
CrossTalk—May/June 2015 25

WHAT IS SOFTWARE ENGINEERING?

Introduction
In recent years, dramatic changes to the software industry

have brought individual developers to the forefront of software
engineering practices. In addition, the rise of the software
micropreneur in markets such as mobile app development and
web applications has reinforced the need for lightweight, agile
software engineering practices focused on individuals as op-
posed to teams. For example, recent surveys of the microISV
industry have shown that time management and related issues
topped their founders’ list of “pain points”1. Historically, however,
many of the software process tools available to software engi-
neers have been team-oriented, making them impractical for the
individual to benefit from their usage2.

In response, researchers at Auburn University have been
focusing their efforts on constructing tools targeted directly
at the individual software engineer. One such tool is the
SISE effort estimation model.

SISE is a lightweight, agile model designed to construct
estimates based on expert knowledge and empirical evidence.
In this respect, SISE outperforms simple guesswork, while incur-
ring a much lower overhead than traditional, established models
– such as the Personal Software Process (PSP) PROxy-Based
Estimation (PROBE) model – which rely on complex software,
algorithms, or mathematical calculations.

SISE: A Novel
Approach to
Individual Effort
Estimation
Russell Thackston, Georgia Southern University
David Umphress, Auburn University

Abstract. The SISE estimation model presents a novel alternative to PSP’s
PROBE by combining expert judgment with empirical data to create reasonably
accurate predictions. The model uses a simple, four-steps process in which a fu-
ture activity is compared to a developer’s completed tasks to identify two known
effort values that define a prediction interval. Initial validation of the SISE model
by researchers at Auburn University was completed in July 2013 and develop-
ment of supporting tools is currently underway.

Traditional Models
A variety of established models exist for estimating the size of a

future task. The vast majority – Planning Poker, Wideband Delphi,
COCOMO, etc. – focus on team- or project-level estimation. Most
of these models have demonstrated an ability to accurately predict
future effort through the combined efforts of a team. However, the
individual software engineer is often left to his or her own devices
when it comes to planning personal activities on a daily basis.

Currently, only one formal estimation model exists that
is specifically targeted at the individual software engineer:
PSP’s PROBE3. The PROBE model relies on a proxy-based
approach in which estimators:

•	 Develop their conceptual design;
•	 Identify and size proxies for the actual work;
•	 Estimate other elements;
•	 Estimate the program size using one of four methods;
•	 Calculate prediction intervals.
PROBE forecasts effort through a set of rules that determine

the statistical relationship between size estimates and actual ef-
fort across past projects. The approach falls back on “engineer-
ing judgment” when no demonstrable relationship exits.

The disadvantage to PROBE is in its perceived complex-
ity and inflexibility. The rules for determining which pieces of
historical data provide the strongest statistical mapping of size
to effort niggle developers, especially in the absence of any tool.
The approach requires a substantial amount of bookkeeping. It
relies on statistically significant amounts of historical data from
relatively stable development efforts to avoid consistent use of
the “engineering judgment” rule. On the plus side, PROBE does
have the advantage of being the sole prescriptive model for
costing effort at the level of the individual engineer.

When pressed for a quick, familiar approach to estimation -- es-
pecially in informal settings -- individual developers rely on expert
judgment. While expert judgment is recognized as a valid and
sometime accurate approach to effort estimation, it lacks formal,
quantitative methods. Formal methods that may be incorporated
into expert judgment include estimation by analogy, case-based
estimation, and work breakdown, but the greatest challenge to
expert judgment is in what to change to improve accuracy if the
approach leading to the estimate is undefined or vague.

The SISE Model
“SISE” is an acronym for the model’s four-step process. The

four steps, in order, are Sort, Identify, Size, and Evaluate. The first
step – Sort – involves the ordering of historical data by the actual
effort required to complete the activity. The second step – Iden-
tify – involves choosing two tasks from the historical data set:
one confidently known to be smaller, one confidently known to be
larger, and both relatively close in size to the future work. Using
this pair of tasks, the estimator begins the third step – Size – by
producing a rough prediction interval of the future activity’s size
using the actual effort values for the two completed tasks. The
final step – Evaluate – involves shifting or resizing the prediction
interval to account for any detectable historical bias. This last step
is optional and is only applied if the estimator is dissatisfied with
the precision, accuracy, or confidence level of his or her estimate.

