
CrossTalk—May/June 2014 9

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Phillip Glen Armour, Corvus International Inc., QSM Inc.

Abstract. What is the optimal amount and level of detail for predefined and
documented (and enforced) process for systems development? This question has
been debated for decades by software practitioners, computer theorists, and those
responsible for resourcing the business.

The Problem of
Prolific Process

and each developer to make it up how they work each and every
time they build something is a recipe for anarchy. We did that
30 years ago and it did not work very well; in fact the move to
big process was fueled in part by the erratic results laissez-faire
development gave us. And then the move to Agile was driven by
the reaction to the stifling overhead of big process.

It seems that developing process documentation at just the
right level is hard. I described this difficulty in the Second Law of
Software Process: We can only define software process at two
levels: too vague and too confining [1].

The irony is intentional and it reflects the dilemma we have
when writing process:

• Too Confining: if the written process attempts to define
all activities under all conditions for all projects building any
kind of system, or even a reasonable subset of the same, it
becomes very large. Simply because it is very large people will
be reluctant to read it. It also becomes difficult to dig through
the mountain of documents to find the relevant bit of process
just when it is needed. Even more problematic is the constraint
that overly large process may enforce. While detailed process is
helpful in defining what has occurred before, it cannot explicitly
define how to build or test something that is new. In fact,
defined process tends to force solutions similar to those that
have been built before—specifically the solution scenarios that
were used to build the process. It is this inhibiting of the creative
process that most lightweight process advocates dislike.

• Too Vague: if the written process consists of high-level
guidelines, a loose meta-process framework within which
developers operate freely, ignoring it, modifying it and adjusting it
as they wish, the process does not add much value. That is, working
with the process and without the process is pretty much the same
thing. In this case people complain that the process does not
provide useful guidance and direction—the process has no “meat.”

Balancing Act
Caught between the hard place of too much documented

process and the rock of not enough, how can we find the sweet
spot? It is a balancing act. But we also need to take a look at
what process is, how we get it, what we expect it to do for us,
and how we make sure it works. For an example of how balanced
process might be built let us go back to October of 1935.

Failing Fortress
On its second evaluation flight Boeing’s Model 299 (the

prototype of what would become the B-17 Flying Fortress heavy
bomber) crashed. It was flown by Major Ployer Peter Hill who, as
one of the Army Air Corp’s most experienced test pilots, had flown
and evaluated nearly 60 of the Air Corp’s newest aircraft. The crash
was caused by the pilot’s failure to disengage the B-17’s gust locks
(devices designed to lock control surfaces while the plane was
parked). In dealing with the novel and complex demands of prepar-
ing and flying an experimental four-engine bomber, Hill forgot a
very important step. He just forgot and it cost him his life.

The solution to this kind of problem was not more experience
or more training; Major Hill and his co-pilot had plenty of both.
The solution was simple process. It was from this beginning
that the pilot checklist was born: a simple list of things to do to
ensure the plane was set up correctly to fly safely.

Balancing the Quantity and
Quality of Documented Process

Introduction
Should we have more process quantity, more process detail,

more process options (and more rigorous enforcement of
process)? Or should we just leave developers to figure out what
they need to do as and when they do it? On one side we have
the view that if process is good, then more process must be
better—such philosophies can generate enormous volumes of
paper-based process documents or their electronic equivalent.
On the other hand there are advocates of process so lightweight
it hardly exists; with this approach developers are pretty much
left to their own devices to work out what to do.

“Big process” assumes that developers will (a) read the
immense amount of process documents before or during
development (b) understand what is written (c) figure out
how to apply it to their situation and (d) make any necessary
process adjustments while staying true to the original intent if
not the letter of the documented process. This approach also
assumes that all this adherence to pre-defined process will
make for higher quality systems or make the process faster and
less costly or provide a better basis for system compatibility,
extension or maintenance. The advocates and authors of such
process rarely seem to concern themselves with any negative
effects on the morale, creativity, or sense of achievement the
developers might experience when they work this way.

On the other hand, those who espouse very lightweight (if any)
process assume that developers will (a) actually remember all the
activities needed to build a system (b) consistently apply all these
steps (c) apply their innate creativity (now liberated by freedom
from oppressive process) to more than compensate for anything
they miss. These advocates also assume that the developers will
have the requisite experience and skill to do all this.

