
CrossTalk—January/February 2016 43

SOFTWARE - A PEOPLE PRODUCTBACKTALK

The story goes that that a general building contractor was 
looking to cut expenses, and noticed that he had two bricklay-
ers working on the same project. He decided that he could get 
rid of one, and still finish the project on time. He decided to ask 
each of the two bricklayers what they though of their jobs. 
He asked the first bricklayer “What do you do every day?” The 

first bricklayer replied “Every morning, I can’t wait to get up and 
come into work, inspired by what I will get to accomplish that 
day. I prepare my bricks and mortar, and work on raising a cathe-
dral to the sky. My humble bricklaying will help finish this work 
of art, and the glory and majesty that the cathedral presents will 
be due, in some small measure, to the quality of my work!” The 
general contractor, moved beyond words, wiped a tear from his 
eye, and sought out the second bricklayer.
He asked the second bricklayer the same question - “What do 

you do every day?” The second bricklayer had a totally different 
attitude. The bricklayer replied “I come in exactly at 8, no earlier. 
I mix my mortar, and – except for two breaks and lunch, I pile 
one stupid brick on top of another. I can’t wait for the 5 p.m. bell, 
so I can clean my trowel and mortar bucket and go home.”
The general contractor realized the choice was obvious. With-

out hesitation, he quickly decided to fire the first bricklayer. You 
see, the two bricklayers were supposed to be building a small 
utility shed, not a cathedral. 
Back in 1976, I was a young applications programmer working 

at Offutt AFB. Part of my job involved supporting the programs 
for handling collection and analysis of satellite data. A Lt. Col, 
who was one of the more experienced analysts, asked me to 
write a special program for him to help reduce some data. I don’t 
think the term “data analytics” existed yet – but that was what 
we were accomplishing. To expedite the program – I wanted 
to mix the data into a common file and store it on a tape drive 
(1975. Honeywell 6800. 96K of main memory. 4 tape drives. 
Card input. What more could you ask for?)
Looking for a way to distinguish one set of data from another, I 

realized that I would need a record separator to help me analyze 
the data. I asked the user if “special characters” were part of the 
input data – and was informed that no special characters were 
ever used.
Armed with this data, and a copy of Knuth’s “The Art of Com-

puter Programming: Volume 3 Sorting and Searching,” I started 
writing code. Because the actual data was classified, I did 
not have access to the actual input data yet – an unclassified 
system was used for development and testing. Given a schema 
(a description of the physical format of the eventual input file), 
I created a series of dummy records to test my program. In 
short time, I had a working prototype. Several days of testing 
confirmed my obvious skill and both a designed and developer. 
It was efficient, concise, and gave accurate results. My program 
was ready for real data.

The trial run of my masterpiece was scheduled during the 
active database downtime, or what we called “night process-
ing.” During the day, the analysts needed the database “live”, so 
background processing that modified or manipulated the data 
ran every night. My program was scheduled for 2 a.m. At 2:01 
a.m., I was woken up from a sound sleep to hear an operator 
tell me that my program has crashed, and in fact had crashed 
immediately upon starting execution. Not much else he could 
tell me (remember that classified part?) so I got dressed and 
headed into the computer room. At about 3 a.m., I was examin-
ing the 96K core dump to find the status of registers, files, and 
program counters (remember the Honeywell 6800? 96K of an 
octal dump.)
It took quite a while to decipher the dump, but I eventually dis-

covered that the first character of the first input file was a “!”. As 
a matter of fact, the entire classified input file was littered with 
“!”, “#”, “#”, and every other special character you could imagine.
By this time, it was 6 a.m. – so I just hung around for the Lt. 

Col to show up. When he finally arrived at his desk, I showed 
him the input file and the program dump, and reminded him that 
he was told me that there were no special characters in the 
input file. 
His response? “Exclamation marks? Those aren’t special char-

acters. We use them all the time!” 
And the moral of the story is that I was a young and inexpe-

rienced programmer, who should have known to examine the 
input files themselves, rather than just a schema of the file. 
Or maybe the moral is that users and developers (and analysts 

and testers and maintainers) all speak a different language – 
and the same word carries different connotations and meanings 
for each person.
The hardest part of building large software? Communications. 

Talking to all the users, and fathering their requirements. De-
termining what is a “requirement” and what is just a “that would 
be nice to have, but we could live without it.” Determining from 
the user how to test each requirement. Then explaining to the 
users how to correctly run the system, including how to handle 
occasional problems, shortcomings, and failures.
Come to think of it – compared to working with lots of people, 

coding is probably the easy part. 

David A. Cook
Professor of Computer Science
Stephen F. Austin State University
cookda@sfasu.edu

People-less Requirements and Analysis

mailto:cookda@sfasu.edu



