
CrossTalk—July/August 2014 15

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Alistair Cockburn, Humans and Technology
Abstract. Disciplined learning, or “learn early, learn often,” updates naïve agile
development and traditional risk management, and safely replaces the dreaded catch
phrase, “fail early fail often.” Disciplined learning is a rich, creative and rewarding
endeavor, already in use in small pockets of excellence.

Disciplined Learning
The Successor to
Risk Management

changes can be made with lower cost. This is where creativity
and discipline come in.

Four Learning Topics
The team has (at least) four categories in which to learn:
•	 What they should really be building, never mind what

	 they thought they should build at the start.
•	 Whether they have the right people on the team,

	 and for those people, how best to work together.
•	 Where their technical ideas are flawed.
•	 How much it will cost to develop.

In the strategy shown in Figure 1, these are all learned late
in the project, around the time when the parts are integrated
and deployed, when the consumers finally give feedback on the
result. This learning arrives too late to benefit the product.

The disciplined learning approach is to apply the same
“broken” learning curve in very small doses, deliberately and
often, so that each step provides information that can be used
to adjust the four categories of learning. The payoff is not just
reduced risk in the final delivery, but the ability of the sponsors
to steer the final delivery in a fine-grained way, both in delivery
time and delivered features and quality.

Figure 2 illustrates the disciplined learning approach. The following
four sections describe strategies for learning in the four categories.

Introduction
Naïve agile development works remarkably well, given how

simple it is. It is less than optimal, however, and insufficient for
many situations. Disciplined learning adds to agile.

Traditional risk-management generally addresses how to
avoid failure rather than how deliver success. Disciplined learn-
ing updates risk management by incorporating some of the
principles of agile development.

Disciplined learning is neither obvious nor for the faint of
heart, but it is in active use by top teams in many disciplines,
who manage to deliver success in difficult circumstances.

Consider, as a reference point, the still-common way of working
in which a major integration or delivery occurs at the end of a long
period of work without integration or delivery (see Figure 1). It is
not necessary to be working in a waterfall fashion to have this
moment of integration or delivery in the project, so the curve need
not be ascribed to waterfall. It is a simply a common strategy.

Figure 1 shows time on the horizontal axis. The dotted line
shows project costs increasing steadily over time. The solid line
shows that learning progresses while the project teams work, talk,
design, but not in the major way that learning (and surprises) oc-
cur immediately after the moment of integration or delivery.

Learning occurs relatively late in the project, after most of the
cost has been accrued.

What we are after is how to learn earlier in the project, when

Figure 1. The typical “late-learning’ strategy.

Figure 2 Applying the principle: Learn Early, Learn Often.

Learn What Should Get Built
The most important and most difficult question is: Will people

like, buy and use what we’re building?
Normally, this question gets answered when it is too late. Re-

cently, however, strategies have come into usage that move this
learning process forward. The strategies are fairly simple, but
require discipline, patience, and a willingness to change course
based on the results.

Sample strategies are:
•	 Paper prototyping.
•	 Ambassador user.
•	 Early delivery.
•	 Empty or manual delivery.

Paper prototyping [1] and related strategies coming from the
user-centered design community [2] involve nothing more com-

16 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

plicated than putting a mockup of the product into the hands
of the consumer, who reacts to these early design thoughts.
Prepared at low cost, early in the development cycle, these
prototypes allow the development team to change their minds
about how to proceed.

An “ambassador user” is a friendly user to whom the team
can deliver an incomplete but growing product. This user usually
breaks the system within moments, and give valuable feedback
from his or her (limited) perspective. The difference between the
“ambassador user” and “paper prototyping” is that the ambas-
sador user is encountering the actual system as it grows, not a
mockup of the system.

“Early delivery” is a full deployment of the system with
reduced capabilities. The intention is to learn, first of all, what
is incorrect with the product as envisioned, but possibly more
significantly, how the presence of the product changes the
thoughts about what should be built in the first place. “Early
delivery” recognizes that once people start using a system, their
habits and needs change, often in unpredictable ways. Deliver-
ing a thin version of the system early allows the development
team to gather new input and adjust the priorities on what
should be developed.

The above are all standard albeit frequently ignored tech-
niques, found in the regular and agile literature.

The most interesting strategies to emerge in the last decade
are two documented and practiced in the lean startup commu-
nity: Empty and Manual delivery (my terms for them).

The “Empty Delivery” [3] strategy is particularly well suited for
online products. Initially, all that is detected is whether anyone
clicks on a link or accesses a feature. There is no implementa-
tion behind the façade of the click. Measuring these clicks, a
team can reduce or sequence the features developed to follow
those drawing the most attention. The system evolves in the
direction of maximum draw.

