
14 CrossTalk—March/April 2016

CYBER WORKFORCE ISSUES

Developer Training:
Recognizing the Problems
and Closing the Gaps
Mike Lyman, Cigital

Abstract. Problems with the way we have historically trained developers, and
continue to do so, gets in the way of learning to do secure development. The
same errors are repeated over and over again. Without learning the fundamen-
tals, developers can get software to work but may lack the knowledge required
to understand what is happening when it breaks. Since the goal of an attacker is
to get software to break and do things the developer did not intend, that lack of
understanding can become a dangerous blind spot.

1. Introduction
If the aviation industry operated like the software industry,

the new Boeing 787 Dreamliner would have to crash several
times before Boeing could learn the lessons we learned with
the Comet back in the 1950s. The de Havilland Comet was the
first production commercial jetliner and it suffered a series of
crashes early in its service life. During the investigations into
the crashes, it was discovered that the hull experienced metal
fatigue as the cabin was repeatedly and rapidly pressurized
and depressurized and encountered rapid temperature change
while changing altitude. In some areas of the structure there
were special stress points that experienced more problems than
others. One of these special stress points existed in the corners
of the square-cornered windows on the original versions of the
Comet. The square corners caused levels of stress two to three
times greater than the rest of the fuselage. The metal would fail
after a number of flight cycles with one of the crashes taking
place in as few as 900 flights.

Thank goodness the aviation industry doesn’t operate like the
software industry and the lessons learned are passed on for all.
We now design airliners with an understanding of metal fatigue
and the windows on airliners are now designed to have rounded
corners. The Dreamliner will not suffer from problems the indus-
try learned to fix with the Comet decades ago.

Sadly, the software industry continues to use square-cor-
nered windows. Too many cannot seem to learn the lessons of
failure others have already learned and repeat the same errors
over and over again. There is clearly something wrong with the
way we train developers.

2. Recognizing the Problems
One of the first things we need to realize is counterintuitive.

We have to start by recognizing that we have to overcome our
training. Problems with the way we have historically trained de-
velopers, and continue to do so, get in the way of learning to do
secure development. Before we can address our gaps, we have
to address our problems.

Lack of Formal Training
There is an old joke that tells us to remember that fifty per-

cent of all doctors graduated in the bottom half of their class.
The software industry suffers the same reality with the added
burden that many of our developers have no formal, college
level development training. Many of our developers came at the
field from other disciplines and discovered they have had the
skills that it takes to write code and make software work. Not
only did half of our developers graduate at the bottom of their
class, many never even took the class!

The fact that so many of us are self-taught means that many
of us lack the fundamentals underpinning the way our software
and computers work. These fundamentals help developers un-
derstand things that are going on under the hood when we talk
about issues like buffer overflows or integer overflows. Without
those fundamentals, developers can still get software to work
but may lack the knowledge required to understand what is hap-
pening when it breaks. Since the goal of an attacker is to get
software to break and do things the developer did not intend,
that lack of understanding can become a dangerous blind spot.

Bad Habits from Instructors
Even when we do have formal instruction it can cause us prob-

lems. When I was a computer science student back in the 1980s, I
remember one of my professors telling us to “forget that extra stuff,
just concentrate on the lesson.” That “extra stuff” included things
like error checking and limiting user input that my partner and I
were adding into our program because we had already accom-
plished the lesson and had time to do the “extra stuff.” Translated,
he told us to just get it to work and move on. Lesson learned.

Current computer science majors tell me their instructors are
still telling them to do this. In the secure code reviews I have
done over the last eight years, I see way too much of the “just
get it to work and move on” in the code I have reviewed. While
not an intended lesson, it is a lesson way too many developers
learned and took to heart. Get it to work and move on.

Another bad habit can best be summarized by a conversation
with a friend who was a computer science professor for a major
university when we bumped into each other at a security confer-
ence. He said he once had a chance to see the code from a major
commercial product and that it looked like the “junk” his students
wrote. I pointed out his students probably did write it. It was a
humorous moment but like so much humor, there is a painful truth
behind it. How are developers supposed to move on from the “junk”
we write as college students to being able to write quality code?

Narrow Focus of Lessons
To be fair though, these are issues with the nature of instruction.

Lessons tend to be narrowly focused because lessons with too many
topics overwhelm students. Early on in their development training,
students lack the foundations to understand the bigger picture so it
is hard to get them to understand the lesson in a larger context. Ad-
ditional topics make grading harder for the instructors; encouraging
students to reach beyond the narrow lesson just adds to the instruc-
tor’s work load. The added grading time may increase the chance
that the instructors begin to just see if it runs and then move on
which reinforces the unfortunate “get it to work and move on” lesson.

