
4 CrossTalk—May/June 2015

WHAT IS SOFTWARE ENGINEERING?

Introduction
As it keeps pace with software’s strikingly expanding and

deepening role for the DoD and the Defense Industrial Base,
as well as for civil government and industry more generally,
software engineering has remained focused on the cause that
launched it—the pursuit of software quality.

At the first NATO Software Engineering Conference in 1968,
computer science pioneer Edsger Dijkstra captured a major
concern about software-based data systems. “The dissemination
of knowledge is of obvious value,” Dijkstra said, “the massive dis-
semination of error-loaded software is frightening.” The NATO Sci-
ence Committee invited 50 experts in computer science, such as
Dijkstra, to examine a prevailing perception of a “software crisis.”
The experts saw problems in the reliability of the large software-
based data systems of the day, as well as in their cost and
schedule management. Discussion at that conference about the
crisis gave birth to software engineering [1]. Software engineering
thought leaders subsequently pointed to achieving software qual-
ity as a solution for software issues. Watts Humphrey captured
the perceptions of many leaders when he defined software quality
as “a software product” that “must provide functions of a type and
at a time when the user needs them” and “must work” [2].

Response to Software Size and Complexity
While observed in the useful (easy, safe, reliable) operation

of a software-reliant system, software quality is determined
by practices, tools, technologies, and methods that result from
software engineering research and development. Software
development methodology, for example, emerged as an area of
software engineering research and development beginning in
the 1970s, in response to the need to achieve quality in larger
software-reliant systems. Incremental or iterative methods, such
as the Waterfall approach and its modifications, were explored
to determine whether activities that promote software quality are

Software Engineering
and the Persistent
Pursuit of Software
Quality
Paul D. Nielsen, Software Engineering Institute
Abstract. Software engineering continually seeks to achieve software quality,
as the field keeps pace with the changing role of software. The idea for software
engineering was conceived nearly 50 years ago when it was observed that the
schedule and performance of software used in IT data systems needed to be
improved. Today, as software has become the underpinning of the cyber environ-
ment and essential to all aspects of DoD system capabilities and operations,
software engineering also encompasses new technologies and practices for
cybersecurity that enable informed trust and confidence in using information and
communication technology.

accomplished throughout the software creation process. In addi-
tion, software program managers demanded improved software
cost estimation approaches. Research and development by
Barry Boehm led to the initial Constructive Cost Model (COCO-
MO) in 1981. Boehm based his algorithmic estimation model on
a study of several dozen projects of varying sizes. He continued
to refine his cost estimation tool to keep pace with advances in
software development, producing COCOMO II in the 1990s [3].

A decade or so after software development investigation
began, the insight that software process improvement could also
contribute significantly to software quality became an avenue for
research and development. Process improvement places software
development into a broader context, highlighting the organization
and its practices and processes as a contributing factor to software
quality. The idea of a capability maturity model emphasized that the
software organization needed to be improved in order to attain soft-
ware quality. Years of research into the linkages between organiza-
tional practices/processes and software quality culminated in 2002
with the establishment of the CMMI® (Capability Maturity Model
Integration) framework in work sponsored by the Office of the
Secretary of Defense (OSD) and the National Defense Industrial
Association (NDIA) and carried out by the software community.

Around the time that the CMMI framework was first released,
Agile software development methods also emerged as an
alternative development process. Twelve principles underlie Agile
software development, including software-quality-centric precepts
such as “Working software is the principal measure of progress”
and “Continuous attention to technical excellence and good
design” [4]. Defense leaders want the agility and velocity that
Agile methods bring, but they also often need assuredness and
scale that challenge Agile methods. One active area of research
now is how to scale Agile to defense-class systems, a goal that
may require adjustments in software engineering and acquisition.1
In addition, Boehm’s early work in balancing agility and discipline,
his incremental commitment model, and recent work in DevOps
are all efforts to find the right blend of these approaches, a blend
that might need to be unique to each project and that might vary
during the system’s acquisition lifecycle [5].