26 CrossTalk—May/June 2015

WHAT IS SOFTWARE ENGINEERING?

The design of the SISE model focuses specifically on the
individual software engineer. Its estimates are based solidly
on empirical data gathered by the software engineer and only
applicable to that person. Personal skills and experiences are
too numerous to list, quantify, and apply to every estimation
scenario. Therefore, the SISE model seeks to join empirical data
to the process of expert judgment. This results in a model that
must be individually calibrated by each software engineer using
his or her own personal data.

The goal of the SISE model is to provide a viable alternative
to traditional models such as PROBE. The SISE model defines
an agile approach to estimation by offering a lighter-weight
method than those found in models such as PROBE and PCSE;
the model employs fewer steps, which are demonstrably less
complex. Additionally, the SISE model improves upon simple
guesswork by relying on a foundation of empirical data.

The SISE Steps
Step 1: Sort
The Sort step involves the ordering of historical data by the ac-

tual effort required to complete the activity. The simplest approach
is to maintain an electronic record of historical data, such as a
spreadsheet or database. The data is then sorted by the actual ef-
fort, from smallest to largest. Next, the numeric values associated
with each historical data point – estimated effort, actual effort, etc.
– are hidden, leaving only the text description of the completed
tasks; this prevents the software engineer from selecting tasks
based on a desired numeric outcome, such as “eight hours.”

Step 2: Identify
Next, the description of the future activity is compared to the

descriptions of the historical tasks. Two historical tasks must be
located: one confidently smaller and one confidently larger than the
future activity. The smaller task should be one which the estima-
tor is confident is smaller than the future activity, but is as close as
possible in size to the future activity. The larger task should be the
inverse: larger in size, but still relatively close. Since the historical
data set is already sorted, a very efficient way of locating these two
tasks is through the use of a binary search algorithm.

The exact manner in which tasks are chosen as smaller
and larger is left to the practitioner, as is the determination
of confidence. In this instance, SISE views the practitioner’s
decision-making process as a black box; the model relies on the
software engineer’s intuition and experience to make complex,
yet relatively accurate, judgment calls. The only other important
consideration is consistency from estimate to estimate.

Step 3: Size
Once the practitioner has chosen a pair of tasks, the third

step – Size – produces a rough prediction interval of the future
activity’s size. The size of the future activity is inferred by looking
at the actual effort values of the two historical tasks. For example,
assume the historical record contains twenty completed tasks
and the estimator has selected tasks 9 and 14 as the two tasks
confidently believed to be smaller and larger, respectively, than the
future activity. The rough size of the future activity can, therefore,
be inferred to fall between the actual sizes of tasks 9 and 14.

Prediction intervals are expressed using a low estimate and
a high estimate, with the actual value expected to fall some-
where in between. Prediction intervals are expressed using the
notation “[low, high].” For example, the prediction interval [5, 7]
means we expect the actual value to fall somewhere between
five and seven hours, inclusive4.

The actual effort values associated with the bracketing tasks
represent the low bound and high bound of a prediction interval.
However, this interval is a rough estimate of the expected effort
and may need to be refined.

Step 4: Evaluate
The final step – Evaluate – is optional and may be applied

in the event the estimator is dissatisfied with the precision, ac-
curacy, or confidence level of the estimate. The estimator may
choose to shift the prediction interval based on an analysis of
his or her historical bias. This involves analyzing the practitioner’s
track record with using SISE and determining if the estimates
are typically low or high. If a consistent bias can be demonstrat-
ed, then the future estimate is adjusted to account for the bias.
The Removing Shift Bias section describes a sample scenario.

If adjusting for shift bias is not possible or has not produced
the desired results, the practitioner may adjust for width bias.
Width bias results from historical prediction intervals that are too
narrow or too wide. Large prediction intervals create a high level
of confidence, but make the estimate less useful for planning
purposes through reduced precision. By comparing a future task’s
prediction interval width and confidence level to those of historical
tasks, the practitioner may choose to increase or decrease the
prediction interval width, and, therefore, achieve a more desirable
precision/confidence level for the future task’s estimate. The
Removing Width Bias section describes a sample scenario.