CrossTalk—March/April 2016 15

CYBER WORKFORCE ISSUES

Do the Professor and Trainers Even Know About
Secure Development?

Asking professors to look beyond the narrow lessons and to
include the security aspects of things assumes they understand
the security implications themselves. This is a big assumption.
Many of us were never taught the security side of development
as we learned to develop software; it is a stretch to then expect
us to be able to now turn around and teach it. It does little good
to complain that instructors are not teaching secure develop-
ment if we do not first train the trainers.

Out-of-date Training
Another major problem we have to overcome is our training is

usually out of date. The fundamentals remain the same but the
technology is moving so fast that books have to be based on
pre-release versions in order to be available when the technolo-
gy is released. Even if we use the latest materials, they are often
out of date when we use them. By the time a lot of developers
use the training, it is even more out of date than it was when
they learned it. The technology stacks we are using and the
frameworks we build upon are changing so fast that it is difficult
to keep up, especially when you are busy working.

Learn it Quickly and Then Use It
Because most developers are busy working, there is a huge

incentive to learn just enough to get something working and
then move on; that old habit we learned from our professors
when we got started. Learn a new language fast and start cod-
ing. The updated frameworks have new features developers
need and they need them fast because the next release is just
around the corner. Follow the examples showing how to use the
new features, get it working and move on to the next thing.

Insecure and Incomplete Examples
The problem with this approach is our examples have problems.

Like all lessons, they tend to be narrowly focused to teach what is
needed to be taught so they often show stripped down code that
leaves off a lot of things we need for quality code. Unfortunately,
those stripped down examples find their way into production code.

Beyond the narrow lessons, all too often the examples
showed us how to do things exactly wrong.

One of the most glaring examples is how many developers learned
to do database driven applications. The books and articles first showed
us to connect to databases using connection strings like these:

strConnection = “SERVER=db.example.com; DRIVER={SQL
Server}; DATABASE=northwind; uid=sa; pwd=;”;

Connect to the database server with the sa account (the
system admin account) and use a blank password. Why? All too
often the answer from a developer was “I don’t know. But the
book says do it that way so we’re going to do it that way.” No
least privilege and a very weak password.

We were also shown to do database queries exactly wrong. We
were taught to create database queries by creating a stub of a
query and using string concatenation to insert the dynamic values
we needed to tailor the query for the specific need at runtime.
Examples looked like this:

mySQL = “SELECT * FROM tblBooks WHERE title like ‘%” &
txtUserInput & “%’;”;

Most often, this dynamic content came from the user without
any examples of input validation. This is exactly how to create
a SQL Injection attack and it is what we were taught to do by
the examples we were following. Combine these examples with
the example connection strings that the books showed us to
use and the attacker could do anything they wanted to in the
database, the other databases on the server or to the server
itself.Thank you insecure examples.

3. Overcoming the Problems
Before we can begin to address the gaps in our development

training that lead to security issues, we have to address the
problems our historical approaches to training have caused.

Stop Teaching Bad Habits
One of the first things we need to do to overcome these prob-

lems is to stop teaching the students bad habits. When students
move beyond the lesson and start adding in “extras” like error
checking and limited user input, do not discourage them. This may
mean instructors have to look deeper to grade the actual lesson
but doing so saves employers from having to overcome the “get
it to work and move on” lesson so many students have taken to
heart. It would be beneficial to actually encourage the students to
do more than just get it to work, especially when they have moved
beyond the basics and on to more advanced lessons.

We also need to stop letting students write junk code. They need
to use meaningful variable names, properly document their code
and follow standards. The code needs to be easy to read. Many
developers do not learn these lessons until they have to maintain
junk code and feel that pain. Early lessons that exist only to force
them to do maintenance on badly written code and feel that pain
will help encourage them to write better code. As an added benefit,
the better code will be easier to grade for the instructors.

The fundamentals remain the same but the technology is moving so
fast that books have to be based on pre-release versions in order
to be available when the technology is released. Even if we use the
latest materials, they are often out of date when we use them.

“ “

16 CrossTalk—March/April 2016

CYBER WORKFORCE ISSUES

Remind Students There is More than the
Narrow Lesson

While there may be no way to get away from narrowly
focused lessons, we should constantly be reminding students
that the lessons do have a narrow focus and in the real world
there is more you must do. Instructors should show the lessons
applied in a larger context. Periodic summary projects where
several narrow lessons are wrapped into a larger project specifi-
cally focused on the bigger pictures will reinforce the concept.
Part of this bigger picture must include the security implication
of what the students are creating.