“Manual Delivery” is described in Eric Ries’ book, The Lean
Startup [4]. In this strategy, a team spends what may seem
to be excessive money even delivering products manually, for
the simple reason that manual procedures can be set up and
changed for very little cost. Delivering manually, the team can
change the product offering with every single purchase, evolving
to what the customer base indicates is really desired.

Adjust Design Decisions
Mistakes in design come from:
•	 Choosing technology that doesn’t work as advertised.
•	 Mistakes due to people not talking to each other, with

	 resultant mistaken assumptions about each other’s work.
•	 Inevitable omissions and mistakes in design.
These mistakes are discovered and repaired using strategies:
•	 Walking skeleton.
•	 Micro-incremental development.
•	 Spikes.
•	 Story splitting.

The “Walking Skeleton” strategy [5] calls for the team to con-
nect a thin path through the architecture. In creating this simple
but full system, they discover the first round of surprises in the

technologies they are using.
Once the system is thinly connected, the infrastructure and

functionality teams each adds onto their part of the system. It is
not uncommon to see the infrastructure team redesigning the
skeleton itself, while keeping the interfaces to the functional-
ity running (or forcing updates). This restructuring is one of the
costs of using the strategy.

Micro-incremental development is when teams integrate their
work every hour, half-day, or day. The shorter the time between
integrations, the faster they find mistakes, and the lower the
cost of making changes. A side benefit is that they are less
likely to change the same part of the design at the same time,
and so they do not need to check out and branch the design,
making integration easier, faster, and less error prone.

A spike [6,7] is a small, disposable piece of work created to
explicitly address the question, “Is there an obvious flaw in this
approach?” It is used to flush out interface mismatches as well
as various performance and scaling problems.

The difference between a spike and ordinary incremental
development is that ordinary incremental development is con-
ducted using full production conventions, with the assumption
that the work will be used in the final product. A spikes must
absolutely not be used in the final product; it is throwaway work.
Because the work is throwaway, it is always done in the most
rapid and effective manner possible with the sole purpose of
learning about the question at hand.

Some questions might seem impossible to move forward in
the schedule, such as the final conversion of the database. With
story splitting [8] a story is split into a learning (spike) piece and
a production piece. The spike is placed early to learn how to
address whatever difficulties might lie in it. Then the actual work
can be left until the appropriate moment in the schedule.

Learn to Work Together
Failure to deliver is sometimes due not to the people being not

correct for the assignment, but to them not having learned how
to work together. Tom DeMarco and Tim Lister refer to a “jelled
team” [9]. Three strategies help with creating a jelled team:

•	 Early victory.
•	 Walking skeleton.
•	 Simplest first, worst second.

The Early Victory [10] strategy is based on the work of
sociologist Karl Weick [11], showing that achieving results helps
people come to trust each other more, raises morale and helps
them perform better.

The “walking skeleton” already described produces an early
technical victory to the team and to the sponsors. The concept
is sometimes adjusted to implement and deliver a thin path
through the workflow of a company, with similar “early victory”
and technical learning for the delivery and work flow aspects of
the project.

The “simplest-first, worst second” strategy [12] is contrary to
the usual recommendation in the agile development world. The
usual agile advice is to build the highest business value first.
That strategy makes good sense once the team is functioning
well, social risks have been reduced, and the team is capable

CrossTalk—July/August 2014 17

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

and confident of being able to deliver whatever is of the high-
est business value. However, many conversations need to take
place before the team has reached that point. For this reason,
it is sometime useful to build something real but very simple, so
that they can adjust social habits in good time before the dif-
ficult parts of the project are reached.

Learn How Much It Will Cost
Two strategies help with learning the cost of a project:
•	 Core samples.
•	 Microcosm.

Tim Lister told the following story at a conference [13], “A
man wanting a pool built in his back yard calls in three con-
tractors to present estimates. The third contractor, instead of
presenting an estimate, tells the homeowner he will need to drill
and core sample in the ground, and will charge the man for that.
The homeowner complains, saying that the first two contractors
didn’t charge him for core sampling. The contractor responds
that he has no idea how the first two contractors could submit
a bid, since they don’t know what sorts of rock layer lies under
the lawn, but he couldn’t possibly put in a bid without having
that information. The homeowner now comfortable with the third
contractor, hires him for the work.”

To do this with a development project, isolate parts of the sys-
tem the development of which is not obvious and develop very
small elements within those areas. In that development, identify
what sorts of surprises lurk below the surface and understand
how difficult the work will really be. Carefully selecting such
“core samples” allows the team to develop a more reliable cost-,
time-, and resource estimate for the project.