In the 1990s, software engineering thought leaders also began
to define concepts and practices in software architecture, a core
activity that permits reasoning about properties that enable or
inhibit a system’s desired qualities, such as availability and security
[6]. Dewayne Perry and Alexander Wolf, for instance, examined
architecture’s place in software process management in 1992 [7].
A few years later, Mary Shaw and David Garlan wrote Software
Architecture: Perspectives on an Emerging Discipline, introducing
key abstractions such as components, connectors, and styles [8].
Subsequent research and development in architecture produced
a number of models and methods to describe a software archi-
tecture and to evaluate it relative to the system’s goals for such
quality attributes as modifiability, security, and reliability. Philippe
Kruchten, for instance, developed a model to view the archi-
tecture called 4+1. Kruchten’s model gives a description of the
system from the viewpoint of users, project manager, and other
stakeholders. His 4+1 views are the logical, process, physical,
and development views of the system and the use cases for the
system [9]. In addition, the Architecture Tradeoff Analysis Method
(ATAM) is a widely used method for architecture evaluation. The

CrossTalk—May/June 2015 5

WHAT IS SOFTWARE ENGINEERING?

primary output of an ATAM is a set of issues of concern about the
architecture. When performed early in the development lifecycle,
an ATAM has been shown to help a program avoid costly and
schedule-consuming problems that might not emerge until the
testing phase or even in fielding [10].

Having grown from an “aspiration” and “rallying cry” [11], soft-
ware engineering today not only features practices, technologies,
tools, and methods for software acquisition and development
but also boasts of an established body of knowledge [12] and
several international standards. In addition, many colleges and
universities offer coursework or degree programs in software
engineering, and there are scores of professional conferences
annually on aspects of the field.

Software and Cyberspace
However, the march forward in software engineering of practices

and standards has not resolved all software quality challenges, be-
cause software’s role continues to grow and deepen. The world has
become reliant on software-enabled systems and components. In
addition, software is now embedded in the cyberspace domain that
enables defense military, intelligence, and business operations [13].
As a result, the DoD is keenly aware of the increasing importance
of software and the critical need to achieve software quality.

Software is important for the DoD because it promotes lower
cost and improved agility in deploying and reconfiguring systems
[14]. One result is reflected in the DoD’s ability to now program
systems that were once fixed-function to meet changing mission
needs. Sensor networks, field programmable gate arrays, soft-
ware-defined networking, software-defined radios, and embedded
controllers represent a few of these now-programmable areas.
Another result is that software enables the interconnectivity that is
central to accomplishing system-of-systems configurations. Sys-
tems of systems support network-centricity, aiding DoD mission
goals for information superiority [15]. A third result is that software
enables a shift from stovepipe (“platform-centric”) systems to
modular (“framework and apps”) approaches [16]. To exploit the
flexibility of modular development, the DoD continues to explore
the use of an open systems architecture approach that will shift
development focus more to payloads and less to platforms.2

The overwhelmingly large role of software in safety-critical air
systems (defense and commercial) provides an appropriate il-
lustration. The Air Force vision document Global Horizons traces
the percentage of capability in air systems reliant on software
through generations of aircraft. By the mid-1970s, when the
F-16 went into production, software accounted for about 40
percent of capability. A generation later, the F-22 relied on
software for 80 percent of capability. Software may contribute
90 percent of capability for today’s premier fighter, the F-35.
In addition, millions of lines of software are required to support
F-35 Lighting II ground functions [17]. Software’s critical role
in delivering capability is driving commercial aircraft makers to
seek a new development paradigm. The new paradigm follows
an architecture-centric “integrate then build” engineering ap-
proach rather than the traditional “build then integrate” one in an
effort to reduce software rework costs. In the System Archi-
tecture Virtual Integration (SAVI) project, aircraft makers and
other organizations (including DoD) created a model of software
(development and rework) costs. Based on trends and tradi-

tional development approaches, the SAVI COCOMO II estimate
predicted a cost of $10 billion to develop the millions of SLOC3
required for aircraft built in this decade, an unaffordable amount
[18]. SAVI figures also predict that, without a change, software
cost will consume an overwhelming portion of total system costs
(see Figure 1). In addition, it is not only in development/rework
cost that software looms large. Aircraft now remain in use be-
yond their original expected service lives. A 2011 U.S. Air Force
Scientific Advisory Board study found that the cost of software
sustainment for defense weapons systems nearly doubled
between 2002 and 2011 [19].