This last step implies a prerequisite: the practitioner has been
using SISE or some other prediction interval-based estimation
approach and has an idea of his or her historical accuracy.
This historical bias is then used to modify the rough estimate
to produce a specific estimate.

It should be noted that within the SISE model estimation
bias is not an indication or measure of error committed by an
estimator. Rather, it is a measure of how the best efforts of
the estimator translate through the SISE model to create an
estimate that mirrors actual effort.

Framework vs. Methodology
The SISE model outlines a general framework for construct-

ing estimates. However, the model is not prescriptive in terms
of the lower level details of the process. The manner in which a
software engineer tracks his or her time, identifies the smaller
and larger tasks, and determines an acceptable prediction inter-
val width/confidence level, are left to the practitioner. In these
instances, the only important consideration is consistency; time
tracking and relative task sizing must follow a similar method
from day-to-day and week-to-week.

Additionally, the SISE model allows the practitioner to select an
appropriate level of granularity for his or her work tasks. Typically,
a software engineer must plan each day’s activities. SISE facili-
tates such planning and, indirectly, supports longer term planning
(e.g. weeks and months), by providing a quantitative estimate at

CrossTalk—May/June 2015 27

WHAT IS SOFTWARE ENGINEERING?

the lowest levels. Therefore, individual software engineers must
determine the smallest unit of work that is appropriate for them
personally for planning purposes. These units of work will define
scope and frequency of each SISE estimate. Again, the most im-
portant aspect is consistency; the granularity of estimates should
not change dramatically from week-to-week or month-to-month.

Getting Started with SISE
Introducing the SISE model into an individual’s software

process is simple. As with all regression-based approaches, the
first step is to begin tracking effort expended to complete the
work activities. As each new task is completed, it is recorded in
the historical record with its description, estimated effort, actual
effort, etc. This historical record will be the basis for all future
estimates. If an estimator has already been tracking his or her
time, then this information may be used, as long as it matches
the granularity of the future activities to be estimated.

The software engineer produces a SISE estimate by review-
ing his or her historical record. The historical record is sorted from
smallest to largest by actual effort and the numeric values are hid-
den from view (step 1). The engineer reviews the list looking for a
task that he or she is confident is smaller than the future activity. If
a task is located (step 2), the actual effort is revealed and that value
is recorded as the low end of the future task’s prediction interval
(step 3). If the estimator is not confident that any historical task is
smaller than the future activity, then a value of zero is recorded as
the low end of the future task’s prediction interval.

Next, the estimator reviews the list a second time to locate a
confidently larger task, again using only the descriptions of the
future and historical tasks. If one is located, the actual effort value
is revealed and recorded as the high bound of the future task’s
prediction interval. If a larger task cannot be confidently identified,
then the upper bound of the future activity’s prediction interval is
recorded as “unknown” using the sign for infinity (∞).

With the prediction interval for the future activity established,
the software engineer proceeds with work on the activity. Once
the activity is completed, the actual effort is recorded in the
historical record and the process repeats.

Accuracy, Precision, and Confidence Level
By using a prediction interval as the basis for estimates, the

SISE model presents the software engineer with a competing
set of factors: accuracy, precision, and confidence.

The accuracy of an estimate is measured in different ways
depending on the type of estimate. Many project managers and
project management applications expect an effort estimate to
be phrased as a single value. Single value estimates are easy to
understand, simple to aggregate, and are expected to be wrong.
After all, what is the probability that an activity estimated at 10
hours will take exactly 600.00 minutes? Therefore, the accuracy
of a single value estimate is measured in terms of its error (see
section titled Measuring Accuracy).

The accuracy of a prediction interval, on the other hand, is
measured by how often the actual effort falls within the interval.
The overall percentage of actual effort values falling within their
prediction intervals is known as the hit rate. Several logical ob-
servations can be made about the use of a hit rate. First, wider

prediction intervals are less precise and will typically produce
higher hit rates; conversely, smaller prediction intervals are more
precise and will typically produce lower hit rates. In other words,
precision and accuracy are inversely proportional, generally
tasking the estimator with balancing the two.

