
28 CROSSTALK The Journal of Defense Software Engineering July 2000

Traditionally, requirements elicitation
techniques have not been used in the
open-source community. Part of the rea-
son can be attributed to how the commu -
nity works. To understand the possible
role that requirements elicitation may
have in open-source projects, an under-
standing of open source, definitions and
components, must be achieved first.

What is Open Source?
The way an open-source program

comes into being is that a developer writes
a program for his own use to meet his own
needs and then distributes it freely for the
rest of the community to use if desired [1].
This type of program is not necessarily
open source—it is just free software. There
is more to an open-source program; the
original programmer distributes the source
code along with the binary version of the
program and anyone willing to make an
effort can check the code before compiling
and running the program. Over the years,
the term open source has meant different
things. The Open Source Initiative (OSI)
was created to try to standardize the defi-
nition and even license programs.
According to the OSI definition, in order
for software to be truly open source, it
must exhibit certain characteristics, some
of which are:
• Free redistribution.
• Inclusion of the source code.
• Allowance for modifications of the

program/product distributed under the
same terms as the original.

• Restricted distribution of modified
source code to distribution of patches.

• No discrimination against individuals
or groups.

• No discrimination against a specific
field.

• Distribution of license.
The license attached to the product

applies to all parts of the product and
does not depend on a program being a

particular software distribution
One of the key points listed above is

that open-source software allows for
modifications to be made to the source
code of a program written by others. In
The Cathedral and the Bazaar, Eric
Raymond describes how an open-source
program is created [2]. A programmer
writes a (sometimes small) program and
distributes it, usually by posting in a
news group the location from which it
can be downloaded. Others download it,
use it, fix it (if warranted), and add fea-
tures so that it is more useful. The cre-
ation is a group effort, and the program
evolves (sometimes over a very short
time). One of the central points of this
paper is that the program users become
its co-developers.

The Growth of the Open-
Source Community

This kind of development has pro-
duced good and popular programs. Some
are so popular that commercial compa-
nies have started to support them.
Examples include Corel announcing its
intention to port its entire WordPerfect
Suite to Linux [3]. Other companies have
decided to try making use of the open-
source community to create products,
like Mozilla [4]. These announcements
and others have brought attention to the
open-source community and to the pro-
grams that are available for free to the
public. The public has responded by
using them. For example, Linux, one of
the most popular open-source operating
systems, has seen its user base grow to
more than 7 million people [5].

Netscape’s Mozilla project cannot be
considered the typical open-source proj-
ect, since it failed to comply with one of
the rules [2} of open-source projects by
not first releasing a working product to
the community for inspection and modi-
fication. Once the Web browser was suc-

cessfully working, the project picked up
speed. Netscape employees direct the
Mozilla effort, but many more individuals
work for free [4]. Netscape allows anyone
to contribute to the project. Even nonpro-
grammers can contribute by helping test
the product.

With the popularity of open-source
programs growing, more and more new
users will not be the same ones that have
typically used open-source programs in the
past [3]. Nor will they all be programmers.
These new users will not become co-devel-
opers, except for testing, unless they want
to learn how to program. However, they
still want and need functionality, and need
to be able to communicate that need to
developers within the open-source com-
munity. Users can always join in discus-
sions found in the pertinent newsgroups,
but often discussions are so technical that
they get lost or do not feel comfortable.

Bridging the Gap
The Free Software Bazaar was created

[6] to help these new members of the
open-source community reach the devel-
opers. It is a Web page where nonpro-
grammers can post monetary rewards for
programs and where programmers can
find projects that might be of interest. If
someone wants to request a program, he
posts his request and how much he is
willing to pay to have the work done. A
programmer gets in touch with the origi-
nal poster to let him know that he is
starting work. Like the Mozilla project,
the projects listed on the Free Software
Bazaar are not the typical open-source
projects, since these projects are intended
for customers other than the developer.

For the typical open-source project,
requirements elicitation is not needed. A
listing of requirements is usually made,
but there is no need to go through most of
the techniques normally used to ensure
that the developer understands what the

Requirements Elicitation in Open-Source Programs
By Lisa G.R. Henderson

Industrial Engineering Department, Missisippi State University

Requirements elicitation is an essential part of any software development activity and managing change to
requirements once captured has proven to be an essential project management task. There is, however, a
counterexample to this that exists today—the open-source community. This paper reviews the working of
that community and suggests some accepted requirements of engineering practices that might be helpful.

Software Engineering Technology

July 2000 www.stsc.hill.af.mil 29

customer wants (the customer and devel-
oper are the same person). But that is not
true for the Mozilla project or projects
posted on the Free Software Bazaar.

One thing the Mozilla project does
not do well is elicit requirements from its
customers. If a great deal of time is spent
searching its Web site, there are instruc-
tions informing customers how to get their
requirements added to the wish list of fea-
tures for the web browser [4]. Most peo-
ple, however, would give up long before
finding these directions. Once found, they
are directed to a news group frequented by
Netscape employees.

