
16 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

Introduction
The article delves into what data to store, where to store it,

and how to get it off the device. I will also get into the consid-
erations of power management in order to extend the battery
life of the storage system and ruggedizing the system so that
the data is reliable, as well as the different file system options
available.

Data Storage System Design
The design of a data storage system has several basic

features to consider…and some not so basic. The first question
is: What data is going to be stored? Followed by: Where will the
data be stored?

In our initial application, the data to store is information that
determines what an object is doing as it floated on the ocean’s
surface. To accomplish this, an inertial measurement unit (IMU)
is used to generate the data. It is important to consider other
input data sources, typically from various sensors. In this case,
having an accommodating platform that can receive analog
(via ADC) or digital data is important. For digital inputs, many
sensors are designed with widely used serial interfaces such as
serial peripheral interface (SPI) or inter-integrated circuit (I2C).
Including these serial interfaces in the data storage system
design is important to allow easier integration with a wide variety
of sensors.

In order to determine where to record the data, the storage
speed needs to be determined as well as the capacity for the
data. Along with these considerations, the facilities supported by
our microcontroller (MCU) are important to consider.

In this case, the MCU included a secure digital host controller
(SDHC) interface for SD/MMC/µSD cards. Therefore, the first
design uses an SD memory card for data storage. This offers
the ability to have removable media for data extraction, vary-
ing sizes (including large storage space) of storage capacity by
simply changing the card, and a compact size.

In a rugged environment using removable media may not be a
good idea because of the connector as a potential issue where
the card becomes dislodged. There is also the extra cost associ-
ated with a connector if price is the key concern.

Massive Storage
in a Miniature
(Embedded) Package
Anthony Massa, MNW Tech

Abstract. Data, data is everywhere…and we want ways to get it, store it, trans-
mit it, and mine it. Many different options exist from solid state drives to embed-
ded data recorders. This article takes a look at the fundamentals of an embedded
data storage system, the thoughts behind the design decisions and different
features to incorporate in an embedded data storage system.

In rugged environments, soldered flash might be a better
alternative such as serial or NAND flash. Considerations of
storage capacity and speed still need to be understood in order
to ensure the system specifications are met by the hardware.
There is also the consideration of how the data is stored to
these “hardwired” alternatives where a file system may not
accommodate soldered in flash. In that case, a custom driver
needs to be developed. Other concerns with soldered flash are
wear-leveling and bad-block handling.

Retrieving the Data
After determining the data storage issues, next is to design

how the data is extracted from the storage system. Several
options exist depending on how the data storage system is
going to be deployed. If the system is going to be returned to
a lab environment for data extraction and a removable memory
card (such as the previously mentioned microSD card is used),
most PCs come with interfaces that can accept these types of
memory cards directly. This type of interface provides a level of
data integrity by reducing the chances of corrupted data during
the transfer.

Another option if the system is returned to a lab environment,
a serial port such as a UART could be used to send the data for
post processing. Easily interfaces to PCs (albeit typically with a
USB-to-serial cable) and can include common serial protocols
X, Y, or ZMODEM to add a layer of data integrity with packet
checksums.

If the system cannot be returned, but has network access,
such as an Ethernet connection, then the data can be retrieved
using a standard network protocol. This requires the data stor-
age system to incorporate a network stack in order to be able
to communicate over the network. A protocol such as the file
transfer protocol (FTP) can be used to allow the data to be ac-
cessed remotely.

If a wired connection is not possible, then a wireless con-
nection can be designed to get the data off the unit. Wireless
connectivity offers a lot of flexibility as far as data removal goes.
Several off-the-shelf modules exist that provide the commonly
supported (Wi-Fi, Zigbee, Bluetooth) and low power protocols
in use today. There are some transmission range concerns
depending on how remote the unit is deployed but these types
of wireless protocols offer low power capabilities for remote
data extraction. Other wireless options are also available includ-
ing various modem modules such as cellular or satellite. There
are also power as well as added cost concerns not only for the
modules themselves but also the cost to use the satellite or cel-
lular network to retrieve the data.

Power Management
A key concern for remote systems is power management.

If a system is battery powered and needs to last for months
or even years without intervention, one of the biggest design
considerations is power management. Many MCUs nowadays
have several different sleep modes which conserve power. The
power management module can then be designed so that the
system only wakes up when it is time to collect data samples

CrossTalk—November/December 2015 17

FUSING IT & REAL-TIME TACTICAL

	

	
	
	
	

Low	Power	MCU	

Data	Storage

Sensor
Sensor
Sensor(s)

Battery	and	
Power	

Management

Data	Link	
Radio

GPS Data	
Extraction	
Interface(s)

Figure 1. Data storage system block diagram.

from the sensors or time to transmit the data. If a time base is
needed to synchronize when data is sampled or transmitted, a
GPS module can be included in the system to synchronize time
across several units in the network as well as providing location
information. A real-time clock (RTC, which can be a module in
many MCUs out on the market today or as a standalone chip)
can also be used, but needs to be programmed initially with the
correct date and time value.