Figure 1. Aircraft Software Development and Rework Cost

With this increased dependence on a software-enabled
cyberspace have come new risks and challenges. The size and
complexity of software, as well as the interconnectedness of
software-enabled systems, mean possible exposure to disrup-
tive, damaging events. Size makes it more likely that software
code will include vulnerabilities. Complexity means that orga-
nizations may be impacted by emergent behavior—problems
almost impossible to foresee during software development or
deployment.4 Outdated legacy code bases, patches installed too
late, new applications added to legacy systems, and interde-
pendencies between systems with different levels of software
quality—all could reveal hidden vulnerabilities. Legacy system
cybersecurity is an acute concern for the DoD, where critical
systems are not easy to modify or patch [20].

When mission-critical systems were standalone entities, se-
curity was an afterthought. With software engineering practices,
tools, technologies, and methods used to produce complex
software that delivers advanced, innovative capabilities that are
increasingly integrated and interconnected, cybersecurity can no
longer be an afterthought in software engineering.

Cybersecurity Expands Software Quality
Indeed, given the defining role of software in the cyber world,

software engineering and cybersecurity are now inseparable. Cy-
bersecurity is now not only one of a software system’s essential
qualities but also a factor that expands the meaning of software
quality. The pursuit of software quality now also must consider
the risks from potential actions of an adversarial/malicious user
throughout the software lifecycle (see Figure 2). Cybersecurity
needs to be included in activities from the onset of the acquisition,
designed and built into the software system, and considered a
prime concern as the system is fielded and sustained [21].

6 CrossTalk—May/June 2015

WHAT IS SOFTWARE ENGINEERING?

It is vital to approach security requirements in a system-
atic way early in the lifecycle, in the requirements and design
(architecture) phases. Research by Nancy Mead has shown that
security requirements can be overlooked or remain implicit until
it is much more costly to address them. It is a better practice to
perform a risk assessment regarding the system in the context
of the expected operating environment and then elicit security
requirements [22]. In addition, designing quality architectures
involves the use of the fundamental and related concepts—tac-
tics and patterns. Some security tactics or techniques involve
detecting, resisting, and reacting to attacks; others aim to help
the system recover from attacks [6]. An architectural security
pattern is a “piece of design” that provides a proven solution
for achieving a particular quality attribute. A typical pattern for
system security is authentication and authorization [6]. Including
cybersecurity concerns early in development will pay off later
on in terms of software quality that is reflected in reliability and
maintainability, as well as in user satisfaction.

Likewise, it is important to evaluate for cybersecurity dur-
ing coding and testing activities. Many exploitable software
vulnerabilities occur because of common coding errors. MITRE
Corporation sponsors and maintains the Common Weakness
Enumeration (CWE) dictionary, under the leadership of Robert
Martin. The “common” software flaws, faults, and other errors in
code, design, architecture, or implementation in the CWE could
result in vulnerabilities others will exploit [23]. These weak-
nesses—such as buffer overflows, authentication errors, and
insufficient data validation—are likely to be as easy to find and
mitigate as they are to exploit. Eliminating common vulnerabili-
ties during software development can result not only in more
secure software but also in a large cost reduction, because less
effort will be expended to repair code. Government, industry, and
academic cybersecurity researchers are forming and promoting
the adoption of international secure coding standards for some
common software programming languages, including C, C++,

Figure 2. Cyber Risk Must be Addressed Across the Lifecycle for Custom or COTS-based Development

Perl, and Java5 [24]. It is important to prevent errors through
adherence to secure coding standards; however, rigorous test-
ing is also advisable. For instance, vulnerabilities may emerge as
software components are integrated, in commercial off-the-shelf
(COTS) and custom-developed software, or in patches sent out
to eliminate already discovered vulnerabilities. An advanced level
of software testing would include full penetration testing by
organic or external experts.

