade-off process in advanced development planning and the
technology development phase of the acquisition process. In
particular, sustainment strategies based on managing software
commonality and variability via software product lines should
be considered when conducting systems engineering trade-off
analyses [12].

Workforce Challenges Associated with
Software Sustainment

In addition to the technical and economic challenges dis-
cussed above, the DoD faces challenges with recruiting, training,
and retaining an efficient, productive, and continually refreshed
workforce of engineers and technical managers to meet its
sustainment needs [1][6]. Effective software sustainment requires
this workforce to have expertise in older programming languages,
operating platforms, and tools. It must also have deep domain
knowledge, software architecture knowledge, and a full appre-
ciation of the emerging software technologies that will form the
basis of reengineered systems. More experienced members of
the DoD workforce tend to possess this expertise, so retaining
and replenishing this critical human resource is essential.

In general, the DoD’s software sustainment activities rely on a
combination of in-house expertise (so-called “organic sustain-
ment”) and external capability (accessed through contracting,
consultancy, or advisory panels). A base of capable in-house
expertise is essential in any technology-intensive organization,
even those that outsource the bulk of actual technical work. In-
house experts help ensure an organization is a smart customer
on development projects. For example, these experts can iden-
tify needs and opportunities, create and manage relationships,
structure incentives, evaluate risks and costs, and otherwise
assure that the external (and internal) relationships are techni-
cally sound and aligned with organizational interests.

In-house expertise is particularly essential for DoD programs,
program offices, and services to address architectural sustain-
ment issues that transcend individual systems, development ac-
tivities, and acquisition programs. These broader issues involve
how separately managed, contracted development efforts might
interact. While external advice can (and should) be sought and
followed, it is necessary—from the standpoint of vision, strategy,
and accountability—that the core technical leadership come from
within the organization [1][8].

For in-house sustainment activity, a high-quality technical work-
force is essential to support rapid, informed, and agile responses
to evolving mission requirements, operational needs, and changes
in technology infrastructure. Fewer barriers exist for in-house
teams to engage in modern iterative and incremental develop-
ment practices to support rapid evolution. Unfortunately, although
some in-house organizations [5] are dedicated to sustaining
software, their efforts are often not as well recognized (or funded)
by the DoD, especially in the face of an aging DoD inventory [2].

The DoD must also address other critical deficiencies to
achieve and sustain a high-quality workforce. For example, soft-
ware acquisition management and software engineering are not
DoD career fields, even though expertise in these domains has

proven critical to success. There is thus an urgent need to ad-
dress critical and emerging workforce challenges stemming from
current legislative and policy mandates concerning the organic
and contractor share of sustainment across the DoD enterprise.

The rapid pace of technological change, coupled with the ever-
increasing need to deliver greater performance to the warfighter
at an affordable level of investment, creates significant pressure
to objectively assess at the DoD enterprise level how to plan,
organize, and perform software sustainment. This assessment
should seek to create more effective, efficient, and continually re-
freshed software sustainment strategies, organizations, and align
ment of those organizations around portfolio and product-lines.

Key R&D Activities Needed to Address Software
Sustainment Challenges

The software research community has devised various ap-
proaches to improve software sustainability. For example, tools
for detecting software modularity violations help identify eroding
design structures (referred to whimsically as “bad code smells” by
software developers and managers) so they can be refactored.
Likewise, intelligent automated regression testing frameworks
help ensure that changes to legacy software work as required
and that unchanged parts have not become less dependable.

Over the past several decades, the SEI has created methods
and guidelines for sustaining, migrating, and evolving legacy sys-
tems. For example, the SEI has devised strategies for modernizing
legacy systems and reusing legacy components. These strategies
employ risk-managed, incremental approaches that encompass
changes in software technologies, engineering processes, and
business practices. In addition, the SEI has created techniques for
measuring the effectiveness of software-sustainment practices.
These techniques can help decision-makers select between (1)
continued sustainment versus replacement or (2) which of the
multiple (redundant) legacy systems to keep and which to retire.

Conclusion
Despite its strategic importance to the DoD, software sustainment

has received relatively little visibility and emphasis as an enterprise
policy, program, and resource issue. The fact that our legacy weapon
systems provide competitive advantage to the warfighter is due to
the dedication and skills of the software sustainment workforce,
both government and contractors, located at the services’ software
depot centers and at contractor facilities. We contend, however, that
a greater sense of urgency is required to ensure DoD’s sustainment
capabilities can continue to deliver warfighter capability in the face of
significant fiscal, technology, and workforce challenges [3].

This article just scratches the surface of the complex land-
scape of policy, program, people, and technical design and infra-
structure challenges associated with sustaining software-reliant
DoD systems. Other vexing, non-technical challenges affecting
sustainment and total ownership costs are that DoD contracts
often fail to procure source code, necessary licenses, and tech-
nical data rights, as well as technical data on design artifacts,
testing facilities, and procedures during the acquisition process
[10]. The DoD needs to adopt a holistic approach to software
sustainment that addresses the technical, management, and
business perspectives in a balanced manner.

32 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Mr. McLendon currently serves as the Associate Director, Software Solutions
Division for the Software Engineering Institute, Carnegie Mellon University.
Prior to assuming this position, Mr. McLendon served as Senior Advisor in the
Office of the Assistant Secretary of Defense for Systems Engineering. He
also served as a principal in the Office of the Assistant Secretary of Defense
for Program Analysis and Evaluation and in the Office of the Under Secre-
tary of Defense for Policy. He later was a Professor at the Defense Systems
Management College. He served as a career Air Force officer in a range of
leadership and management positions in system and technology development
and acquisition as well as the federal level and the private sector.

