
SUPPLY CHAIN ASSURANCE

CrossTalk—September/October 2015 37

Software Security Assurance

SOUP to NUTS
Dr. C. Warren Axelrod, Delta Risk LLC

Abstract. The ability to assess risks of and from specific software supply chains
depends in large part on the amount, accuracy and availability of essential informa-
tion. Only when such information is at hand can we hope to assure ourselves of the
quality and security of installed software. In this paper we use an expanded version
of the Cynefin Framework to come up with preferred approaches to categorizing
software supply chains not only based on the potential knowledge levels of those
responsible for evaluating, approving and operating systems, but also according to
what can be known about particular supply chains. We suggest how each category
of supply chain might be evaluated and fixed in the face of adverse incidents.

on investment in an ever more complex environment.
In addition, a worldwide data-sharing infrastructure is needed

in order to allow entities comprising global supply chains to
inform one another of events that will likely have a significant
impact on the quality and availability of supplied software and
equipment components. In order to understand what data need
to be collected and how they should be used by decision-
makers to manage the vagaries of software supply, we take the
Cynefin Framework and extend it to cover additional software
supply-chain characteristics. Based on this approach, we are
able to suggest appropriate data-gathering and decision-making
methods that meet each of a large variety of situations.

DoD and National Security Context
In a 2012 report on “IT Supply Chains,” [3] the GAO affirmed

that, among the four U.S. national security-related depart-
ments, the DoD had made greater progress by defining supply
chain protection measures and implementing procedures for IT
supply-chain assurance than had the departments of Energy,
Homeland Security and Justice. Nevertheless there is still much
work to be done by the latter three agencies with national-secu-
rity responsibilities, as recommended by the GAO report.

This does not mean, however, that the DoD is free and clear
when ii comes to IT supply-chain risk management. Despite all the
progress in methods, procedures and tools that has been made
over the last decade, there are still many areas that remain un-
known, and may not even be knowable, to DoD program managers,
particularly since extensive code reviews and software assurance
testing have not been required. This implies that full assurance of
IT supply chains remains a goal rather than a reality. Little has ap-
peared in the literature on the ability of analysts to know each and
every component of IT supply chains so that many of the structures
of, and participants in, supply chains remain obscure or unknown,
particularly with respect to commonalities [4]. Consequently, many
vulnerabilities are not known either. As stated in [5]:

“[The DoD needs] to better “see” into some legs of the supply
chain, especially where critical components are involved.”

While a report by Adams [6] is oriented towards the manufacture
of physical products rather than software in regard to supply chains
of the U.S. defense industry, its conclusions also apply to IT prod-
ucts, software, and services. The report recommends the following:
1. Increase long-term federal investment in high-technology

Industries
2. Apply and enforce existing laws and regulations
3. Develop domestic sources for key ... resources
4. Develop plans to strengthen the defense industrial base
5. Build consensus ... on the best ways to strengthen the

defense industrial base
6. Increase cooperation among federal agencies and between

government and industry
7. Strengthen collaboration among government, industry and

academic research institutions
8. Ensure collaboration on economic and fiscal policies for

long-term budgeting
9. Modernize and secure defense supply chains [emphasis added]
10. Identify potential defense supply-chain chokepoints and

plan to prevent disruptions

Introduction
For this context the most appropriate definition of “supply

chain risk” is:
 “... the risk that an adversary may sabotage, maliciously intro-

duce unwanted function, or otherwise subvert the design, integrity,
manufacturing, production, distribution, installation, operation, or
maintenance of a covered system so as to surveil, deny, disrupt, or
otherwise degrade the function, use, or operation of such system.”1

In order to manage software supply-chain risk, accurate
and extensive data must be collected, analyzed and re-
sponded to. All too often, however, crucial data are not readily
at hand or they are difficult and/or expensive to collect, if
indeed they can be gathered at all.