Cybersecurity concerns for software quality must also ac-
count for a software supply chain that is diverse and complex—
even global. Consider the variety in these supply chains: physical
components, integrated components such as network routers,
software, the prime contractor organization, subcontractor orga-
nizations, and other supply chains for the commercial products
used [25]. Each component might be deemed to have sufficient
quality, but the integration of components with different levels
of software quality ratchets up cybersecurity—and mission—risk
for the system [13]. The complicated software supply chain has
become an avenue for cyber intrusions, as well. For example,
in 2014 a counterfeit, malware-containing Netflix app was pre-
installed somewhere in the supply chain on new Android devices
available from several vendors [26].

The introduction of malware by a supply chain partner also
suggests insider threat concerns. Recent high profile incidents
such as Edward Snowden’s actions and the Target Corporation
breach heighten awareness of the threat that insiders (malicious
or unintentional) pose from fraud, sabotage, or theft of intel-
lectual property. While Snowden, working as an NSA contractor,
appears to have acted intentionally, the theft of credit card infor-
mation from Target is reported to have resulted from a mistake
by an employee at a supplier that had access for electronic
billing to the firm’s network [27]. For more than a decade, the
CERT Insider Threat Center—collaborating with the DoD, U.S.
Department of Homeland Security, the U.S. Secret Service, other
federal agencies, the intelligence community, private industry,

CrossTalk—May/June 2015 7

WHAT IS SOFTWARE ENGINEERING?

academia, and the vendor community—has researched insider
threats and built tools for their mitigation. An understanding of
insider threat mitigation is especially important for U.S. govern-
ment agencies working to establish programs to meet Executive
Order 13587 requirements.

Finally, despite efforts to assure software quality by preventing
software vulnerabilities in development or patching them in system
operation, and even with stepped-up insider threat monitoring, it is
prudent to assume that systems may be under attack. In opera-
tion, a software system may be vulnerable to attack through the
exploitation of previously unknown software vulnerabilities (zero-
day attack), intrusion into a communications channel (man-in-the-
middle), infection of a website visited by a targeted user (watering
hole), and other avenues. Thus, an overarching aspect for software
quality in the cyberspace domain is operational system resilience.
It is appropriate to ask, “What truly needs to be protected? Even
when compromised, can the software system continue to deliver
capabilities that users need, when they need them?”

Software Quality is a Constant Purpose and
Software is a Moving Target

The goal to provide software that must “provide functions of a
type and at a time when the user needs them” and “must work”

is a fixed point in the software universe. However, the changing
and expanding role that software plays in cyberspace means
that software engineering has to continue to evolve (even leap
ahead) in the ongoing pursuit of software quality. Software engi-
neering now needs to be proactive, not reactive.

When Dijkstra set off an alarm about “the massive dissemi-
nation of error-loaded software,” systems relying on software
touched DoD and other organizations in much more definable
ways. Today, military, civil government, industry, and society
more generally communicate and socialize in an environment
that relies on software-reliant global IT architectures, applica-
tions, and services. It is inevitable that demands from users,
program managers, and developers for software that delivers
greater functionality, reliability, performance, security, autonomy,
maintainability, and a host of other attributes will spur innovation
and new paradigms that today are not yet conceived. In addition,
research and technology trends (see some examples in Table
1) will continue to build on current levels of software complex-
ity and capability. The Internet of Things (IoT), for example, is
rapidly approaching, if not in place in some sectors. Already one
can see steady progress toward realizing IoT constructs such as
the smart grid, smart cities, and smart homes. People and tech-
nology will push the frontiers of software engineering forward.