For ease of use, the SISE model deliberately takes a statisti-
cally simplistic approach to assigning confidence levels; the
model assumes the software engineer will repeatedly employ
the same method for determining relative size and creating
estimates. Based on this assumption, the estimator’s past
performance can be used as a predictor of future performance.
For example, if an estimator’s hit rate is 50%, it can be said that
half of the activities they have estimated have had actual effort
values that fell within his or her prediction interval. Therefore,
all things being equal, a new estimate has a 50% probability of
being correct. Put another way, the estimator has a 50% confi-
dence level in his or her next estimate.

Note that confidence level should not be confused with an es-
timator’s logical or emotional confidence in his or her abilities and
estimates. It can be assumed that when an estimator produces an
estimate, he or she does so to the best of their ability; the estima-
tor is confident the estimate is correct. Confidence level, on the
other hand, is a measure of the probability that the estimate will
be correct and allows the estimator to make statements such as:

In the past, my estimates have been correct 90% of the time.
Therefore, I have a 90% confidence level in my next estimate,
which I feel confident I have done my best in constructing.

Beginning with the first estimate, the SISE model assigns
each new estimate a confidence level based on the estimator’s
current hit rate. As noted in the fourth step of SISE, however,
the estimator may take steps to adjust this confidence level by
compensating for historical bias (see the Adjusting for Width
Bias and Adjusting for Shift Bias sections). Note that shift and
width biases are not to be viewed as errors on the part of the
estimator; rather they are to be viewed as the manner in which
the SISE model adapts to an individual software engineer’s
perspective of past and future work.

SISE Example
Assume a software engineer, who has never engaged in time

tracking, has decided to begin using the SISE model for his
web development project. The developer been assigned a new
work activity: “Design security model.” Given that the software
engineer’s historical record is empty, he has no data points for
an estimate; no smaller task or larger task can be identified to
use as the basis for a prediction interval. Therefore, following
the SISE model, the prediction interval for the first activity is [0,
∞]. Once the first activity is completed and the actual value is
recorded, the hit rate is calculated to be 100% (see Table 1).

Task Low Est.

(hours)

High Est.

(hours)

Actual

(hours)

Design security model 0 ∞ 10

	
 Table 1: One completed activity (Hit rate = 100%)

28 CrossTalk—May/June 2015

WHAT IS SOFTWARE ENGINEERING?

The next activity assigned to the software engineer is to “De-
sign the user model.” Since only one items exists in the historical
record, the first SISE step (sorting) is complete by default. Our
software engineer hides all but the first column and compares
the future activity’s description to the task description in the his-
torical record. He decides that designing a user model is easier
than designing a security model; we have a larger historical
task, but no smaller one. The estimate, therefore, is a prediction
interval of [0,10]. Our confidence in the estimate is equal to the
hit rate, which is currently 100%.

Work proceeds and the activity is completed in eight hours. The
estimate and actual are recorded and the new hit rate is calculated
to be 100% (see Table 2). For convenience, the historical data in
these examples will be kept sorted from smallest to largest task.

The third activity is assigned to the software engineer: “Design
the content model.” Our software engineer scans the historical re-
cord, after hiding the numeric values, and decides that “designing
a user model” is smaller and “designing a security model” is larger.
Therefore, the prediction interval for the future activity is set at [8,
10]. The work is completed with an actual effort of 11 hours, giv-
ing a new hit rate of 67%, with two of the three completed tasks
falling within his prediction intervals (see Table 3).

Table 2: Two completed activities (Hit rate = 100%)

Task Low Est.

(hours)

High Est.

(hours)

Actual

(hours)

Design user model 0 10 8

Design security model 0 ∞ 10

	

Task Low Est.

(hours)

High Est.

(hours)

Actual

(hours)

Design user model 0 10 8

Design security model 0 ∞ 10

Design content model 8 10 11

	

Task Low Est.

(hours)

High Est.

