
20 CrossTalk—May/June 2015

WHAT IS SOFTWARE ENGINEERING?

Many years ago, at a Software Technology Conference, one
of the briefers talked about how creating computer code had
gradually evolved from art to craft to engineering. The briefer had
a slide with a graphic of a doghouse, a typical suburban single-
family house, and a skyscraper. His point was that the differ-
ence between the three structures wasn’t just the progressively
larger size, but rather the vastly increasing complexity. The briefer
explained that your teenager could probably successfully build
a doghouse, but couldn’t build the family house. And the builder
who built your family’s house most likely couldn’t build a sky-
scraper. Software Engineering is exponentially more complex than
cobbling code together which satisfies a functional requirement.

That mental model of size versus complexity stuck with me
ever since. In fact, I use a similar graphic (figure 1) three times
a year, when I brief new NAVAIR Systems Engineers about
software and software engineering. People still tend to equate
software engineering with computer programming. While pro-
gramming, i.e., writing computer code, is certainly an important
facet of the software engineer’s duties, it may be as little as 20
to 30 percent of those duties.

Yes, in the early days of software development, things were
vastly different. Computers didn’t have much memory, so
programs couldn’t be very large. Computers weren’t networked
nor even accessible by the average person. They were either in
large, locked rooms tended to by operators in white lab coats,
or in specialized labs associated with weapons systems. Just
entering a small program by setting switches, observing lights
and getting it to run successfully was a major accomplishment.

What is a
Software Engineer?
Al Kaniss, Naval Air Systems Command Headquarters

Contrast that with today’s environment. The majority of people
on the planet have access to a fairly powerful computer with ac-
cess to most of the other computers on the planet via the Internet.
Cybersecurity, long ago not much more than preventing access
to a locked room and changing one’s password periodically, has
become one of the major responsibilities of a software engineer.

Along with increased complexity, software development also
got more disciplined. Back in the early days, a software developer
just kept typing code and running it until the desired result was
achieved. For small, simple computer programs, this was time
consuming but adequate. As computer capacity grew and grew,
and teams of developers replaced the lone computer programmer,
more discipline was required. Requirements, designs, integration
plans and tests had to be formally generated, documented, tracked
and traced to assure that the whole team was in sync with a high
probability of an integrated, successful product, especially as we’ve
gone from computer programs of hundreds of lines of code, to
suites of software for systems of over 24 million lines of code. SEI’s
CMM® and the CMMI® were created out of necessity for increas-
ing the discipline of software development teams and became
commonly used by organizations large and small.

The goal of those involved with software development has nev-
er changed: creating a reliable, functional computer program. The
responsibilities of people who are involved with doing so, however,
have grown enormously. Software Engineers are fully engaged
with Systems Engineers to decompose system requirements into
software requirements. Software architecture and design have
become increasingly important, especially as systems have been
networked and have become “systems of systems”. The tasks of
software integration and system integration have grown expo-
nentially as the number of computer modules (CSCIs, CSCs and
CSUs) and subsystems grows with computer capacity.

Software safety has also become an increasingly significant
responsibility of Software Engineers over the past 25 years, as
software has been given increasing control over systems. As
mentioned, Cybersecurity is also a major concern these days.
Regardless of how well software functions, if it is not protected
from its threats, its value diminishes greatly.

Software Engineers must also create and maintain software
that satisfies a lot of other demands. Since the life of software
can be 10, 20, 30 or more years, it must be designed to be
easily re-hosted on newer hardware without major (and thus
costly) changes. Software must also be easily modifiable over its
life. We’ve all heard of “spaghetti code”, which can be more dif-
ficult and costly to modify than it was to create, especially if the
people maintaining the code had not written it in the first place
or lack adequate documentation detailing it.

Another attribute that people demand of software these
days is that it be reliable. This can cause a lot of confusion as
software is always reliable, in that it doesn’t break, wear out or
rust out like hardware does. The software however operates
within a system, which is really the entity that must be reliable.
The state of the computer (including other software executing
and operator and other external inputs) can make the software
appear unreliable. It is up to the Software Engineer to design
the software to be tolerant of such things.

Users of computer software want it to be “user friendly”. User
friendliness is of course an ambiguous requirement, and if you ask Figure 1

OPEN FORUM

CrossTalk—May/June 2015 21

WHAT IS SOFTWARE ENGINEERING?

