
28 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Introduction
Traditional software development lifecycles follow 7 core

activities. They are requirements, design, construction, testing,
debugging, deployment and maintenance. Naturally, apart from
the requirements and testing phase, all other phases con-
centrate on building the software. In the requirements phase,
some teams calculate the risk management which deals with
the possible failure scenarios and in testing which deals with
finding the loop holes based on a multitude of input values
and boundary value working environments. The core idea of all
software development lifecycles is to build software and not
actually break it down. We believe that this is the main reason
for the declining quality of software. None of the models build
and destroy the software in parallel. It is quintessential to factor
into our equations of how our software can fail in each phase
while we are building the same. The breakdown model does
exactly this—build and destroy software in parallel. Destroying
software is as important as building it. Only when we understand
all possible failure scenarios can we truly understand how to
build software which is resistant to failure in each phase of the
development lifecycle.

Methodology - Breakdown model
The normal software lifecycle architecture involves the four

core parts of a software project lifecycle:
•	 Analysis (Requirements definition, Iterative prototypes,

Object Analysis)

Breakdown Model:
A Disruptive Software Development
Lifecycle for Fault Tolerant
Software Systems
Vaibhav Prakash, University of Texas
Danny Sunderesan, University of Texas

Abstract. The software development lifecycle is the most important part of Soft-
ware Engineering. It determines the outcome of an idea into a tangible software.
Here we present a variant of the Harmony process, the breakdown model which
focuses on not only developing software but deleting all possible scenarios for
failures in each phase of the development process. This framework is adaptable
with existing software development lifecycles.

•	 Design (Architectural Design, Detailed Design)
•	 Implementation (Translation, Unit Testing)
•	 Testing (Integration testing, Validation testing, Incre-

ment Review)

The breakdown model goes a step further and adds the fol-
lowing addition to the process

•	 Analysis and Anti-Analysis
•	 Design and Anti-Design
•	 Implementation and Anti-Implementation
•	 Testing and Anti-Testing

What is Anti-Analysis?
In order to understand what anti-analysis is, we will first see

what analysis means. Normally, the software team goes through
the requirements phase and risk management is a part of it.
But, in the breakdown model, a part of the team known as the
anti-team (20%-25% of the team) works in breaking down the
requirement documents and tries to find flaws it in. The sole pur-
pose of the anti-team is to find ways in which the requirements
definition can be proved false. The anti-analysis team can also
make the requirement definition resilient to change as “changing
requirements” are the number one cause for software failure

What is Anti-Design?
The same concept applies here too. A part of the team (20%

- 25% of the team) acts as the anti-team here. But, the people
involved in the anti-team in the anti-analysis phase cannot be
duplicated here. It has to be picked from the remaining 75% of
the team. The anti-design phase works in breaking down the
architecture and detailed design concepts which the team have
built. The anti-design team works carefully to weed out all pos-
sible scenarios where the design will fail.

What is Anti-Implementation?
A part of the team (20% - 25% of the team) acts as the anti-

team here. But, the people involved in the above two phases
cannot be duplicated and have to be picked from the remain-
ing 50% of the team. The anti-implementation phase works in
breaking down the implementation (such as test-driven develop-
ment) while the software is being built. The anti-implementation
team works in tandem with the implementation team to wipe out
all possible failures in the code.

What is Anti-Testing?
	 The remaining team members (20% - 25%), who have

not participated in the above three phases come into picture in
this phase. The anti-testing team does not break the software
but shows if the software works for the intended purpose. Test-
ing and re-testing only for positive values (or) working values.
They can work with the customer or simulate the intended
customer who will use the software.

CrossTalk—January/February 2016 29

SOFTWARE - A PEOPLE PRODUCT

The breakdown model can be used in conjunction with the
Spiral model to develop better fault tolerant systems. In order
to determine the number of iterations needed for a complete
fault tolerant system, we divide the number of iterations by 100,
which gives the percentage of team members needed for the
anti-team.

Let us take an example to better understand the above
concept. If we want our software to be completed in 3 itera-
tions, then we divide 100/3 which gives 33.3% (recurring). This
means that in each iteration of the spiral, 33.3% of members
act as the anti-team. Since there are primarily four phases of
development, we divide it by 4, which gives 8.25% of the team
to participate in anti-analysis, anti-design, anti-implementation
and anti-testing separately.

Therefore, in three iterations, the entire team, in effect would
have contributed to build and destroy software from end to end
which gives a substantially higher probability of a fault tolerant
system as all the team members would have contributed to it.
The more you can involve people in the anti-teams, the better
your chances are of building software which has fault tolerance.

Even when N=1(i.e. the most basic software development
lifecycle incorporating the waterfall model with 4 phases viz.
analysis, design, implementation and testing), the breakdown
model results in a system which is 4 times more fault tolerant.
This is because the system is tested only during the testing
phase in the above traditional methodology. In the breakdown
model, the system is broken down and tested for loop holes in
each phase resulting in a better fault tolerant system.

Figure 1 Figure 2

Highlights
Weeds out errors through multiple iterations and different

perspectives
We found out that with N=5. A relatively high fault tolerant

system can be developed
This framework can be adapted into any of the existing soft-

ware development lifecycles

Case study (Application)
We applied this to 15 software projects at the Erik Jonsson

School of Engineering, The University of Texas at Dallas. All the
projects were part of the coursework for graduate students. All
the teams who used this framework had better fault tolerance
in their software code. Although they used variants of this and
incorporated the thinking into their lifecycles, it made a signifi-
cant change to the product at the end compared to other teams
who followed traditional lifecycles.

