
CrossTalk—May/June 2014 25

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Andrew Mellinger, SEI

Abstract. We live in world that will always be full of problems. Changing conditions
and advances in science and current solutions are constantly providing even more
opportunities daily. While these areas may share similarities to previous problems,
the essential fact that they have not been solved means that creativity is required
to provide a new solution. It is this need for creativity that prohibits machine and
algorithms from dealing with this issue and that we will need a programmer to
translate these solutions into executable form.

Programming
Will Never
Be Obsolete

degree to which they directly interact with code. Programming
is the activity that is closest to the code, while engineering is
generally the farthest. Programming is where the developer
picks and chooses from the available technologies, patterns,
accumulated practices, techniques and their experience to “best”
satisfy the complex interaction of requirements.

It is this fundamental interaction with the code that
differentiates the actual act of programming from other
activities. Programming should be not conflated with the
physical act of typing, but equated with the “last mile” of actually
coding, or expressing the intent in an executable language.
Some would argue that this is simply a translation process,
but for anyone who has worked on a project of substantial
size, it is much more. In simple natural language translation the
input and outputs of both are at the same semantic level. For
example, if I am translating “My hovercraft is full of eels” from
English to Swedish, I am trying to say the exact same thing in
both languages. In programming there is a change of semantic
level. For example, the requirement may be to “support undo”
which implies a variety of user interface interaction points,
interactive behaviors, and changes to storage semantics. One
may argue that undo is a complicated concept and should not
be handed to a “programmer” but in practice projects frequently
hand problems of this complexity to a developer, or the person
who is touching the code. Modern frameworks have a lot of
infrastructure to support complex patterns like undo, but there
are still a wide variety of decisions to be made by the developer
with regards to the domain specifics.

Eras in Technology
Technologies rise and fall in popularity, and while they drive

business growth they also require a tremendous amount of
programming. New technologies arrive with a bang and drive the
economy for some period of time through tooling, employment,
and products. These periods, or “eras,” vary in size, length, and
overall impact. Eras overlap with those of other technologies
such as different languages, software platforms, hardware
architectures, peripherals, and development methods that
draw an incredible amount of innovation. Consider the iPhone,
which was introduced in 2007 and opened up new economic
and technological markets. At that time there was a huge
demand for Objective-C/Cocoa programmers and people who
understood the special nuances of mobile device interaction
and their interfaces. The iPhone impact had a ripple effect
through the tech industry and ushered in Android technology,
which introduced an increased demand for Android/Java
programming. Then the tablet arrived and created a tablet/
phone hybrid tsunami.

During each technological era we see cutting edge
technologies move from the inventors and innovators to
early adopters and eventually adoption by the masses. Most
successful eras possess similar qualities such as a wealth of
new ideas, financial investment, fierce competition, and general
uncertainty. How does a developer live through this cycle?
We are bombarded by a wealth of new technologies touted
by vendors, researchers and volunteer communities. Which
do we choose to learn? What do we follow? It is impossible to

Programming Is and Always Will Be Important
We have all heard the argument that programming will be-

come obsolete. Notions like “it is a dead end career” or “salaries
will drop” are constantly plaguing the viability of the field. A
quick web or periodical search will return articles on the topic
from at least as early as 1984, and there are new ones being
posted every day. They range from scholarly articles such as,
“Can fifth-generation software replace fallible programmers?” to
modern blog posts that cut to the chase, “Is Programming Really
as Future Proof a Profession as People Think?” [1] [2].

The issue is raised for a variety of reasons, some of which
are honest and some are disingenuous. I prefer to focus on the
genuine concerns of developers, technologists, and academics
that the end of programming and their careers will be brought
on by automating programming tasks or the end of a particular
technology on which they depend. I will ignore disreputable claims
that the problem can be solved by adopting a certain vendor’s
technologies or getting particular platform certifications.