According to a 2004 report on “Defense Acquisitions,”[1] the
GAO found that the U.S. DoD acquisition and software security
policies were inadequate particularly in addressing risks relat-
ing to foreign suppliers developing weapon system software.
Because of increasing difficulty and costs of testing computer
code, the GAO suggested that, rather than testing code, those
responsible for approving systems learn more about who
developed the software and where they were located in order
to arrive at a more informed vendor selection decision, which
could mitigate risks. While such an approach is better than noth-
ing, it does not come close to the level of software assurance
obtained from independent in-depth testing of computer code.
Furthermore, software makers usually incorporate software
components from other sources, including open sources, which
may not be known to vendors, contractors, or their customers.2

In this article, we investigate why so much necessary informa-
tion is not forthcoming and propose approaches for obtaining
elusive and costly software supply-chain data. Such information
can provide analysts with the ability to anticipate, detect and re-
act to adverse issues before, during and after they occur, rather
than well after the fact, which is unfortunately more usually
the case. Investment in the collection and analysis of software
supply-chain metrics offers the potential of significant returns

38 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

It should be noted that the report [6] does not generally focus
on the need to collect the knowledge necessary for making
appropriate supply-chain decisions, although the exhortation to
“identify chokepoints” implies some degree of information gather-
ing. Facilitating the acquisition, analysis and understanding of data
about software supply chains is a dominant objective of this article.
That is to say, we want to bring to light how decision-makers should
go about determining what is known, what is not known, what it will
take to acquire the necessary knowledge, what is unknowable, and
what they need to do under various circumstances.

Similarly, neither the recently published NIST Special Publica-
tion [7], which applies across all Federal information systems
and organizations, nor the CNSS report [8], which addresses na-
tional security systems, specifically examine the “ability to know”
supply-chain information. They proceed with the understanding
that required information is readily available, which is far from
the case in many circumstances. Nevertheless, both of these
publications set forth invaluable guidance and the CNSS report
[8] provides a very useful list of references with which DoD
managers responsible for supply chains should become familiar.

The Provenance of Software
If you don’t know where critical software comes from, then you

may well be in the SOUP, literally, where SOUP means “Software
of Unknown Provenance (or Pedigree)” Such software products
may not be trustworthy because their origins are questionable or
unknown. At the other extreme, if you think that you know every-
thing about a particular piece of software, e.g., who designed it,
who wrote it, and who tested it, the results of the tests, and so on,
then you might be willing to rely on NUTS3 or “Not Unreasonable
Tracking Systems,” in order to verify that the software develop-
ment lifecycles (SDLCs) involved follow predetermined routes and
are subject to appropriate levels of oversight.

Of course, there are many other situations between no knowl-
edge and complete knowledge, such as knowing something about
the backgrounds of some of the developers and their works, but
not enough to give one much confidence that there aren’t any little
malware devils that might be lurking within the overall system, often
for years, until they are revealed through some incident or other.
Even when software is “open source,” meaning that its source code
is available to anyone wishing to look through the programs and
modify them (under certain predetermined conditions), there are no
guarantees that errors or deficiencies have not been introduced or
that there is sufficient funding to provide suitable levels of techni-
cal and operational support. The exploitation of Heartbleed and
Shellshock malware demonstrated this.4

Furthermore, there are times when everyone else appears to
have known about some threat or vulnerability, but you just didn’t
happen to have been aware of them (oblivious), in which case
there will some answering to do in order to satisfy management
... or not, as the case may be.

Goals of Decision Makers
In order to establish the best possible situation, given the pro-

liferation of buggy software and the ability of evildoers to take
advantage of these deficiencies, one’s goals should be to:

• determine what is known about a piece of software’s
provenance and what is not

• understand which risks are known to the community and
which are not

• find out more about unfamiliar risks so that they might be
mitigated

• take steps to mitigate known risks or have good reasons for
not having done so

• come up with approaches for dealing with unknown or
unexpected risks

• establish a professional and industry/sector network to stay
informed about risks relating to supply chains of software
that you plan to acquire and install

• maintain current knowledge about software supply-chain
research, industry/sector and professional publications,
conferences, podcasts, webinars, etc.