Core sampling is the miniature version of the more general
“Microcosm” strategy [14], in which a mini-project is run for
the sole purpose of establishing a sound estimate. A full
Microcosm project can be set up to test the productivity of
a new development team (think off-shoring, in particular), as
well as to test the learning speed of staff with new technolo-
gies, to benchmark the productivity of expert versus ordinary
or new developers.

Whereas a core sample effort is intended to take hours to
days, a full Microcosm project may take weeks to carry out, and
should therefore only be used for larger development efforts.

Creating a Plan
In the light of these strategies, the creation of a project plan is

rather different than before.
Disciplined learning calls for merging learning steps from the

four categories above with requests for growth of business val-
ue as is standard with incremental development. Business value
and learning are artfully interleaved into a sequence of work
assignments designed to reduce risk, deliver crucial information,
and develop product capability in an “optimal” way.

This is where creativity enters.
The quality of the plan is sensitive to the ability of the plan-

ners to identify and merge the learning needs and the upcoming
possibilities for income. As lessons are learned and new risks
and opportunities spotted, the project will need to be updated.

Trimming the Tail
A product feature actually consists of three parts, not just the two:
•	 Learning.
•	 Value.
•	 Tail.

The “tail” is the polishing and glossing that makes a feature
“wonderful.” Since not every feature is of equal value to the
buyers and users, many or even most features can be thinned or
trimmed back without damage to the system.

Attending to the presence of a tail, a team can arrange for a
minimum set of features to be at an “adequate” level of wonder-
fulness in plenty of time before final delivery, then spend the re-
maining time polishing and glossing those feature that are more
important than the others [15]. Alternatively, if time is short, they
can cut back on (trim) the polishing and deliver early or on time
[16]. This is described in the final section.

Reaping the Benefits
Disciplined learning delivers two benefits: early income and

the ability to trim the tail.
Early income from incremental development is well presented

in Software by Numbers [17]. A project can become self-
funding if it is delivered to paying users part-way through its
development, thus lowering the load on the sponsors.

Less obvious but equally valuable is the ability to not de-
velop less valuable aspects of the system. Here is the shortest
example, to give the idea:

When you are opening a new hotel, it may not be necessary
to shine the doorknobs before opening to the public. If it is nec-
essary to have shined doorknobs for the guests, it is probably
not necessary that all of the doorknobs need be shined.

You might trim any of four aspects of a system:
•	 Features.
•	 Feature details.
•	 Usage quality.
•	 Internal quality.

You drop an entire feature. A car (for example) might not
need a sunroof. The first iPads did not have phone modems.

If not an entire feature, you might be able to trim an aspect
of a feature: Given that your car must have all of the basics
(such as brakes), it might not need brakes with antilock braking.
A computer system might require searching capability, but not
auto-completion or auto-correction.

Recognizing that really smooth and easy to use features take
a lot of work, you might choose to skip improving usability for
selected features.

Finally, you can trim internal design quality and correctness.
The question is how much internal quality is needed for the
delivery in question.

If development has proceeded incrementally, attending to the
learning areas, then the team can deliver:

•	 Early, with reduced features or quality.
•	 On time, with either full or reduced quality,

	 depending on where development stands at that time.
•	 Or later, with enriched features or quality;
	 at the choice of the sponsors!

18 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Under usual project circumstances, the only choices are to
delay or work overtime. The “trim the tail” option is available only
for those who have worked in this more disciplined fashion.

Disciplined learning with trim-the-tail is one of the few ap-
proaches equally available to very small and very large projects,
fixed-price and floating-price projects. Here are three examples,
taken from real projects:

1.	Small, floating-price project: A web site development
involving only the web site owner and the programmer. After
several months of open-ended work, the web site owner wanted
the site delivered “soon,” and trimmed the tail back aggressively
and repeatedly until something much smaller than expected but
still suitable was deployed.

2.	Small, fixed-price project: The company in question always
bid small, fixed-price contracts of three- to six-months, involving
three to eight people. As usual, the bids were aggressive and the
teams typically ended late, missing the deadline or scope, with
resulting overtime from the developers and penalties at the end
of the contract. Jeff Patton [18] worked in the manner described
in this article, leaving the least important features to the end, and
deliberately thinning the less critical features, so that when the
contract period ended, it was clear to the customers that they
had gotten most of what they wanted. This produced the least
overtime, the smallest penalties, the highest customer satisfaction
and the greatest likelihood of receiving a follow-on contract.