Conclusion
The breakdown model is best utilized when used in conjunc-

tion with the spiral or other iterative models where repeated
phases are inserted into the development lifecycle. They key
aspect here is using every team member’s capability to see as
many ways in which the system might fail in the analysis and
design phase itself. The breakdown model produces better
systems when used with the simplistic waterfall model too.
Lastly, from the case study it is evident that the model works as
intended.

	

•Anti	Analysis	 •Anti	Design	

Analysis	 Design	

Testing	 Construction	

•Anti	Testing	 •Anti	
Construction	

	

Number of iterations needed – N, Number of phases
in life cycle – P (4 in this case)

Number of anti-team members per cycle – 100/N

Number of anti-team members in each phase – N/P

Higher the value of N, higher the probability of a
software system that is fault tolerant

 Fault tolerance

Ideally, N-

Practically, N=5 should result in a fairly fault
tolerant system

30 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Vaibhav Prakash is currently a Site Reliability Engineer at Microsoft Corporation in Redmond, Washington,
United States of America. He holds a bachelor’s degree in Computer Science and Engineering from S J
College of Engineering, Mysore, India. He has completed his Master’s degree in Software Engineering and
Computer Networks from The University of Texas at Dallas, USA. He has published 2 papers and has done
internships at The Indian Institute of Science, Bangalore, India; IBM Research and Development, Bangalore,
India; Research Assistant, Multi Agent and Visualization Lab, The University of Texas at Dallas and at Microsoft
Corporation, USA.

Email: vaibhav.prakash@utdallas.edu

Danny Matthew Sundaresan received his bachelor degree in Electronics and Communication from Anna Uni-
versity, India and is currently a Master’s student in The University of Texas at Dallas, USA graduating in the field
of Software Engineering. He has an experience of 6 years working as a web developer in the corporate world.
He was a co founder of a freelancing web firm which brought innovative solutions to its clients during his time
as an undergraduate student. His main interest involves developing user friendly tools and methods to increase
the performance of the web.

Email: danny.sunderesan@utdallas.edu
	

ABOUT THE AUTHORS

REFERENCES
1.	 Benington, Herbert D. (1 October 1983). “Production of Large Computer Programs”. IEEE Annals of the History of Computing (IEEE Educational Activities Department) 5 (4):

350–361. doi:10.1109/MAHC.1983.10102. Retrieved 2011-03-21.
2.	 Smith MF Software Prototyping: Adoption, Practice and Management. McGraw-Hill, London (1991).
3.	 Dr. Alistair Cockburn (May 2008). “Using Both Incremental and Iterative Development”. STSC CrossTalk (USAF Software Technology Support Center) 21 (5): 27–30.
	 ISSN 2160-1593. Retrieved 2011-07-20.
4.	 Boehm, B, “Spiral Development: Experience, , Special Report CMU/SEI-2000-SR-008, July 2000
5.	 Boehm, Barry (May 1988). “A Spiral Model of Software Development”. IEEE Computer. Retrieved 1 July 2014.
6.	 Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software Development Methods: Review and Analysis. VTT Publications 478.
7.	 Hughes, Bob and Cotterell, Mike (2006). Software Project Management, pp.283-289. McGraw Hill Education, Berkshire. ISBN 0-07-710989-9
8.	 <http://en.wikipedia.org/wiki/Lightweight_methodology>
9.	 “Crystal Methods Methodology | Infolific”. Mariosalexandrou.com. Retrieved 2013-07-25.
10.	 “Manifesto for Agile Software Development”, Agile Alliance, 2001, webpage: Manifesto-for-Agile-Software-Dev
11.	 Coad, P., Lefebvre, E. & De Luca, J. (1999). Java Modeling In Color With UML: Enterprise Components and Process. Prentice Hall International. (ISBN 0-13-011510-X)
12.	Rosenberg, D. & Stephens, M. (2007). Use Case Driven Object Modeling with UML: Theory and Practice. Apress. (ISBN 1590597745)
13.	ACM Digital Library, The chaos model and the chaos cycle, ACM SIGSOFT Software Engineering Notes, Volume 20 Issue 1, Jan. 1995
14.	<http://en.wikipedia.org/wiki/ Incremental_funding_methodolog y>
15.	 Mike Goodland; Karel Riha (20 January 1999). “History SSADM – an Introduction. Retrieved 2010-12- 17.
16.	 <http://www.martinfowler.com/bliki/TechnicalDebt.html>
17.	 Jacobson, Sten (2002-07-19). “The Rational Objectory Process - A UML-based Software Engineering Process”. Rational Software Scandinavia AB. Retrieved 2014-12-17.
18.	 Clarus Concept of Operations. Publication No. FHWA- JPO-05-072, Federal Highway Administration (FHWA), 2005

mailto:vaibhav.prakash@utdallas.edu
mailto:danny.sunderesan@utdallas.edu
http://en.wikipedia.org/wiki/Lightweight_methodology
http://en.wikipedia.org/wiki/Incremental_funding_methodology
http://www.martinfowler.com/bliki/TechnicalDebt.html