• understand that there are certain software products that
operate covert systems about which you may never know
but which can affect you in some way or another, purposely
or inadvertently

We will gain a better understanding of how to achieve these
goals by expanding an established decision framework to incor-
porate additional contexts found in software supply chains.

The Known/Unknown (K/U) Model
Since lack of knowledge is a major contributor to inadequate

and inappropriate responses to supply-chain malfunctions and
failures and the ability to recover quickly, it is important to fill in
where there are clearly deficiencies. The first step is to un-
derstand what makes up the universe of knowledge and then
determine which areas need to be augmented with a higher level
of understanding. In Table 1, we show how knowledge about soft-
ware supply chains might be categorized depending upon how
knowledgeable cybersecurity professionals might be concerning
particular software supply-chain deficiencies or weaknesses.

The underlying concept here is that either you know or don’t
know in advance about specific threats or vulnerabilities with
respect to particular software products’ supply chains. If you did
know, the question then arises as to whether you responded
appropriately. If you didn’t know, then how are you going to en-
sure that you will get advance notification if and when a similar
situation is occurs in the future? If you didn’t know but should
have known, then your suitability to the task is in question. If you
could not have known, you need to examine whether you have
appropriate monitoring and incident-response mechanisms in
place to react correctly.

These concepts of whether one is aware or unaware of various
situations have been incorporated into a framework, called the
Cynefin Knowledge Framework (“Cynefin”), which is designed to
assist leaders in their decision making. The model is described in
[9]. As mentioned above, we will expand this framework to facili-
tate decision-making with respect to software supply chains.

The Cynefin Knowledge Framework
Cynefin (translated from the Welsh as “habitat” or “place”) is

roughly analogous to the above K/U model. Cynefin suggests
how decision-makers should respond to events that fall within

CrossTalk—September/October 2015 39

SUPPLY CHAIN ASSURANCE

Table 1. K/U model categories of knowledge by information available

Analysts’

Knowledge

Information Available

Knowns Unknowns

Known Obvious – I knew all about this in advance
but didn’t act on it quickly enough

Obscure – I knew that I didn’t know anything
about this, but couldn’t get the data for
economic or other reasons

Unknown Oblivious – I was not aware of this even
though my peers were

Unfathomable – I didn’t have a clue that this
existed, nor did my peers

various contexts. In this article, we extend the framework to
cover situations not specifically addressed in Cynefin.

In a video,5 Snowden differentiates between categoriza-
tion models (such as the 2 x 2 matrix K/U model above) and
“sense-making” frameworks, such as Cynefin. With categorization
models, the framework precedes the data; but for sense-making
frameworks, “the framework itself emerges from the data ...”
Figure 1 illustrates Cynefin, which has evolved over time.6 For
example, “simple” contexts in have been replaced with “obvious”
contexts, and the fifth category “disorder” seems to have been
dropped. Also, there are subtleties that do not show up in the
diagram, but are described in the video, such as catastrophic
consequences of a transition from “obvious” to “chaotic” contexts.
“Disorder” contexts cover otherwise uncategorized items.

Cynefin divides the contexts between “ordered systems,”
which are highly constrained and predictable, whether obvi-
ous or complicated contexts, and “unordered systems,” which
have fewer constraints and, for chaotic contexts, exhibit
unpredictable random behavior.

Categories within the known/unknown (K/U) model are quite
similar to Cynefin contexts, except for two instances. One instance
is the chaotic system, the context of which is “unknowable,” and
the other instance is K/U Model’s category of “unknown knowns,”
which is not represented explicitly in Cynefin. Table 2 shows simi-
larities and differences between the two models.