3.	Very large development project: A company with several
thousand developers in several countries, working on a product
line with multiple variations, applications and releases. Under
normal circumstances, when they call for a full integration on a
particular date, every team starts to work overtime and jockey
for position not to be the one most behind schedule. The inte-
gration date keeps getting slipped back as team after team fails
to complete their work on time. Using the trim-the-tail approach,
each team would have in place the essential elements needed
for the integration, with only tail elements left unfinished. For
delivery, management would be in position to deliver slightly
less, on time, or slightly more, a bit later.

It is exciting to find a baseline strategy that applies to projects
of such different sizes and natures as just outlined.

Disciplined learning is not for the faint of heart. It requires
discipline, creativity and constant correction. The payoff is the
ability to get a team working together, discover what is needed
in time, deliver it early in order to create a self-funding project,
and finally, trim the tail at the end to meet inelastic deadlines.

ABOUT THE AUTHOR
Dr. Alistair Cockburn, one of the creators of the Manifesto
for Agile Software Development, was voted one of the “The
All-Time Top 150 i-Technology Heroes” in 2007 for his pio-
neering work in use cases and agile software development.
An renowned IT strategist and author of the Jolt award-
winning books “Agile Software Development” and “Writing
Effective Use Cases,” he is an expert on agile development,
use cases, process design, project management, and object-
oriented design. In 2001 he co-authored the Agile Mani-
festo, in 2003 he created the Agile Development Confer-
ence, in 2005 he co-founded the Agile Project Leadership
Network, in 2010 he co-founded the International Consor-
tium for Agile. Many of his articles, talks, poems and blog are
online at <http://alistair.cockburn.us>.

E-mail: totheralistair@aol.com

REFERENCES
1.	 <http://en.wikipedia.org/wiki/Paper_prototyping>
2.	 <http://en.wikipedia.org/wiki/User-centered_design>
3.	 BBC “Searching the internet’s long tail and finding parrot cages,”
	 <http://www.bbc.co.uk/news/business-11495839>
4.	 Reis, E., The Lean Startup: How Today’s Entrepreneurs Use Continuous
	 Innovation to Create Radically Successful Businesses, Crown Business, 2011.
5.	 <http://alistair.cockburn.us/Walking+skeleton>
6.	 <http://c2.com/xp/SpikeSolution.html>
7.	 <http://agiledictionary.com/209/spike/>
8.	 <http://alistair.cockburn.us/The+A-B+work+split>
9.	 Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and Teams.
	 New York: Dorset House Publishing Co., 1987.
10.	<http://alistair.cockburn.us/Advancedpmstrategies1-180.ppt>
11.	Karl Weick, The Social Psychology of Organizing, McGraw-Hill Humanities/
	 Social Sciences/Languages; 2nd edition, 1979.
12.	Alistair Cockburn, Crystal Clear: A Human-Powered Methodology for Small
	 Teams, Addison-Wesley, 2005. Also online at <http://alistair.cockburn.us/ASD
	 +book+extract%3A+%22Individuals%22>
13.	Lister, Tim, keynote at Agile Development Conference 2010.
14.	<http://alistair.cockburn.us/Project+risk+reduction+patterns>
15.	<http://www.agileproductdesign.com/downloads/patton_embrace_
	 uncertainty_optimized.ppt>
16.	<http://alistair.cockburn.us/Trim+the+Tail>
17.	 Mark Denne and Jane Cleland-Huang. Software by Numbers: Low-Risk, High-
	 Return Development. Prentice-Hall, 2003.
18.	Jeff Patton, “Unfixing the Fixed Scope Project: Using Agile Methodologies
	 to Create Flexibility in Project Scope,” in Agile Development Conference 2003,
	 Proceedings of the Conference on Agile Development, 2003, ACM Press.
	 Available online through a Google docs search.

http://alistair.cockburn.us
mailto:totheralistair@aol.com
http://en.wikipedia.org/wiki/Paper_prototyping
http://en.wikipedia.org/wiki/User-centered_design
http://www.bbc.co.uk/news/business-11495839
http://alistair.cockburn.us/Walking+skeleton
http://c2.com/xp/SpikeSolution.html
http://agiledictionary.com/209/spike/
http://alistair.cockburn.us/The+A-B+work+split
http://alistair.cockburn.us/Advancedpmstrategies1-180.ppt
http://alistair.cockburn.us/ASD+book+extract%3A+%22Individuals%22
http://alistair.cockburn.us/ASD+book+extract%3A+%22Individuals%22
http://alistair.cockburn.us/Project+risk+reduction+patterns
http://www.agileproductdesign.com/downloads/patton_embrace_uncertainty_optimized.ppt
http://www.agileproductdesign.com/downloads/patton_embrace_uncertainty_optimized.ppt
http://alistair.cockburn.us/Trim+the+Tail