(hours)

Actual

(hours)

Design database tables 0 11 6

Design user model 0 10 8

Design security model 0 ∞ 10

Design content model 8 10 11

	

Table 3: Three completed activities (Hit rate = 67%)

Table 4: Four completed activities (Hit rate = 75%)

Task Low Est.

(hours)

High Est.

(hours)

Actual

(hours)

Missed

Prediction

Interval?

Design FAQ model 0 4 2

Create FAQ classes 2 6 2

Create security classes 2

8 3

Create user classes 5 8 4 Yes

Create database tables in MySQL 0 6 5

Design database tables 0 11 6

Design user model 0 10 8

Design security model 0 ∞ 10

Design content model 8 10 11 Yes

Create data connector class 0 11 14 Yes

	

Task Low Est.

(hours)

Adj.

Low

High Est.

(hours)

Adj.

High

Actual

(hours)

Missed

Prediction

Interval?

Design FAQ model 0 0 4 5 2

Create FAQ classes 2 1 6 7 2

Create security classes 2 1 8 9 3

Create user classes 5 4 8 9 4

Create database tables in MySQL 0 0 6 7 5

Design database tables 0 0 11 12 6

Design user model 0 0 10 11 8

Design security model 0 0 ∞ ∞ 10

Design content model 8 7 10 11 11

Create data connector class 0 0 11 12 14 Yes

Table 5: Ten completed activities (Hit rate = 70%)

Table 6: Adjusting for width bias (Hit rate = 90%)

A fourth activity is assigned to the software
engineer: “design database tables.” By scan-
ning the historical record’s task descriptions,
the software engineer decides the confidently
larger task is “design content model,” but is un-
able to designate a smaller task. The prediction
interval, therefore, is set as [0, 11].

The confidence level is assumed to be 67%,
based on the historical hit rate. After refer-
ring to the sections on adjusting for bias, the
software engineer considers making a shift
adjustment. A one-hour upward shift of all the
historical prediction intervals would move the
hit rate from 67% to 100%. This leaves the
estimator with two choices. The estimate’s
prediction interval could be shifted one hour
upward to account for a possible historical bias,
or the estimate could be left alone. In short, the
estimator now has two options to choose from:
[0, 11] with a 67% confidence level or [1, 12]
with a confidence level of 100%. Assume the
estimator chooses to not shift the estimate due
to the small data set size; the work is per-
formed and recorded (see Table 4).

Assuming the software engineer proceeds
in this fashion, he will accumulate a sizable
historical record. With each hit or miss within
the prediction interval, the hit rate will rise and
fall. The software engineer may, at some point,
choose to adjust a future estimate for width
bias in order to increase his confidence level in
a new estimate. Here’s a simple example, as-
suming ten completed tasks, with no verifiable
shift bias to correct

WHAT IS SOFTWARE ENGINEERING?

CrossTalk—May/June 2015 29

As Table 5 indicates, the hit rate is 70%, with three of the ten
tasks falling outside their prediction intervals. A future activity, “Cre-
ate Contact Us page,” has been assigned a prediction interval of
[2, 8] and the confidence level is assumed to be 70%. In this case,
however, the manager has requested a higher confidence level. To
accomplish this, the software engineer adjusts for width bias.

The margins of error for each of the three tasks are one hour,
one hour, and three hours, respectively. If the prediction intervals
for all historical tasks were increased by one hour in each direc-
tion, the hit rate would rise to 90%. See Table 6.

Therefore, the prediction interval for the future activity “Create
Contact Us page” must also be adjusted using a one-hour expansion,
making it [1, 9] with a confidence level of 90%. In summary, the soft-
ware engineer has a choice between two, fact-based estimates: [2,8]
with a 70% confidence level or [1,9] with a 90% confidence level.

Each of the subsequent iterations through the SISE model
follows a similar pattern to those reviewed above. The software
engineer is assigned a new activity to complete. The activity is
compared to previously completed tasks to identify a smaller
and larger task, which leads to a prediction interval. The predic-
tion interval is adjusted, if necessary and possible, to achieve a
desired confidence level or prediction interval.