100 users how they want some piece of software to look and be-
have, you will likely get 100 different answers. And likewise, as us-
ers get more familiar with the software, they want the user interface
to grow from “beginner mode” to “expert mode”, with fewer prompts
and more complex screens as their expertise grows.

Complicating everything else, there is more and more pres-
sure to field software more quickly and thus more cheaply,
requiring Software Engineers to increasingly learn and use Agile
methods. We want software that is of high quality, produced
quickly, and at minimal cost. That is quite a tall order. Add to
those other attributes we require of software (figure 2), the
Software Engineer has the Herculean task of satisfying all the
people all the time. And often, such attributes conflict. For ex-
ample, making a system “open” to decrease costs and facilitate
software re-use conflicts with making a system secure.

The explosive growth of software-reliant systems vastly
increases the need for talented software engineers. Hopefully,
as time goes on, we will continue to develop enough people who
have the full complement of skills necessary to accomplish such
work and attract them to work in the Defense environment.

Ironically, there is no Software Engineer title in the fed-
eral government. We hire people into the existing Computer
Engineer, Electronics Engineer and Computer Scientist billets.
Hopefully someday soon, such a title will exist. It’s also ironic

that in the early days of Software Engineering, one of the
newer engineering fields, some of the more traditional types of
engineers (civil, mechanical, electrical) tended to challenge the
notion of a “software engineer”, since it didn’t involve physical
things like buildings and bridges. Hopefully, that opinion is long
past as software has become so critical a component of virtually
every system that is produced today.

Disclaimer:
CMMI® and CMM® are registered in the U.S. Patent and

Trademark Office by Carnegie Mellon University.

Category Quality
attribute

Description

Design
Qualities

Conceptual
Integrity

Conceptual integrity defines the consistency and coherence of the overall design. This includes
the way that components or modules are designed, as well as factors such as coding style and
variable naming.

Maintainability Maintainability is the ability of the system to undergo changes with a degree of ease. These
changes could impact components, services, features, and interfaces when adding or changing
the functionality, fixing errors, and meeting new business requirements.

Reusability Reusability defines the capability for components and subsystems to be suitable for use in
other applications and in other scenarios. Reusability minimizes the duplication of components
and also the implementation time.

Run-time
Qualities

Availability Availability defines the proportion of time that the system is functional and working. It can be
measured as a percentage of the total system downtime over a predefined period. Availability
will be affected by system errors, infrastructure problems, malicious attacks, and system load.

Interoperability Interoperability is the ability of a system or different systems to operate successfully by
communicating and exchanging information with other external systems written and run by
external parties. An interoperable system makes it easier to exchange and reuse information
internally as well as externally.

Manageability Manageability defines how easy it is for system administrators to manage the application,
usually through sufficient and useful instrumentation exposed for use in monitoring systems and
for debugging and performance tuning.

Performance Performance is an indication of the responsiveness of a system to execute any action within a
given time interval. It can be measured in terms of latency or throughput. Latency is the time
taken to respond to any event. Throughput is the number of events that take place within a
given amount of time.

Reliability Reliability is the ability of a system to remain operational over time. Reliability is measured as
the probability that a system will not fail to perform its intended functions over a specified time
interval.

Scalability Scalability is ability of a system to either handle increases in load without impact on the
performance of the system, or the ability to be readily enlarged.

Security Security is the capability of a system to prevent malicious or accidental actions outside of the
designed usage, and to prevent disclosure or loss of information. A secure system aims to
protect assets and prevent unauthorized modification of information.

System
Qualities

Supportability Supportability is the ability of the system to provide information helpful for identifying and
resolving issues when it fails to work correctly.

Testability Testability is a measure of how easy it is to create test criteria for the system and its
components, and to execute these tests in order to determine if the criteria are met. Good
testability makes it more likely that faults in a system can be isolated in a timely and effective
manner.

User
Qualities

Usability Usability defines how well the application meets the requirements of the user and consumer by
being intuitive, easy to localize and globalize, providing good access for disabled users, and
resulting in a good overall user experience.

	 Figure 2 – Software Quality Attributes

ABOUT THE AUTHOR
Al Kaniss has worked for the Navy for 39
years in various capacities as a Software
Engineer...long before “Software Engineer”
was even a common term. He is now
Branch Head for Software Engineering at
Patuxent River Maryland, home of Naval
Air Systems Command Headquarters.

OPEN FORUM

