
42 CrossTalk—January/February 2015

Back in 1983, I found it impossible to “train” software engi-
neers. I suppose there are some skills appropriate to software
engineering, but coding in Ada (or any language) is a tiny, tiny
part of “software engineering.” Coding might be easy. Software
Engineering is hard. It’s more about education – the theory.

In 1986, I was lucky enough to get an assignment at the
USAF academy. I officially moved from “training” to “education”
- different type of students, different goals. While I expected
my students to be able to code, I was more concerned that
they appreciated the differences between a binary tree, a 2-3
tree, a red-black tree, ….. you get the idea. Since 1986, I have
been involved in education almost continually (except for a
12-year break as a consultant. Which is where I myself learned
a lot. But I still taught college part-time.)

 I am currently teaching college again – and don’t ever plan
to quit. I seem to be a good professor – my students appear
not to dislike me too much, and based on tests and projects,
my students seem to learn a bit, too.

But what do they learn? That’s the dilemma. We follow an
ABET-approved curriculum, and we collect enough metrics to
ensure that we are meeting our outcomes and objectives. We
have about 43 semester hours of computer-science related
material plus the required fine arts, natural and physical
sciences, math, English, political science, writing and

I seem to be a perfect fit for the BackTalk column in this issue.
Way back in 1977, I was a (oh so) young Sgt. in the AF, assigned
to Keesler AFB. The section I was assigned to teach was the “Intro
to Computer Processing” course. We used a Hughes 407L (feel
free to Google it – it was old even then). For the next three years, I
taught “technical training.” I returned to Keesler again in 1983 and
taught another three years – this time teaching Ada in the STARS
program (Software Technology for Adaptable, Reliable Systems).
We were supposed to be conducting “training” – but I am afraid
that we ventured into the educational arena.

What’s the difference? It’s a HUGE difference. Education
involves teaching theory and history. It’s all about improving your
knowledge and making you more intelligent. A crucial difference
is that education is not about a job skill. It’s often said that an
educated person is more employable, but education is not about
just getting a job. Training, on the other hand, is about a “skill.” Its
sole purpose is to transfer practical information and skills to make
you more employable. A skill teaches you repeatable tasks that you
master to learn your craft. Education is about thinking.

BACKTALK

Bridging
the Gap:
Software Engineering Education and Training

CrossTalk—January/February 2015 43

BACKTALK

speaking skills, etc. A typical, well-rounded college education.
Not training, education.

Education. That’s what a college/university does. I like to think
I produce Computer Scientists and Information Technologists
that rank right up there with the best of them. So, after four
years of nurturing critical thinking skills in such areas as data
structures, operating systems, software engineering, information
security, discrete math and analysis of algorithms, we’ve done
what we are supposed to do in terms of education. Our students
proudly walk across the stage, wave their diplomas to adoring
and proud family, and…well, now it’s YOUR job to train them.
In the Air Force, we called it “On the Job Training” (OJT). They
need LOTS of OJT.

Here’s why – most students consider 1,000 lines of code a
“large” program. They write a program, run it under a single set
of test conditions one time, and receive a grade. No realistic
configuration management is needed, nor risk management
either. They have seldom reused code, nor had to worry much
about interfacing with legacy systems. They typically get all of
their requirements on a single sheet of paper (sometimes it’s
actually two-sided!) They probably know Java and C++. Never
had serious user interaction, other than an occasional interac-
tion with a professor. I’m not saying this is bad – let’s face it, it’s
about all you can do during a four-year college career. We do
the education (and we do it well). You take our educated gradu-
ates, add some training, and make productive developers out of
them.

So – how are you doing with my bright young crop of edu-
cated computer scientists after you hire them? How do you
facilitate converting their knowledge and intelligence into usable
software development skills? Do you give them a mentor? I

mean, not just assign them to a supervisor – but really assign
them a effective mentor? One who still feels the excitement and
joy of developing software? One who know some of the latest
tools and techniques? Do they have time in their schedule to
talk with their mentor weekly (daily would be better)? Does the
mentor have good people skills? Are there weekly or monthly
“brown bags” for them to learn new skills (or sharper the ones
they already have)?

How about their working environment? Do they work as part
of a team? Experience has shown again and again that working
with a peer in developing software is one of the best ways to
bring new developers “up to speed.” Except for rare group proj-
ects – this is not a skill or environment that they have learned
during school. In fact, more colleges and universities discourage
group work – it’s much harder to assign a grade unless each
student shows me how well they individually have mastered the
theory.

Do you have a way to help them deal with not only the frus-
tration of incomplete requirements and users who don’t even
seem to know what they want? Trust me – I stay in contact with
a lot of my former students –incomplete requirement issues
seem to bother many of them a lot.

I hope I speak for the educators out there – we’re doing the
best we can. We are working to educate our students. Once
they graduate – it’s your job start their training and expand
their job skills. Determine what you want your developers to be
capable of – and see what education they are bringing to the
job. These new developers want to bridge the gap between
their education and the job skills you require – it’s up to you to
facilitate their training. Different people will have different back-
grounds. Design your mentorship/ training programs accordingly
– one size does not fit all.

David A. Cook
Stephen F. Austin State University
cookda@sfasu.edu

mailto:cookda@sfasu.edu