In Table 2, we have added three contexts, namely, “oblivious,”
“obscure,” and “stealth,” which are shown in the shaded entries.
“Oblivious” contexts, which are part of the K/U model, are those
where decision-makers are not aware of certain information
generally known to many practitioners. Note that “oblivious” is a
characteristic of decision-makers rather than of systems. “Ob-
scure” contexts, which belong to neither Cynefin nor K/U, are
those where surreptitious methods are needed to find out about
system vulnerabilities.7 “Stealth” contexts are for systems which
are meant to be kept secret.8 The expanded Cynefin framework
is illustrated in Figure 2.

According to the definitions of Cynefin realms, “knowable
“and “known unknowns” realms are equivalent—for “know-
able,” decision-makers are aware that certain items, which are
not known, may become known through analysis. For “known
unknowns,” items are known to some but not to others.

If items are “unknowable,” then nobody knows about them and
you are generally “off the hook” if they occur. However, if you

Figure 2. Suggested Expanded Framework

Figure 1: The Cynefin Knowledge Framework

40 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

don’t know about something that you should (this is not addressed
specifically in Cynefin), then you might be accused of not maintain-
ing currency in the field. This latter situation is most dangerous with
respect to software supply chains, since decision-makers might be
considered ignorant (or worse, negligent) in the event that some-
thing goes wrong.9 This is why information sharing is crucial for
successful management of software supply chains.

We now extend Cynefin to include the K/U model so as to
determine the decisions that need to be made and the amount
of effort to be expended on assessing and mitigating risks. In
Table 3, we show Cynefin (unshaded areas) with extensions
derived from the K/U model (shaded areas).

Realistically, there are those with software supply-chain re-
sponsibilities who are somewhat unaware of what is going on in
the outside world as it pertains to their supply chains. Published
reports about how organizations scramble in response to malware
and hacking incidents and other forms of supply-chain disruption
support the contention of ignorance, even when information about
vulnerabilities and weaknesses are already in the public domain.10

Most academic treatments of this topic do not address deal-
ing with criminal elements to obtain obscure information about
malware and back doors that may have been inserted into soft-
ware products during their supply-chain lifecycles. However, it is
common knowledge that there are large and lucrative markets
for the sale of exploits and vulnerability information.11 Some
might consider such information to be “unknowable,” if they
refuse to deal with dubious, clandestine or criminal elements.
Also, the news about secret software systems is usually mere
happenstance as might occur through some error or by the leak-
age of classified information by insiders.

Software Supply-Chain Risks
It can be difficult to come up with meaningful risk assess-

ments for each of the seven contexts in the extended Cynefin.
In the first place, analysts and/or decision-makers are often
not aware of supply-chain weaknesses. Whether such defects
will have serious personal and organizational consequences
depends largely on efforts made to find out about vulnerabili-
ties preemptively. As mentioned, an important consideration is

Contexts Practices K/U Model Cynefin Realms Differentiating Activities

Obvious Best Known knowns Known knowns Categorize

Complicated Good Known unknowns Knowables – Known unknowns Analyze

Complex Emergent Unknown unknowns Unknown unknowns Probe

Chaotic Novel -- Unknowable unknowns Act

Oblivious Ignorant Unknown knowns -- Investigate

Obscure Clandestine Unknown knowables -- Deal

Stealth Secret Unknowable unknowables -- Respond

!Table 2: Knowledge for system contexts of an extended framework.

whether one’s peer group is already aware of such vulnerabili-
ties. It is much more damaging to one’s career if you are one of
only a very few who lack knowledge than in a situation where
everyone is just as ignorant.

The reverse may not be true, however. If you anticipate an is-
sue that others don’t or won’t recognize as important, whether it
is to your advantage or not when an incident occurs depends on
whether you acted on the knowledge. For example, if you expect
the electrical power grid to be unreliable in a particular country or
region and you installed a generator when others in the area did
not, you become a hero when a power outage occurs. However, if
you just mentioned the power problem but did not install a backup
generator, you might be considerably worse off than if you hadn’t
mentioned the problem in the first place, since you might be ac-
cused of not being aggressive enough in making your case.