Table 1. Selected Software Engineering Research Trends

Architecture Cybersecurity Process Workforce Market

Complexity

Global supply chain
security

International standards Globalization of
software development
capability

Internet of everything

Cyber-physical
systems

Secure coding
practices & tools

Data-driven decision-
making about
practices to use

Supply and demand
issues

Autonomy

Strategies for technical
debt

Automated software
vulnerability discovery

Continuous
delivery/velocity

Talent management

Big data/analytics

Affordable
sustainment/evolution

Network situational
awareness

Blending development
and operations

Skills for managers
and boards

Software-defined
environments

Socio-adaptive
systems

Insider threat
mitigation

Improving early
lifecycle cost
estimation

Continuous education

Consumerization

Modeling/virtual
integration

Malware analysis &
databases

Model-based
engineering and auto-
code generation tools

 Development velocity

Interoperability Cyber intel for risk
management

Assurance planning

 Adaptive intrusion
detection and
remediation

 Active defense

	

8 CrossTalk—May/June 2015

WHAT IS SOFTWARE ENGINEERING?

Pursuing software quality in the highly connected (bordering on
hyper connected) cyber world may present software engineering
with different new frontiers, as well. It could call for greater appre-
ciation of software quality outside the realm of software profes-
sionals (developers, architects, programmers, and the like). How
can software engineering encourage software quality through
broader education at all levels of an organization? For example,
what do all employees in an organization now need to know about
building a business case for new or updated software systems,
securing the global software supply chain, information security/
insider threat, appreciating what determines system behavior, or
the use of Agile development approaches? Or, how should senior
executives incorporate software in their risk assessments?

As software’s size, complexity, security and interconnected-
ness grow, the role of software engineering will become more
fundamental to the entire system lifecycle and system-of-sys-
tems integration. Software engineering has advanced signifi-
cantly in its first 50 years, but the continued search for more
integrated capabilities opens new opportunities and challenges
for researchers, practitioners, and users.

Disclaimers:
Copyright 2014 Carnegie Mellon University
Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of
Defense.

References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by Carnegie Mellon Univer-
sity or its Software Engineering Institute.

This material has been approved for public release and unlim-
ited distribution.

ATAM®, Capability Maturity Model®, Carnegie Mellon®, CERT®,
CMM® and CMMI® are registered marks of Carnegie Mellon
University. DM-0002001

ABOUT THE AUTHOR
Paul D. Nielsen is Director and Chief
Executive Officer of the Carnegie Mellon
University Software Engineering Institute
(SEI). Prior to joining the SEI, Nielsen
served in the U.S. Air Force, retiring as
a major general and commander of Air
Force research. Nielsen is a member of
the U.S. National Academy of Engineer-
ing and a Fellow of both the American
Institute of Aeronautics and Astronautics
and the Institute for Electrical and Elec-
tronics Engineers. He has served on many
government boards and advisory groups
and is currently a member of the Defense
Science Board.

Phone: 412-268-5800
E-mail: nielsen@sei.cmu.edu

NOTES
1. See Table 1 for a list of some current trends in software engineering research areas.
2. See, for example, Douglas Schmidt’s blog about the Navy’s Open Systems Architecture
 Initiative <http://blog.sei.cmu.edu/post.cfm/importance-automated-testing-open-
 systems-architecture-062>.
3. Source lines of code
4. See, for example, Douglas Schmidt’s blog about the Navy’s Open Systems Architecture
 Initiative <http://blog.sei.cmu.edu/post.cfm/importance-automated-testing-open-
 systems-architecture-062>.
5. Java is a trademark of Oracle, Inc.

mailto:nielsen@sei.cmu.edu
http://blog.sei.cmu.edu/post.cfm/importance-automated-testing-open-systems-architecture-062
http://blog.sei.cmu.edu/post.cfm/importance-automated-testing-open-systems-architecture-062
http://blog.sei.cmu.edu/post.cfm/importance-automated-testing-open-systems-architecture-062
http://blog.sei.cmu.edu/post.cfm/importance-automated-testing-open-systems-architecture-062
http://blog.sei.cmu.edu/post.cfm/importance-automated-testing-open-systems-architecture-062
http://blog.sei.cmu.edu/post.cfm/importance-automated-testing-open-systems-architecture-062

CrossTalk—May/June 2015 9

WHAT IS SOFTWARE ENGINEERING?