SEI Carnegie Mellon University
4500 Fifth Ave
Pittsburgh, PA 15213
E-mail: mmclendon@sei.cmu.edu

Dr. William L Scherlis is a Professor in the School of Computer Science at
Carnegie Mellon. He is director of CMU’s Institute for Software Research (ISR)
in the School of Computer Science and the founding director of CMU’s PhD
Program in Software Engineering. From Jan 2012 to January 2013 he served
as the Acting CTO for the Software Engineering Institute. His research relates
to software assurance, software analysis, and assured safe concurrency. Dr.
Scherlis chaired the National Research Council (NRC) study committee on
defense software producibility, which released its final report Critical Code:
Software Producibility for Defense in 2010. He is a Fellow of the IEEE and a
lifetime National Associate of the National Academy of Sciences. Dr. Scherlis
joined the Carnegie Mellon faculty after completing a Ph.D. in Computer Sci-
ence at Stanford University, a year at the University of Edinburgh (Scotland) as
a John Knox Fellow, and an A.B. at Harvard University.

SEI Carnegie Mellon University
4500 Fifth Ave
Pittsburgh, PA 15213
E-mail: scherlis@sei.cmu.edu

Dr. Douglas C. Schmidt is a Professor of Computer Science and Associate
Chair of the Computer Science and Engineering program at Vanderbilt Univer-
sity. He is also a Visiting Scientist at the Software Engineering Institute, where
he served as the CTO from September 2010 to December 2011. Dr. Schmidt
has published 10 books and more than 500 technical papers on software-re-
lated topics, including patterns, optimization techniques, and empirical analyses
of object-oriented frameworks and domain-specific modeling environments that
facilitate the development of distributed real-time and embedded middleware
and mission-critical applications running over data networks and embedded
system interconnects. Dr. Schmidt received B.S. and M.A. degrees in Sociology
from the College of William and Mary in Williamsburg, Virginia, and an M.S. and
a Ph.D. in Computer Science from the University of California, Irvine (UCI).

SEI Carnegie Mellon University
4500 Fifth Ave
Pittsburgh, PA 15213
E-mail: dschmidt@sei.cmu.edu

ABOUT THE AUTHORS REFERENCES
1.	 National Research Council’s Critical Code: Software
	 Producibility for Defense report, <http://www.nap.edu/
	 openbook.php?record_id=12979&page=R1>
2.	 National Research Council’s, Aging of U.S. Air Force Aircraft
� report <http://www.nap.edu/catalog.php?record_id=5917>
3.	 Ashton Carter, “Better Buying Power: Guidance for
	 Obtaining Greater Efficiency and Productivity in Defense
	 Spending,” Memorandum for Acquisition Professionals,
	 September 14, 2010.
4.	 Mary Ann Lapham, “Sustaining Software-Intensive
	 Systems,” SEI technical report,
	 <http://www.sei.cmu.edu/library/abstracts/
	 reports/06tn007.cfm>
5.	 United States Air Force Software Technology Support
	 Center, “Guidelines for Successful Acquisition and
	 Management of Software-Intensive Systems: Weapon
	 Systems, Command and Control Systems, and Management
	 Information Systems (Condensed Version 4.0).,” Ogden Air
	 Logistics Center Hill AFB, UT, February 2003.
6.	 Air Force Science Advisory Board’s Sustaining Aging Aircraft
	 report, <http://oai.dtic.mil/oai/oai?verb=getRecord&meta
	 dataPrefix=html&identifier=ADA562696>.
7.	 Report from the Defense Science Board Task Force on
	 Defense Software, November 2000.
8.	 Report of the Defense Science Board Task Force on Mission
	 impact of Foreign Influence on DoD Software,
	 September 2007.
9.	 Teri Takai, et al., “Department of Defense Cloud Computing
	 Strategy,” July 12, 2012.
10.	Nick Guertin and Brian Womble, “Competition and the DoD
	 Marketplace,” Proceedings of the Ninth Annual Acquisition
	 Research Symposium, April 30th, 2012.
11.	Lind Northrop, et al., Ultra-Large-Scale Systems:
	 The Software Challenge of the Future, Software Engineering
	 Institute, 2006.
12.	Paul Clements and Linda Northrop, Software Product Lines:
	 Practices and Patterns, Addison-Wesley, 2001.
13.	Frank Buschmann, et al., Pattern-Oriented Software
	 Architecture: A System of Patterns, Wiley, 1996.
14.	Robert Ferguson, “An Investment Model for Software
	 Sustainment,” SEI Blog, July 22, 2013.
15.	Erich Gamma et al., Design Patterns: Elements of Reusable
	 Object-Oriented Software, Addison-Wesley, 1995.
16.	Robert J. Ellison, Christopher Alberts, Rita Creel, Audrey
	 Dorofee, and Carol Woody, “Software Supply Chain Risk
	 Management: From Products to Systems of Systems,”
	 CMU/SEI-2010-TN-026.

mailto:mmclendon@sei.cmu.edu
mailto:scherlis@sei.cmu.edu
mailto:dschmidt@sei.cmu.edu
http://www.nap.edu/openbook.php?record_id=12979&page=R1
http://www.nap.edu/openbook.php?record_id=12979&page=R1
http://www.nap.edu/catalog.php?record_id=5917
http://www.sei.cmu.edu/library/abstracts/reports/06tn007.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06tn007.cfm
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA562696
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA562696