Software Supply-Chain Lifecycles
As described in [12], software supply chains differ significant-

ly from those of physical products. Software’s unique character-
istics include the following:

• Software can be copied without affecting the original and
sold on the black market

• Software can be distributed in electronic form without
transporting physical media

• Malware and back doors can be inserted into authentic
software without leaving any trace

Because of these characteristics, the software supply-chain
lifecycle is also somewhat unique. Table 4 lists specific attri-
butes of software supply chains for each phase.

Information and Communications Technology
(ICT) Supply-Chain Risks

A particularly extensive report [13], developed by the DoD,
provides a list of threats that can, and do, impact software and
software supply chains, including: Sabotage, Tampering, Coun-
terfeiting, Piracy, Theft, Destruction, Disruption, Exfiltration—
theft, Exfiltration—disruption, Infiltration, Subversion, Diversion,
Export Control Violations, Corruption, Social Engineering, Insider
Threat, Pseudo-insider Threat, and Foreign Ownership.

CrossTalk—September/October 2015 41

SUPPLY CHAIN ASSURANCE

Ordered/

Unordered

Knowledge Knowns Unknowns

Ordered Known

(Knowable)

•! Contexts: Obvious (Simple)
•! Realm: Known knowns
•! Domain: Best practice
•! Standard process invoked with review

cycle & clear measures

•! Contexts: Complicated
•! Realm: Known unknowns
•! Domain: Good practice
•! Analytical techniques used to

determine facts
Ordered or
Unordered

Unknown •! Contexts: Oblivious
•! Realm: Unknown knowns
•! Domain: Ignorant
•! Investigations of vendors, contractors

and industry and professional groups to
find out what is generally known

•! Contexts: Complex
•! Realm: Unknown unknowns
•! Domain: Emergent
•! Diverse interventions needed to create

options

Ordered or
Unordered

Unknowable •! Contexts: Obscure
•! Realm: Unknowable knowns
•! Domain Clandestine
•! Clandestine dealings to try to get

information

•! Contexts: Chaotic
•! Realm: Unknowable unknowns
•! Domain: Novel
•! Single or multiple actions required to

stabilize situation
Ordered or
Unordered

Unknowable •! Contexts: Stealth
•! Realm: Unknowable unknowables
•! Domain: Secret
•! Able to respond only when secret is

unintentionally disclosed
!Table 3: Extensiaons to the Cynefin framework compared to the K/U model

Table 4: Software characteristics for phases of the supply-chain lifecycle

While many of these threats apply to software products generally,
including those built in-house, they all can occur in both national
and global software supply chains. Table 5 suggests some risk
mitigation approaches for each context of our extended model:

In general, risk mitigation comprises obtaining as much advance
warning as possible from a broad population of sources and re-
sponding in ways that improve, rather than exacerbate the situation.
It is strongly advised to have a complete set of contingency plans in
place so that they can be drawn upon as circumstances require.

Software Assurance Factors
Much of software supply-chain risk management involves

information sharing and decision making based upon con-
texts in order to mitigate the many risks that affect software
supply chains. However, many incidents that occur can be
avoided by proactively making sure that the software goes
through a rigorous software assurance process, which might
include various forms of certification.

Phase Software Supply-Chain Lifecycle Attributes

Requirements Requirements (specifications), design and development can be done virtually anywhere that has
suitably educated staff and reliable, low cost telecommunications

Design

Building

(Development)

Distribution Although some software is still distributed on physical media, it is common to distribute software
electronically and increasingly software is available in the Cloud so no distribution as such is
necessary. Warehousing

Deployment Software is deployed via various wholesale and retail outlets although it is often downloaded
from vendor and or distributor websites, including open-source.

Operation In theory, software can be run indefinitely although there are reasons for it becoming obsolete,
such as cessation of vendor support, replacement of operating systems and platforms, changes
in hardware, etc. Maintenance and

Support

Disposal Software can generally be deleted or replaced without having to destroy media, although having
users properly eliminate all traces of the software, including backup copies, is unreliable.