REFERENCES
1. Peter Naur and Brian Randell, eds. Software Engineering: Report on a Conference
 sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th October
 1968, Brussels, Scientific Affairs Division, NATO, January 1969, pp. 17, 70.
 <http://homepages.cs.ncl.ac.uk/ brian.randell/NATO/nato1968.PDF>
2. Watts S. Humphrey. A Discipline for Software Engineering. New York: Addison-
 Wesley, 1995, p. 272.
3. Barry Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K. Clark, Ellis
 Horowitz, Ray Madachy, Donald J. Reifer, and Bert Steece. Software Cost Estimation
 with COCOMO II. Englewood Cliffs, NJ: Prentice-Hall, 2000.
4. Mary Ann Lapham, Suzanne Miller, Lorraine Adams, Nanette Brown, Bart Hackemack,
 Charles (Bud) Hammons (PhD), Linda Levine (PhD), and Alfred Schenker. Agile
 Methods: Selected DoD Management and Acquisition Concerns (CMU/SEI-2011-
 TN-002). Pittsburgh, PA: Carnegie Mellon University: Software Engineering Institute,
 2011, pp. 1, 16 <http://www.sei.cmu.edu/reports/11tn002.pdf>
5. Barry Boehm and Richard Turner. Balancing Agility and Discipline: A Guide for the
 Perplexed. Addison-Wesley Professional, 2003
6. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice:
 Third Edition. New York; Pearson Education, 2013, p. 26.
7. Dewayne Perry and Alexander Wolf. “Foundations for the study of software architecture,”
 ACM Sigsoft Software Engineering Notes, vol. 17, no. 4, pp. 40-52, 1992.
8. Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
 Discipline. Upper Saddle River, NJ (USA): Prentice Hall, 1996.
9. Philippe Kruchten. “Architectural Blueprints—the “4+1” View Model of Software
 Architecture.” IEEE Software, vol. 12, no. 6, pp. 42-50, 1995.
10. Robert L. Nord, John Bergey, Stephen Blanchette, Jr., and Mark Klein. Impact of
 Army Architecture Evaluations (CMU/SEI-2009-SR-007). Pittsburgh, PA: Carnegie
 Mellon University Software Engineering Institute, 2009.
11. Mary Shaw. Prospects for an Engineering Discipline of Software (CMU-CS-90-165).
 Pittsburgh, PA: Carnegie Mellon University, September 1990.
12. IEEE. SWEBOK v3.0. <http://www.computer.org/portal/web/swebok>
13. Department of Defense (DoD). Department of Defense Strategy for Operating in Cyber
 space. Department of Defense, 2011.
 <http://www.defense.gov/news/d20110714cyber.pdf>.
14. National Research Council. Critical Code: Software Producibility for Defense.
 Washington, DC: National Academies Press, 2010.
15. David S. Alberts, John J. Gartska, and Frederick P. Stein. Network Centric Warfare:
 Developing and Leveraging Information Superiority: Second Edition. Washington,
 DC: CCRP, 2000.delivering
16. ADM Jonathan W Greenert, U.S. Navy. “Payloads over Platforms: Charting a New
 Course,” Proceedings Magazine, 138/7/1313, 2012. <http://www.usni.org/magazines/
 proceedings/2012-07/payloads-over-platforms-charting-new-course>
17. U.S. Air Force. Global Horizons: United States Air Force Global Science and Technology
 Vision (AF/ST TR 13-01). U.S. Air Force, 2013; also Christian Hagen and Jeff Sorensen.
 Delivering Military Systems Affordably, Innovations in Systems and Software
 Engineering, vol. 7 issue 3, 2011, p. 161-170
 <http://www.dau.mil/pubscats/ATL%20Docs/Mar_Apr_2013/Hagen_Sorenson.pdf>
18. D. Ward and S. Helton. “Estimating Return on Investment for SAVI (a Model-Based
 Virtual Integration Process),” SAE International Journal of Aerospace, vol. 4, no. 2,
 pp. 934-943, 2011; Peter Feiler, Jörgen Hansson, Dionisio de Niz, and Lutz Wrage.
 System Architecture Virtual Integration: An Industrial Case Study, Pittsburgh,
 PA: Carnegie Mellon University Software engineering Institute, Technical Report
 CMU/SEI-2009-TR-017, 2009. <http://resources.sei.cmu.edu/library/asset-
 view.cfm?assetID=9145>; and Peter Feiler. An Incremental Life-Cycle Assurance
 Strategy for Critical System Certification, Proceedings and Presentations of the
 TSP Symposium, November 2014.
 <http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=423668>