Figure 2 shows the MNW Tech SD card-based data storage
system. This system provides a serial interface to extract the
data from the system, as well as the capability to remove the SD
card directly.

Data Security
In particular applications it may be necessary to secure the

data stored to a device for example in medical applications
where patient information must be secured. Data security can
be a major concern in systems where the storage device is
removable and can be tampered with by unknown sources.
In these cases the data is encrypted before storing it to the
memory device. Various security algorithms exist that provide
the necessary security including many open source solutions. In
many cases, the microcontroller can assist in the data security
by providing a cryptographic acceleration unit. For example,
some versions of the Freescale Kinetis ARM-based microcon-
troller include such a cryptographic accelerator that assists in
many different popular cryptographic algorithms including DES,
3DES, AES, MD5, SHA-1, and SHA-256.

System Configuration
In order to develop a general design and product for several

different applications, runtime system configuration is needed.
Therefore, the data storage system is able to adapt to the
specific needs of a particular customer by allowing the customer
to select various configuration parameters such as how often
the data is stored or data sampling rate, what data is overwritten
when the limit is reached, when a new data file is started, and
even what data is stored in the file.

There are several different options for runtime system con-
figuration such as a loadable text file which can be contained
on the memory card, if present, or downloaded serially. The user
can then customize the various data storage parameters by
hand-editing the system configuration file. Once deployed, it can
be difficult to modify the configuration file unless remote ac-
cess, such as via wireless download, is available on the system.

Another method which is more elegant is a web interface
providing the configuration information. In this case, a network
stack and web server need to be incorporated into the data stor-
age system and the customized web page interface needs to be
developed. Using a web interface is common on many products
today for example on nearly all routers. The user is then able to
select the various configuration parameters from drop down lists
and radio buttons to customize the operation of the data storage
system.

File System
To use a file system, or not…that is a question. For certain,

18 CrossTalk—November/December 2015

FUSING IT & REAL-TIME TACTICAL

more basic data storage applications, a file system can be un-
necessary and instead directly writing to the storage module can
be used. For example, if a serial flash is used to store the data
gathered, only the serial flash driver need be developed and
the data can be written directly to the device at the specified ad-
dresses. This eliminates layers of complexity with a file system
and file management.

In other applications, a file system provides the additional fea-
tures and capabilities that are necessary. A file system provides
help with numerous features including organizing data through
the usage of files, timestamp on file data, as well as wear-level-
ing and bad block management.

Most memory devices have a finite number of program-erase
cycles that they are specified to meet. In order to extend the
life of the storage device, different memory sectors are used to
store the data, essentially mapping the data to different sectors
rather than repeatedly storing data to the same sector location
in the device. This technique is called wear-leveling. Another
technique called bad block management verifies data written to
the storage device and keeps track of sectors that are damaged
and therefore unusable to avoid data loss.

Several open source file systems are available for use. One
popular file system used is FatFS (http://elm-chan.org/fsw/
ff/00index_e.html). FatFS is ideal for many embedded sys-
tems because it has a small footprint, is written it C making
the source code platform independent, and has a very modular
design allowing different configuration options. Many of the
basic API calls are provided such as open, close, read, write, and
mount.

Conclusion
Many different applications exist that require data storage

systems from collecting the body’s physiological characteris-
tics data to monitoring the temperature of a remote location to
tracking the path of an unmanned vehicle. This article has pre-
sented a number of key design considerations for an embedded
data storage system along with possible solutions based on the
type of application in which the data storage system is deployed.

Anthony Massa is the Director of Soft-
ware Engineering at MNW Tech <https://
www.mnwtech.com> in San Diego, CA.
Anthony has over 20 years of experience
in all aspects of engineering, focusing on
embedded systems and has worked on
several successful products. He has taught
courses on embedded software devel-
opment and written extensively on the
subject including the books Programming
Embedded Systems: with C and GNU De-
velopment Tools (O’Reilly) and Embedded
Software Development with eCos (Pren-
tice Hall PTR) as well as several articles.

Phone:619-252-7010
E-mail: amassa@san.rr.com

ABOUT THE AUTHOR

Figure 2. MNW Tech SD card-based data storage system.

http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_e.html
https://www.mnwtech.com
https://www.mnwtech.com
mailto:amassa@san.rr.com