!

42 CrossTalk—September/October 2015

SUPPLY CHAIN ASSURANCE

Table 5: Risk mitigation approaches for various contexts

In order to incorporate software assurance standards into
supply chains, it is first necessary to determine what those stan-
dards should be and how they should be used and managed.
As described in [10], this could be accomplished addressing a
number of technical, economic and governance issues including:

• Development of software assurance technical standards
• Management of software-assurance and certification standards
• Evaluation of tools and techniques for assuring software
• Determination of update frequency for tools and techniques
• Focus on the most pressing threats to software and supply chains
• Establishment of models of the economics of software-

assurance solutions, and testing and certifying software

Once such standards have been established, we come to the far
greater task of enforcing them on third parties both domestically
and internationally. As can be imagined, this would require a major
political effort far beyond anything that has been attempted so far
in this arena. Nevertheless, some significant part of this goal needs
to be implemented if trust in software is to be achieved at even a
rudimentary level. The only real possibility to make progress here
is to use economic means of encouragement as can be brought
about with a carrot, by (for example) requiring government agen-
cies only to buy software that meets agreed-upon international
standards, or with a stick by invoking legal measures that places
liability on software manufacturers, as suggested in [10].

Conclusions
Before one can reasonably address the quality of software

emanating from supply chains, it is necessary to understand the
various contexts within which knowledge of software products’
provenance can exist. It is suggested that the known/known
model combined with the Cynefin framework can provide a
basis for decision-making possibilities.

Risks relating to software supply chains come from both
the software itself and the supply-chain process that served to
create the software. We looked at many of these risks and sug-
gested how they might be addressed.

Finally we looked at software assurance requirements that,
if addressed appropriately into software supply chains, would
serve to ensure that the software products themselves have the
desired security and integrity.

In general, we are far behind where we should be in the fight
against vulnerable and dangerous software and the practices
that govern them. We therefore need to take a holistic view of
the factors that affect software supply chains and the software
products that emanate from them, and we must mitigate the
risks with due deference to the need for efficient and effec-
tive means of manufacturing the software that is at the base of
practically all new systems of any importance.

Knowledge Knowns Unknowns

Known

(Knowable)

Obvious—Activate preplanned response
procedures which should have been developed
as part of the software acquisition process

Complicated—

•! Try to avoid using particular software that is
known to have issues (although specific
issues may not be know)

•! If use is unavoidable, monitor status of
software and apply patches immediately

Unknown Oblivious—Activate incident-response
procedures and quickly link up with professional
and industry “grapevines” so as to be forewarned
of future threats

Complex—Activate incident-response process
and try to determine whether similar incidents
might be anticipated and avoided in the future

Unknowable Clandestine—Determine who might know about
unknowable vulnerabilities and make deals with
those with relevant information

Chaotic—React to unexpected chaos with
creative responses in order to stabilize the
situation before being able to take corrective or
restorative actions

Unknowable Secret—First, understand the relevance of the
revelation of a secret system to your organization
and then respond as appropriate, if at all

!

CrossTalk—September/October 2015 43

SUPPLY CHAIN ASSURANCE

1.	 U.S. General Accounting Office (GAO), Defense Acquisitions: Knowledge of Software
Suppliers Needed to Manage Risks, GAO-04-678, May 2004.

2.	 Vaughan, Steven J. “It’s an Open Source World: 78 Percent of Companies Run
Open-Source Software,” April 6, 2015. Available at <http://www.zdnet.com/article/
its-an-open-source-world-78-percent-of-companies-run-open-source-software/>

3.	 U.S. General Accountability Office (GAO), IT Supply Chain: National Security-Related,
Agencies Need to Better Address Risks, GAO-12-361, March 2012.

4.	 Axelrod, C. Warren. “Risks of Unrecognized Commonalities in the Information
Technology Supply Chain,” Proceedings of the 2010 IEEE International Conference –
Technologies for Homeland Security, Waltham, MA, November 2010.