19. U.S. Air Force Scientific Advisory Board. Sustaining Air Force Aging Aircraft into the
 21st Century (SAB-TR-11-01). U.S. Air Force, 2011. <http://www.dtic.mil/cgi-bin/Get
 TRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA562696>.
20. Joint Publication 3-12 (R). Cyberspace Operations. 5 February 2013.
 <http://fas.org/irp/doddir/dod/jp3_12r.pdf>
21. Defense Science Board. Mission Impact of Foreign Influence on DoD Software.
 Washington, DC: Office of the Under Secretary of Defense for Acquisition, Technology,
 and Logistics, September 2007. <http://www.acq.osd.mil/dsb/reports/ADA486949.pdf>
22. Nancy Mead. SQUARE Process. Pittsburgh, PA: Carnegie Mellon University Software
 engineering Institute, 2006.
23. MITRE Corporation. 2011 CWE/SANS Top 25 Most Dangerous Software Errors.
 <http://cwe.mitre.org/top25/>
24. CERT. Secure Coding. <http://www.cert.org/secure-coding/>
25. Robert J. Ellison, Christopher Alberts, Rita Creel, Audrey Dorofee, and Carol Woody.
 Software Supply Chain Risk Management: From Products to Systems of Systems
 (CMU/SEI-2020-TN-026). Pittsburgh, PA: Carnegie Mellon University Software
 Engineering Institute, 2010.
26. Jeremy Kirk. “Pre-installed malware turns up on new phones.” PC World, March 4, 2014.
 <http://www.pcworld.com/article/2104760/preinstalled-malware-
 turns-up-on-new-phones.html>
27. The Editorial Board of the NY Times. Edward Snowden, Whistle-Blower. January 1, 2014.
 <http://www.nytimes.com/2014/01/02/opinion/edward-snowden-whistle-blower.html?_r=0>
 and Marcelo Ballye and John Heggsteuen. Target’s Data Breach Began with a Company that
 Does Heating and A/C Work on Its Stores. Business Insider. February 7, 2014.
 <http://www.businessinsider.com/target-data-breach-explained-2014-2>

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://www.sei.cmu.edu/reports/11tn002.pdf
http://www.computer.org/portal/web/swebok
http://www.defense.gov/news/d20110714cyber.pdf
http://www.usni.org/magazines/proceedings/2012-07/payloads-over-platforms-charting-new-course
http://www.usni.org/magazines/proceedings/2012-07/payloads-over-platforms-charting-new-course
http://www.dau.mil/pubscats/ATL%20Docs/Mar_Apr_2013/Hagen_Sorenson.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9145
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9145
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9145
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=423668
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA562696
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA562696
http://fas.org/irp/doddir/dod/jp3_12r.pdf
http://www.acq.osd.mil/dsb/reports/ADA486949.pdf
http://cwe.mitre.org/top25/
http://www.cert.org/secure-coding/
http://www.pcworld.com/article/2104760/preinstalled-malware-turns-up-on-new-phones.html
http://www.pcworld.com/article/2104760/preinstalled-malware-turns-up-on-new-phones.html
http://www.pcworld.com/article/2104760/preinstalled-malware-turns-up-on-new-phones.html
http://www.nytimes.com/2014/01/02/opinion/edward-snowden-whistle-blower.html?_r=0
http://www.businessinsider.com/target-data-breach-explained-2014-2
http://www.dhs.gov/cybercareers