The Free Software Bazaar also does
not do well when obtaining requirements
from customers [6]. It requests that cus-
tomers’ requirements be unambiguous,
understood, and complete. Then it states
that it cannot be changed while the soft-
ware is being developed.

Having complete and unambiguous
requirements is fundamental in the devel-
opment of any software project. It should
be a central issue for projects promoted on
the Free Software Bazaar Web site, since
the people involved in the projects listed
change over time. Just because a customer
posts a project and a developer signs up to
work on it does not mean that there will
be no one else involved. Others who are
also interested in using the finished pro-
gram can post their monetary contribution
as well. Sometimes this additional funding
is necessary to get a programmer interested
in the job, but it results in having two or
more different customers. Sometimes
other programmers might also be interest-
ed in the project and volunteer their help.
They contact the original poster who puts
them in touch with the person who is
working on the project. As the project pro-
gresses, more and more people can be
added to the project on the customer side
and on the developer side. This process
sounds like a developer’s nightmare unless
the rules on the bazaar page are brought to
mind. One rule is that the requirements
are to be stated unambiguously and, once
stated, cannot be changed.

Requirements Elicitation
Stating requirements without ambi-

guity is not easy, however, as most devel-
opers know. There are many techniques
used in eliciting requirements, but which

ones fit into the open-source community?
With a typical software development
project, the developer meets with the cus-
tomer at the beginning of a project, but
that simply is not practical in a global
open-source community. The costs of
traveling the necessary distances are pro-
hibitive—especially when considering
that the customers and developers could
be in many different countries, and the
cost of these projects are usually in the
$20 to $2,000 price range. As meeting
face-to-face is not practical, the require-
ments elicitation process should be con-
ducted over the Internet.

Joseph Goguen and Charlotte Linde
have listed several typical software require-
ments elicitation techniques in their paper
[7]. They are:
• Introspection.
• Questionnaire interviews.
• Open-ended interviews.
• Focus, application development groups.
• Discussion.
• Protocol analysis.
• Discourse analysis

Many of these are easily ported to the
open-source community.

Introspection
No matter what kind of software proj-

ect, this technique has to be used. The
developer cannot understand requirements
without thought and imagination. There
is, however, nothing about introspection
that guarantees the way the developer
understands the requirements is the same
as the way the customer understands
them. Other techniques are also needed.

Questionnaire Interviews
This type of interview is ideal for the

open-source community. It can be easily
implemented within a Web page and has
the added advantage of being something
all possible open-source customers are used
to seeing. It still has the drawbacks the
technique is known for, namely that the
possible choices may not reflect the real
response the customer wants to give [7].

Open-Ended Interviews
This type of interview is also seen a

great deal on the Internet. It would require
nothing more than a Web page with forms
that the customer completes. It falls prey
to the say-do problem where people know
what they need the system to do, but do

not know how to describe the process to
someone else [7].

The two types of interviews could be
combined with each survey question hav-
ing a list of possible answers and a text
box at the end if they feel that all of the
listed choices are inappropriate. If the e-
mail address of the person completing the
survey is required, then the developer can
send a message asking about any respons-
es he does not understand.

Focus and Application
Development Groups

This kind of group interview can be
easily accomplished over the Internet by
using a forum or a chat room. Lag can be
an annoyance, but most people who surf
the Web are familiar with this phenome-
non. Another more serious problem with
using a forum or a chat room is that all
of the interested parties are not necessari-
ly in the same part of the world. This
makes finding a time when all parties can
meet quite difficult. A focus/development
group might be better implemented using
a bulletin board, so the developer can
post the interview questions, give every-
one a chance to respond, and continue
the question/answer session over a longer
period of time.

Discussion
This technique is widely used by the

open-source community—not for elicit-
ing requirements, but for communicating
program fixes, giving help with a project,
or simply discussing the everyday prob-
lems with a program or job. It is typically
implemented through newsgroups or
mailing lists, and an applicable one can
almost always be found no matter what
the project.

Protocol Analysis
Verbal analysis involves recording

someone’s actions while he explains what
he is doing and why he is doing it in an
effort to understand exactly what he needs
the system under development to accom-
plish [7]. This type of technique simply is
not applicable because the projects are not
that complex or that expensive—yet. It
could easily be implemented over the
Internet if the occasion arose. The record-
ed information would need to be made
available to the developer through e-mail,
ftp, or even the postal service.

Requirements Elicitation in Open-Source Programs

30 CROSSTALK The Journal of Defense Software Engineering July 2000

Discourse Analysis
One advantage of having a conversa-

tion over the Internet, whether in chat
rooms, forums, bulletin boards, or news-
groups, is that everyone has an equal
opportunity to present their views. No one
can interrupt another’s sentence or story.
Whenever someone has something to say,
he or she enters it into the conversation
without having to wait for someone else to
finish. Taking turns is not very important
in this medium for the same reason. It is
not an environment conducive to someone
talking, someone else responding, followed
by someone else. These advantages are dis-
advantages with discourse analysis, which
relies heavily on these things [7].