Validation of SISE
The SISE model has been validated through a multi-step

process. First, over 100 software engineering students par-
ticipated in a relative sizing activity, where they were asked to
identify the larger of two tasks, based solely on the task descrip-
tions. The results demonstrated that a majority of students were
able to identify the larger task two-thirds of the time. Equally as
important, the results indicated that students, on average, were
unlikely to incorrectly identify a task’s size; instead, they tended
to identify the tasks as similar in size.

The next step in validating SISE involved sizing estimates using
classroom programming assignments. Each student constructed a
SISE-style estimate, as well as, an estimate based on a proxy-based
model, derived from PSP’s PROBE model. Overall, the SISE model’s
predictions proved no more or less accurate than the proxy-based
approach. In addition, the students indicated that SISE, in their opin-
ion, took less time and was based on less a complex model.

Additional validation of the SISE model within an industrial
setting is planned for the near future. This will provide an op-
portunity to view the performance of SISE in a less structured
(i.e. non-academic) environment over a longer term. In addition,
an industrial environment will provide critical feedback on SISE’s
ability to integrate into a team environment, as the individual
estimates are rolled up into team and project-level estimates.

Removing Shift
Shift bias involves a prediction interval that is too low or too

high and may be corrected by shifting the interval. Shift bias
exists only if the historical actuals fall predominantly below or
above the associated prediction intervals; estimation error that is
spread equally between overestimates and underestimates is a
width bias and must be corrected in a different manner.

To determine if a shift bias exists, a form of simulation must
be conducted. The simulation involves (1) compiling a list of the
historical estimation error values, (2) shifting all the historical

prediction intervals by each error value, then (3) checking the
change in overall hit rate with each shift.

Consider, for example, the following historical data in Table 7.

Activity Prediction Interval (hours) Actual (hours) Error
Task 1 10-15 16 1
Task 2 12-16 18 2
Task 3 2-5 5 0
Task 4 1-3 3 0

Table 7:

The hit rate for the unmodified data set is 50%. All the pre-
diction intervals could be shifted by 1 hour, which would cause
Task 1 to become a successful prediction. Additionally, all the
prediction intervals could be shifted by 2 hours, which would
cause Task 2 to become successful. But how would these shifts
affect the other predictions?

If all the prediction intervals are shifted by 1 hour, the hit rate
rises to 75%; task 1’s prediction interval now contains the actual
effort and Tasks 3 and 4 are still successful. If the intervals are
shifted by 2 hours, the hit rate rises to 100%. So, given this
limited data set, shifting future estimate’s prediction intervals by
2 hours may produce more accurate results.

Removing Width Bias
Once shift bias has been accounted for, the estimator may wish

to either improve their precision or confidence level. This action
involves a trade-off since increasing one reduces the other. For
example, if the estimator wishes to increase their confidence level,
the prediction intervals must be widened, making the estimates
less precise. If the estimator wished to increase the precision of
their estimates, by reducing the size of the prediction interval, the
confidence level in the estimate will be proportionally reduced.

Improving the confidence level is accomplished by symmetrically
widening all past prediction intervals by whatever amount is neces-
sary to reach a hit rate equal to the desired confidence level. For
example, if the historical record demonstrates a hit rate of 50% and
the estimator would like to reach a confidence level of 80%, then
all the past estimates’ prediction intervals are widened until 80% of
the actuals fall within the associates prediction intervals.

The inverse operation may be performed to improve the preci-
sion of the estimates. Past prediction intervals may be symmetri-
cally reduced in size until the desired prediction interval width is
reached. The new (and reduced) confidence level may then be
calculated by checking the hit rate for the entire historical record.

Table 8 shows an example of how widening the prediction in-
terval may allow for an increase in the hit rate from 60% to 80%.

Shifting the prediction intervals would not have improved
the hit rate; however, if all the prediction intervals are in-
creased by two hours (-1 to the low and +1 to the high), the
hit rate moves from 60% to 80%.