Often, people will see a decline in a particular technology or
method and will prophesize the fall of programming generally,
rather than as it pertains to the specific technology. The need
for programming may decline for programmers near the end of
a specific technology’s lifecycle, but the general technological
challenges are moving targets, and therefore, we will always
have new problems.

When discussing programming, some people are referring
to the act of typing in the code, and some mean the entire
software development lifecycle. This article includes all aspects
of development and will use development (developer) and
programming (programmer) synonymously. Programming,
development, and engineering are highly related activities but
focus on different dimensions of the overall software production
process. The difference between these high level activities is the

26 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

review, much less understand every language, framework, tool
or platform that arrives and we need to choose some that keep
us fresh and might help our current job. At some point in each
technological era, the cutting edge becomes not so sharp and
the leaders are identified. This is the time period that makes it
easier to choose which technologies you should learn and adopt.
Eventually, the era progresses to the point where the technology
area enters the mainstream. This is when we typically see the
publication of books on the subject, and finally the emergence
of the “standard” technologies, protocols, or methods.

Over time these technologies become commonplace when
point-and-click tools, or off the shelf packages that are suitable
for a vast majority of the instances. As is a programmer’s nature,
when we see something that is “routine” we write a script or app
or framework to do it faster, cheaper, and better. This is when
you will see a decrease in the need for the specialized skills and
training of a programmer. However, this will also usher in its own
set of doomsayers and charlatans. What is becoming “obsolete”
or in less demand is the need for a particular set of skills, not for
technology problem solvers.

The Programmer’s Role
When I interview people for programming positions, I divide

them into two categories: programmers who focus on a particular
technology and programmers who focus on the underlying
principles of technology. A programmer that advertises themselves
as an “insert-favorite-technology-here developer” instead of as a
“software developer” is more likely to learn one or two skills the
market needs and work exclusively within those roles. I refer to
this type of programmer as a “technician” as opposed to a “general
purpose developer.” The technicians are often the people who
argue that their favorite technology is the solution to all of your
problems. While they may be masters at that technology (or a
handful of them), their fate is inevitably tied to it. Do not get me
wrong, these can be tremendously creative, talented, and smart
people, but they have a very limited focus. When that technology
declines they will find themselves having difficulty finding work and
will blame it on the fact that “programming is dying” when in reality
they have not stayed relevant.

General purpose developers are not tied to a technology,
they have tied to technology. They get bored working with just
one technology, which is good. This drives them to attempt to
automate things and make technology cheaper, faster, and
better. These developers are ready to move to new languages
or platforms as they become available because they are not
focused on one technology. Development requires decision
making and creativity, which are two things we cannot automate.
Granted, general developers may become focused (sometimes
obsessively so) on a technology for a while, but eventually
find the need to tie their work to a general computing and
technology problem. The ability for programming generalists
to be creative and apply fundamental programming principles
to build new technologies is the cornerstone that continues to
make them cutting-edge and essential to business growth.

Fundamentally, computers are good at doing what we tell
them to do. This means that someone must understand what

we want them to do in the first place. A software developer’s
fundamental job is to take knowledge and make it “executable”
or “actionable.” The job also requires discovery of this knowledge
through requirements definition, usability studies, domain
analysis and prototyping. Software architecture, design, and
coding all require a significant amount of analysis, reasoning,
and decision making. Consider that so many companies want
their developers to provide “revolutionary” products, and we can
see that creativity will be a requirement for years to come.

Essentials of Programming
We will not run out of problems to solve. Whether they are core

research problems or applying some set of solutions to a particular
job, we need to look at what the essential qualities of programming
are and why they will persevere. Even if we create a solution to a
problem, the solution itself is likely to create new problems.

In “No Silver Bullet—Essence and Accident,” Fred Brooks
argues that software development is so challenging that it will
require human intellect for a long time due to four fundamental
qualities: complexity, conformity, changeability and invisibility [3].
These qualities have not changed since he wrote the article over
25 year ago, and do not seem likely to change. It is these same
qualities that we are trying to use technology to solve, but it is
technology that keeps moving the problem ahead of our solutions.