Disadvantages
of Using the Net

There are disadvantages to using the
Internet as well. No one can see another
person; therefore, they miss visual cues
such as body language and facial expres-
sions. Tone of voice is absent. Someone
dropping out of the conversation may go
unnoticed, and it is easy to misconstrue
or misunderstand what another individ-
ual’s input means.

Reaching a Consensus
With the near certainty of having

multiple customers when all the require-
ments have been gathered using the above
techniques, everyone has to agree on them.
It is quite possible that one person would
need a feature, while another is opposed to
including it. Customers and developers
need to reach a consensus.

The Delphi technique was developed
to do just that—achieve a consensus
among a group of people [8]. The devel-
oper lists the requirements and asks for
opinions from all of the customers. These
opinions are listed anonymously and sent
to each customer. They make comments
about all of them, and send them back to
the developer. After a few rounds of this, a
group generally reaches a consensus. This
technique is easily implemented over the
Internet through e-mail, but could just as
easily be been done with a slightly altered
bulletin—one that would not post the
name of the poster and therefore achieve
the anonymity missing from a regular bul-
letin board.

The CONOPS Document
Another tool is the concept of opera-

tions (CONOPS) document [9]. In his
paper, Richard Fairley writes that the cus-
tomer should prepare the document for
maximum effectiveness. With the possibil-
ity of having many different customers in
many different parts of the world, most of
which have never heard of the document,
it would be better for the developer to cre-
ate the document using any of the above
techniques to clarify ambiguous require-
ments. Using the CONOPS document (or
a modified version) has the added advan-
tage in that it can also be used to advertise
the project—drawing in more paying cus-
tomers and developers. Once the project is
finished, it can still be used to increase the
number of users, who can later possibly
become co-developers.

Once all parties agree upon the
requirements, maybe formalizing the
agreement by having everyone sign off on
the CONOPS document, it is not unrea-
sonable to freeze requirements and forbid
changes as the Free Software Bazaar cur-
rently dictates. The reason that it is not
unreasonable is that all open-source pro-
grams evolve, and developing the soft-
ware is only the first step. Once the first
version is complete and has been deliv-
ered, it will join the ranks of all other
open-source software that people use, fix,
and modify to meet their needs.

Conclusion
Requirements elicitation is a necessary

part of all software projects when there is a
possible misunderstanding between the
customer and the developer. The open-
source community has never used any of
these in the past, but is rapidly approach-
ing the time when they will be essential.
Almost all of the techniques used in a
more typical software development project
can be applied within the community by
using the tools available on the Internet.
The CONOPS document in particular
should be a boon to developers as a way
for them to promote their software, in
addition to its value as a contract with the
customer. Getting the requirements cor-
rect, with the help of requirements elicita-
tion techniques, and creating better soft-
ware in the first step of the evolution of
the project can only enhance the image the

rest of the world has of the open-source
community and the software it creates.?

References
1. Perens, Bruce and Raymond, Eric The

Open Source Page, Feb. 24, 1998.
Available at www.opensource.org

2. Raymond, Eric, The Cathedral and the
Bazaar, Feb. 10, 1998. Available at
www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar.html

3. Sykes, Rebecca. Linux, Linux Everywhere,
PC World News, Nov. 18, 1999. Available
at www.pcworld.com/pcwtoday/article/
0,1510,13908,00.html

4. Endico, Dawn, on www.mozilla.org
Sept. 13, 1999.

5. McHugh, Josh, For the Love of Hacking,
Forbes, Aug. 10, 1998. Available at www.

forbes.com/forbes/98/0810/6203094a.htm
6. Boldt, Axel, The Free Software Bazaar,

Aug. 4, 1999. Available at
http://visar.csustan.edu/bazaar

7. Goguen, Joseph A. and Linde, Charlotte
Techniques for Requirements Elicitation,
In Software Requirements Engineering,
2nd Ed., edited by Richard H. Thayer
and Merlin Dorfman, IEEE Computer
Society Press, Los Alamitos, Calif. 1993.

8. Stahl, Nancy N. and Robert J. Stahl, We
Can Agree After All! Achieving Consensus
for a Critical Thinking Component of a
Gifted Program using the Delphi
Technique, Roeper Review, Dec. 1991.

9. Fairley, Richard, The Concept of
Operations: The Bridge from
Operational Requirements to Technical
Specifications, In Software Requirements
Engineering, 2nd Ed., edited by Richard
H. Thayer and Merlin Dorfman, IEEE
Computer Society Press, Los Alamitos,
Calif. 1996.

Software Engineering Technology

About the Author
Lisa Henderson has been a
member of the engineering
graphics group of the
Industrial Engineering
department at Mississippi
State University, where she

has taught for the past 12 years. She has a
bachelor’s degree in chemical engineering,
and has worked toward master’s degrees in
chemistry and computer science.

Post Office Box 9542
Mississippi State, Miss. 39762
Voice: 662-325-7217
Fax: 662-325-7618
E-mail: lgr1@ra.msstate.edu