The Second Law
It is clear that the answer lies somewhere in the middle.

Predefining everything we should do to build a system is just
not possible. If it were, we could automate the process and we
would not need people at all. However, allowing each project

10 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Floating Flight 1549
At 3:27 p.m. on January 15, 2009, US Airways flight 1549

struck a flock of Canada Geese at 2,800 feet on its climb
out from La Guardia airport in New York City. Immediately
after impact, Captain Chesley Sullenberger took the controls
while First Officer Jeffery Skiles began working the three-
page emergency checklist on how to restart the engines. Four
minutes later, Captain Sullenberger landed the unpowered 42-
ton aircraft in the Hudson River to the west of 50th Street.

The incredible feat of safely landing a huge airplane on water
at around 150 mph received widespread publicity and the pilots
and crew were accorded well-deserved accolades. The use of
the emergency checklist was not so well known.

Essential Process
The story of flight 1549 gives us clues to what constitutes

good process and where process has its limits.
•	Value Added: given the criticality of the situation, the pilots

did not have the latitude to make a mistake in attempting the
engine restart. Simply forgetting one step, or working steps in
the incorrect order, might have had catastrophic consequences.
When stress is high the human brain may not function flawlessly
and a simple reminder can help avoid a lot of problems. With
their passengers and their own lives at stake, the pilots would
not have used any process that did not add immediate value.

•	Routine, Well-defined: the restarting of a jet engine is
mostly done the same way each time. There is no value to be
added by experimenting with novel ways of powering up a jet
turbine and, in this situation, there could have been a lot to lose
by using an ineffective process. Process works best for things
which are precise, repeatable, well-defined and for which there
is no point in doing things differently.

•	Not for “New”: Captain Sullenberger did not use a checklist
to actually land the plane in the water; no such checklist exists.
Even if a set of rules for landing a large commercial jetliner in a
river next to a major metropolis did exist, the crew would not have
had time to reference it and land the plane. When something is
“new” there are intrinsic limits to what process can achieve.

•	Not if Too Many Specific Conditions: the pilots had to
deal with an enormous amount of information on the wind, the
behavior of the plane, communicating with the cabin crew, the
passengers and the Air Traffic Control. The combination of
these conditions was quite specific to this particular situation.
Any “process” would necessarily have to abstract the situation
to a set of generalized conditions and the pilots, with only
four minutes available to them, would have had to decode
these generalizations. Even when there is previous experience
available and the situation is not entirely “new,” if there are
specific conditions that apply to a particular situation, attempting
to apply a pre-defined process will take more time and will be
considerably less valuable.

•	Succinct: there are many valuable books on flying airplanes
in difficult situations. These pilots did not have time to reference
and process them. The engine restart checklist contains only
and exactly what is needed to restart an airplane engine under
emergency situations.

Process works best when it contains only what is essential.

Novel Projects
To some extent, software projects are always “new.” We are

always building something we have not built before—otherwise
we should simply use what we built last time. That said, much
of what we do in the business of software is repetitive. There
are many aspects of our work that can and should be done
the same way over and over. But there are also things for
which previously defined process does not quite apply at the
prescriptive level. Perhaps this is where we can define the
boundary of process and extemporization.

What We Know, What We Do Not Know
Building systems consists of two kinds of work: the

application of what we already know and the discovery of what
we do not know (followed, of course, by its application). By
“application” I mean the translation of that knowledge into the
executable form we call “software.” What we already know, we
can call “Zero Order Ignorance”—provably correct knowledge (or
its inverse, lack of ignorance).

What we do not (yet) know can be divided into several
categories: those things we know we do not know or “First
Order Ignorance” (where we have a well-formed question, but do
not have the answer) and what we do not know we do not know
or “Second Order Ignorance” (where we do not know enough to
form even a good contextual question) [2].

Well-defined prescriptive process can work well for Zero
Order Ignorance (0OI) and some of First Order Ignorance
(1OI), but it cannot work well for the more complex 1OI and for
Second Order Ignorance (2OI). Since software projects contain
all of these, the process must flex.

Well-defined
Prescriptive process can be developed and should be used

for those aspects of systems development which are boring
and repetitive and for which there is no value in experimenting
or learning a new way of working. A good example of this
might be the check-out/check-in of code from a configuration
management system. Once a good process has been defined,
there is little point in doing it in any other way. Indeed, a lot
of bad things might happen if people tried to circumvent the
process. These processes always deal with 0OI or the simpler
1OI (for which the well-defined questions typically have a menu-
driven answer selection). Here there is value in process.