On the implementation side alone, as we continue to discover
and learn more, we will always need someone to translate that
knowledge from the domain into something executable. We will
always need someone to fill that gap as there will always been
that point where a person can make an executable representation
but where it is not routine enough to automate. We will always
be encountering new problems and the sheer nature that they
are new problems means they have not been solved. Certainly,
many problems in that class may have been solved by many long
nights by developers, but not the general problem itself. Even
when reusable patterns exist such as a framework, technicians
will be required to encode a specific instance such as a particular
website or cloud instance for that problem.

When we take all of this into consideration, programming as a
creative work will cease to be needed when we have automated
all other creative knowledge work. We are more likely to make
lawyers, insurance salesman, or politicians obsolete before
programmers. One could argue that in the very far future once
we have discovered everything and can finally automate the very
last thing, that last job will be for a programmer.

Being a Developer in the Future
So what will programming be like in the future? At its core,

it will be like it is now. Developers will work to understand the
domain, do general problem solving and knowledge creation and
then instruct machines on how to execute these solutions. They
will need all the skills of the general developer and some under-
standing of their domain. And they will need to be able to learn
and adapt. Marc Andreessen argued in “Why Software Is Eating
the World” that as more and more things include a software
component, general software developers will always have new
problems to tackle [4].

CrossTalk—May/June 2014 27

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

What are the next possible technology areas? A quick glance at
the Gartner Hype Cycle can help us prepare [5]. Mobile and cloud
technologies are well underway, but that space is very broad and
deep with tremendous needs of usability, security, and big data.
We have barely scratched the surface with autonomy, ubiquitous
computing and the broad application of 3D printing; much less
the ones further out such as nanotechnology or biotechnology.
Some of these are not computing problems, at least how we
know it now, but will certainly require “programming” of some
sort. One can peruse modern science fiction to see how a
programmer’s world might be different in the years to come.

We live in a world that will always be full of problems. Chang-
ing conditions and advances in science and current solutions are
constantly providing even more opportunities daily. While these
areas may share similarities to previous problems, the essen-
tial fact that they have not been solved means that creativity is
required to provide a new solution. It is this need for creativity that
prohibits machine and algorithms from dealing with this issue and
that we will need a programmer to translate these solutions into
executable form. On the other hand, the specific technologies
will change as we routinize these tasks and climb the abstraction
ladder. Because of this, specific programming and programmers
may become obsolete, but new problems will always require new
solutions and general programmers to implement them.

Disclaimer:
Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center.

Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect
the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY
AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and
unlimited distribution.

Carnegie Mellon® is registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM-0000806

ABOUT THE AUTHOR
Andrew Mellinger is a member of the
technical staff at the SEI. His passion for
computing started at age 12 when he wrote
his first commercial piece of software for
the company where his father worked. He
currently focuses on data intensive scalable
computing, security informatics, cloud
computing, and adaptive and heterogeneous
architectures.

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
Phone: 412-268-5800
Toll-free: 1-888-201-4479
<www.sei.cmu.edu>

REFERENCES
1. Philips, R. Can fifth-generation software replace fallible programmers?
 Computerworld, v 18, n 29, 1D/27-30, 16 July 1984
2. Perry, Jon; Kupper, Ted Is Programming Really as Future Proof a Profession
 as People Think? Accessed November 2013
 http://declineofscarcity.com/?p=2557
3. Brooks, Frederick P. No Silver Bullet: Essence and Accidents of Software
 Engineering. IEEE Computer, vol. 20, pp 10-19, 1987
 <http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp>
4. Andreessen, Marc. Why Software Is Eating The World August 2011. <http://online.
 wsj.com/news/articles/SB10001424053111903480904576512250915629460>
5. Gartner, Inc. Last accessed November 2013

http://declineofscarcity.com/?p=2557
http://www.sei.cmu.edu
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://online.wsj.com/news/articles/SB10001424053111903480904576512250915629460
http://online.wsj.com/news/articles/SB10001424053111903480904576512250915629460