5.	 Davidson, Don, and Stephanie Shankles. “We Cannot Blindly Reap the Benefits of a
Globalized ICT Supply Chain,” CrossTalk, (March/April 2013): 4-7.

6.	 Adams, John, ReMaking American Security: Supply Chain Vulnerabilities &
National Security Risks Across the U.S. Defense Industrial Base, Alliance for
American Manufacturing, May 2013.

7.	 Boyens, Jon et al. Supply Chain Risk Management Practices for Federal Information
Systems and Organizations, NIST Special Publication 800-161, U.S. Department of
Commerce, April 2015.

8.	 Committee on National Security Systems (CNSS), Supply Chain Risk Management
(SCRM), CNSSD No. 505, March 2012.

9.	 Snowden, David J., and Mary E. Boone. “A Leader’s Framework for Decision Making,”
Harvard Business Review (November 2007).

10.	Denning, Dorothy E. “Privacy and Security: Toward More Secure Software,” Com-
munications of the ACM, April 2015, pages 24-26.

11.	Verizon Enterprise Solutions, 2015 Data Breach Investigations Report, 2015. Available
via link at <http://www.verizonenterprise.com/DBIR/2015/>

12.	Axelrod, C. Warren. “Mitigating Software Supply Chain Risk,” ISACA JOnline, August,
2013. Available at <http://www.isaca.org/Journal/archives/2013/Volume-4/Pages/
JOnline-Mitigating-Software-Supply-Chain-Risk.aspx>

13.	Goertzel, Karen M., et al. State of the Art Report on Supply Chain Risk Management
for the Off-the-Shelf (OTS) Information and Communications Technology (ICT) Sup-
ply Chain, Department of Defense, Information Assurance Technology Analysis Center
(IATAC), USA, 2010.

14.	Axelrod, C. Warren. “Reducing Software Assurance Risks for Security-Critical and
Safely-Critical Systems,” Proc of the 2014 IEEE LISAT (Long Island Systems, Ap-
plications and Technology) Conference, Farmingdale, NY, May 2014.

1.	 Axelrod, C. Warren. “Malware, ‘Weakware,’ and the Security of Software Supply
Chains,” CrossTalk (March/April 2014): 20-24.

2.	 Axelrod, C. Warren. “Addressing Supply-Chain Complexity Using Closed-Loop
Simulation-Based Exercises,” Proc, of the Complex Systems 2015 Conference, New
Forest, UK, May 2015.

3.	 Davidson, Don, “Managing Global Supply Chain Risk: Security & Resiliency (of the
Chain) and Integrity (of Product),” <http://www.ndia.org/Divisions/Divisions/System-
sEngineering/Documents/Past%20Meetings/Program%20Protection%20Workshop%20
May%201-2,%202012/Don_Davidson_ManagingGlobalSupplyChainRisk.pdf>

1.	 This definition is from Section 806 of the Ike Skelton National Defense Authoriza-
tion Act for Fiscal Year 2011 which is available at <http://www.gpo.gov/fdsys/pkg/
BILLS-111hr6523enr/pdf/BILLS-111hr6523enr.pdf>

2.	 It is claimed in Vaughan [1] that 78 percent of companies use open-source compo-
nents. While the source code of open-source software is readily available for viewing
and testing, there remain many unknown issues with respect to the provenance, quality
and support of particular widely-used software as recent incidents have shown.

3.	 The acronym NUTS already exists with several connotations, one of which is used by the
military and has the meaning “Nuclear Utilization Target Selection.” The author’s designa-
tion of NUTS as “Not Unreasonable Tracking Systems” does not have any such provenance.

4.	 Two of the most damaging cyber attacks in recent times occurred against open-
source software, namely OpenSSL (Heartbleed) and Bash (Shellshock). OpenSSL
runs on a substantial population of web servers and Bash is integrated into many
popular operating systems.