Measuring Accuracy
The accuracy of a single value estimate is determined by the

magnitude of the estimate’s error, relative to the actual effort.
For example, if an activity is estimated to take 4 hours, but
actually takes 5, the magnitude of relative error (MRE) is 0.2 (or
20%). Here is the formula:

30 CrossTalk—May/June 2015

WHAT IS SOFTWARE ENGINEERING?

Conclusion
The SISE model represents an empirically based approach to

effort estimation that relies less on complex mathematical models
and more on intuitive expert judgment, without sacrificing the
quality of the final product. Software engineers willing to take
the first tentative steps toward adopting a personal process now
have access to a truly lightweight, agile estimation model. The
SISE model does not burden the practitioner with any more work
than the absolute minimum necessary to produce a reasonably
accurate, fact-based effort estimate. In addition, the model is the
first of its kind, suitable for use by a single software engineer.

Further development and improvements to the model are
currently underway at Auburn University’s microISV Research
Lab. We are formalizing ways in which the SISE model may be
integrated into team-based software processes, as well as tool
development.

Table 8:

Table 9:

Activity Original Prediction
Interval (hours)

Actual (hours) New Prediction
Interval (hours)

Task 1 10-15 10 9-16
Task 2 12-16 16 11-17
Task 3 5-7 6 4-8
Task 4 9-11 12 8-12
Task 5 13-15 11 12-16

MRE = (actual-estimate)/actual
When using prediction intervals to describe an effort estimate,

the practitioner’s accuracy is determined by the number of
activities with actual effort values that fall within the predicted
interval. Here’s the formula:

Hit Rate = No. hits / No. estimates

For example, consider the list of work activities in Table 9.
Eight of the ten activities were completed within the time

frame defined by the prediction interval; Tasks 4 and 5 took
more and less time, respectively, than predicted. Therefore, the
hit rate for this sample is 0.8, or 80%.

Activity Original Prediction
Interval (hours)

Actual (hours)

Task 1 10-15 12
Task 2 12-16 15
Task 3 2-5 5
Task 4 1-2 3
Task 5 16-22 15
Task 6 9-13 12
Task 7 4-6 5
Task 8 6-8 8
Task 9 3-4 4
Task 10 6-10 9

NOTES
1.	 M Jorgensen, K H Teigen, and K J Molokken-Ostvold. Better sure than safe? Over
	 confidence in judgment based software development effort prediction intervals.
	 Journal of Systems and Software, 70(1-2):79–93, 2004.
2.	 Russell Thackston and David Umphress. Individual effort estimating: Not just for
	 teams anymore. CrossTalk: The Journal of Defense Software Engineering, 25(3):4–7,
	 May/June 2012.
3.	 Pomeroy-Huff, Marsha, et al. “The Personal Software ProcessSM (PSPSM) Body of
	 Knowledge, Version 2.0.” Software Engineering Institute. Carnegie Mellon, August
	 2009. Web. 30 October 2013.
4.	 Russell Thackston and David Umphress. Micropreneurs: The rise of the microISV. IT
	 Professional, 15(2):50–56, 2013.

ABOUT THE AUTHORS
Russell Thackston is an Assistant
Professor of IT at Georgia Southern
University. He earned his Ph.D. in com-
puter science and software engineering
from Auburn University. His research
interests focus on software process and
effort estimation, specifically with regard
to individual software engineers and
microISVs. His work on SISE -- an effort
estimation model tailored to individuals
-- has been published in Crosstalk, the
Journal of Defense Software Engineering,
and his research into microISVs has been
published in IEEE’s IT Pro. Russell served
in the U.S. Air Force during Desert Storm
and Desert Calm and has been happily
married for more than 25 years.

Phone: 912-478-4218
E-mail: rthackston@georgiasouthern.edu

David A. Umphress, Ph.D., is an associ-
ate professor of computer science and
software engineering at Auburn University,
where he specializes in software devel-
opment processes. He has worked over
the past 30 years in various software
and system engineering capacities in
military, industry, and academia settings.
Umphress is an Institute of Electrical and
Electronics Engineers (IEEE) certified
software development professional.

Phone: 334-844-6335
E-mail: david.umphress@auburn.edu

mailto:rthackston@georgiasouthern.edu
mailto:david.umphress@auburn.edu