Innovative
For those aspects of system development that are novel, the

process must be intentionally sparse. Developers must be allowed
to explore options free from restrictions that might constrain the
solution. The developers are dealing with the remainder of their
1OI and also what they might be quite unaware of—their 2OI.
Here there is value in explicit lack of process.

Process Transition
As systems development progresses, there can be a natural

transition between processes. For example: when we start

CrossTalk—May/June 2014 11

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

testing a system, we do not (and cannot) know exactly what
to test since to some extent we are looking for things we do
not know are not there [3]. Much of the time we are seeking
to expose those things we do not know about the system
(like what it does do that it should not do). To design tests
and test processes, we cannot be highly prescriptive since we
do not know what we are looking for. We might have general
indications: that tests should focus on predicate boundaries
or cover representatives of all (known) input classes, but we
cannot say exactly where we will find defects. This process
requires opening up the process to the innovative creativity of
the testers.

However, once tests have been created, run, and proved,
testing can be transitioned to the usually highly prescriptive
process we call “regression testing.” Setting up an automated
regression process before the knowledge is obtained is
ineffective and it might force early testing into a high restrictive
process mold that constrains testing to the point where it
doesn’t find what it needs to find.

Write, Test, Measure, Reduce
Good process focuses on the value it delivers. This depends

on what has to be done: old or new? Repetitive or innovative?
Restart the engines or land in the Hudson? Good process does
not over-prescribe where that is not valuable. But there are
other aspects of process definition that are often missed:

•	Test the Process: in many decades of working in software
I have rarely seen documented (i.e., on paper) actually tested to
see if it works. Paper documented process is often written by
people who do not actually use the process they are defining.
Even more often these process writers themselves do not use
a well-defined, tested and measured process—which is a little
ironic. Commercial pilot checklists are written by a team of pilots,
aircraft primes, engine manufacturers, and the FAA. They are
written by people who use the process. Once the checklists are
created they are tested in simulators and in the field to ensure
they provide the value that is essential to keeping people safe.

•	Measure the Process: software process is rarely
measured to find out if it does, indeed, reduce defects, speed
up the process, improve the lot of maintenance staff or any
of the other attributes used as rationale for writing, using, and
enforcing the process.

•	Reduce: a further step is necessary and that is to reduce
the process. As pilot checklists are tested and the effectiveness
measured, much effort goes into making them more concise,
more pertinent, more valuable, and smaller.

Prolific Process
This intentional and careful reduction of process does not occur

in software development—quite the opposite. Once documented
process is created, it tends to grow and grow as it attempts to
deal with more and more different conditions, to identify more and
more different situations, and to cover wider ranges of application.
The documented process gets bigger and bigger, more and more
complex, requiring more and more effort to read, to understand, and
to apply. In doing so it becomes more and more unwieldy and less
and less valuable and so less likely to be used at all.

Projects do not crash as spectacularly as the B-17 prototype.
But they do crash. To bring them in to a safe landing, we need
process that truly supports the business we are in; both the
boring repetitive parts and the interesting innovative aspects
of what we have to do. The process for each of these aspects
should be designed for and support the true nature of the work;
such process needs to be more focused and more concise, we
should test it and measure it in operation to ensure it is really
delivering value.

And we should make it smaller.

ABOUT THE AUTHORS
Phillip Armour is a Senior Consultant at Corvus International
and a Principal Consultant at QSM Inc. He has over
four decades of experience in software and systems
development, was Master Instructor at Motorola University
and on the external faculty of two graduate schools. He is
the author of The Laws of Software Process (Auerbach
2003) and has penned the column “The Business of
Software” at Communications of the ACM since 2000.

Phone: 847-438-1609
E-mail: armour@corvusintl.com

REFERENCES
1.	 Armour, P.G. The Laws of Software Process CRC Press LLC 2004. p.13
2.	 Ibid p.8
3.	 Armour. P.G. “The Unconscious Art of Software Testing” Communications of the ACM. Vol.48 No.1 January 2005

mailto:armour@corvusintl.com
http://www.dhs.gov/cybercareers
http://www.usajobs.gov