5.	 David Snowden’s explanation of his framework is at <https://www.youtube.com/
watch?v=N7oz366X0-8>

Dr. C. Warren Axelrod is a senior con-
sultant with Delta Risk LLC specializing
in cyber security, risk management and
business resiliency. Previously, he was the
Business Information Security Officer and
Chief Privacy Officer for US Trust.

He was a founding member of the FS/
ISAC (Financial Services Information Sharing
and Analysis Center) and represented nation-
al financial services cyber security interests
during the Y2K date rollover. He testified
before Congress in 2001 on cyber security.

His recent books include Engineer-
ing Safe and Secure Software Systems
(Artech House, 2012) and Outsourcing
Information Security (Artech House, 2004).

He holds a Ph.D. in managerial economics
from Cornell University, and a B.Sc. in electri-
cal engineering and an M.A. in economics
and statistics from Glasgow University. He is
certified as a CISSP and CISM.
Phone: 917-670-1720
Email: waxelrod@delta-risk.net

ABOUT THE AUTHOR REFERENCES

6.	 See Craig Brougham’s July 9, 2014 posting “Cynefin 101—An Introduction,” available
at <http://www.infoq.com/articles/cynefin-introduction>

7.	 In [10], Denning mentions having the U.S. government pay “bug bounties” to obtain
information about software vulnerabilities that they would then make available to
the public, but she opposes such a program in favor of developing a suitable liability
regime for software developers and users.

8.	 Stuxnet is an example of covert malware which was supposed to be kept secret but was
accidentally released into the general Internet and was then analyzed and publicized,
thereby losing much of its value by alerting potential victims as to its form and function.

9.	 There are many situations in which culpability depends upon who knew what and upon
what one might reasonably be expected to have known at the time of an incident. The
knowledge gap is attributable to decision-makers in such cases and not to contexts.
This is perhaps why Cynefin does not include the “unknown known” category.

10.	Verizon’s latest data breach report [11] indicates that “99.9% of the exploited
vulnerabilities were compromised more than a year after the CVE (Common Vulner-
abilities and Exposure) was published.”

11.	See [10]

NOTES

ADDITIONAL READING

http://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software/
http://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software/
http://www.verizonenterprise.com/DBIR/2015/
http://www.isaca.org/Journal/archives/2013/Volume-4/Pages/JOnline-Mitigating-Software-Supply-Chain-Risk.aspx
http://www.isaca.org/Journal/archives/2013/Volume-4/Pages/JOnline-Mitigating-Software-Supply-Chain-Risk.aspx
mailto:waxelrod@delta-risk.net
http://www.ndia.org/Divisions/Divisions/System-sEngineering/Documents/Past%20Meetings/Program%20Protection%20Workshop%20May%201-2,%202012/Don_Davidson_ManagingGlobalSupplyChainRisk.pdf
http://www.ndia.org/Divisions/Divisions/System-sEngineering/Documents/Past%20Meetings/Program%20Protection%20Workshop%20May%201-2,%202012/Don_Davidson_ManagingGlobalSupplyChainRisk.pdf
http://www.ndia.org/Divisions/Divisions/System-sEngineering/Documents/Past%20Meetings/Program%20Protection%20Workshop%20May%201-2,%202012/Don_Davidson_ManagingGlobalSupplyChainRisk.pdf
http://www.ndia.org/Divisions/Divisions/System-sEngineering/Documents/Past%20Meetings/Program%20Protection%20Workshop%20May%201-2,%202012/Don_Davidson_ManagingGlobalSupplyChainRisk.pdf
http://www.gpo.gov/fdsys/pkg/BILLS-111hr6523enr/pdf/BILLS-111hr6523enr.pdf
http://www.gpo.gov/fdsys/pkg/BILLS-111hr6523enr/pdf/BILLS-111hr6523enr.pdf
https://www.youtube.com/watch?v=N7oz366X0-8
https://www.youtube.com/watch?v=N7oz366X0-8
http://www.infoq.com/articles/cynefin-introduction