Train the Trainers
Unfortunately, to inject the security picture into our lessons, the

instructors have to know that security picture. Like so many of
us, they probably never learned the security implications of what
they are doing. It is critical that we train the trainers so they know
secure development. If they do not start to teach new developers
how to write secure code from the beginning, we will always be
playing catch up. We will have to teach them not to use square-
cornered windows while they are on the job. We need to teach
the teachers so they can properly teach their students.

Purge the Bad Examples
We must purge bad examples from our lessons. We learn

from examples and using insecure and badly written examples
creates bad habits that have to be unlearned later. The develop-
ment training publishing houses are doing a much better job of
this today than they used to, but they need to remain vigilant.
They need security focused reviewers going over code ex-
amples just like we need security focused reviews of real code.
When we are the instructors we need to be careful about the
examples we use. We need to go over our lesson plans, espe-
cially old ones, and purge the insecure examples.

Students Have to Do Their Part
All of this cannot just fall on the trainers and producers of

training materials. Students, especially professionals learning
new technologies, must do their part. They have to remain aware
that lessons are deliberately narrow and remember there is a
bigger picture. We have to remember that while the instructors
are only grading the lesson they taught, there are a lot of other
important things we have to do with our code. We have to be

aware that examples we follow are also narrowly focused and
be diligent about making sure we learn what else we need to
be taking care of in our code. We have to be aware that the
examples we follow may not be the most secure way of doing
things, especially when the examples are old and out of date.
We have to be active students when it comes to security.

4. Closing the Gaps – Learning from History and Today
Once we begin to overcome our training, we can begin to

close the gaps that lead to security problems.
The most fundamental gap is that developer training ignores

a wealth of history of software failures. We have suffered
from decades of buffer overflows and race conditions, input
validation failures and injection attacks. We have created
software with unnecessary features that cause security issues
enabled by default rather than being an optional feature users
have to enable. We have been doing it wrong for a long time.
The tragedy isn’t that we cannot seem to learn the lessons of
history but that we have learned the lessons and all too often
we have failed to pass them on. The bigger tragedy is those
lessons, when we do pass them on, are reserved for “secure
development” classes instead of being incorporated into
development classes in general.

It would not be difficult. Inject the lessons from failure right
along with the actual lessons. We are all used to sidebars
in our books. While the main lessons teach new developers
how to write code without the issues that cause us problems,
the sidebars can tell the stories of how we once did it wrong.
They can tell the stories of the money it cost companies
or the lives lost. They can link to the historic issues in the
Common Weakness Enumerations and Common Vulnerabilities
and Exposures databases that MITRE maintains. Show the
developers that bad code has consequences beyond a bad
grade in class. Rather than teach students to do input and
then teach validation at a much later date, teach them to
accept limited input that is immediately validated and move
on to how to accept less restrictive input at a later date.
When teaching numeric types, also teach how computer treat
numbers differently than humans do. Have lessons early on
that deliberately show the impact of numeric overflows. When
having to pass commands to other command processors, teach
students to use parameterization mechanisms so the receiving
end can easily tell what the command the developer specified
was and what is input into that command from other sources.
Show them what happens when they do not do it that way. And
all along, have sidebars talking about real examples of what
happened when we got it wrong in the past.

We’ve got to get past teaching developers this is the way to
do something and later teaching them the secure way to do
it. Let’s just teach them the right way from the beginning and
never let them learn the insecure way.

Even when we learn the right way up front, developers will
still have to learn about software failures that occur today.
These may be repeats of the lessons from history or they may
be new lessons as attackers continue to become more creative
in attacking our software. Often, this can come from continuing

“

“

We have been doing it wrong for a
long time. The tragedy isn’t that we
cannot seem to learn the lessons
of history but that we have learned
the lessons and all too often we
have failed to pass them on.

CYBER WORKFORCE ISSUES

Mike Lyman is a senior security consultant
at Cigital. His areas of expertise include
secure code review, vulnerability assess-
ments and training developers in secure
development. Mike spent 12 years with SAIC
helping create their software assurance
offering for DoD customers at Redstone Ar-
senal, AL; pioneering most of the processes
and procedures used by the practice. He has
been a CSSLP since 2008 and a CISSP
since 2002.
21351 Ridgetop Circle, Suite 400
Dulles, VA 20166-6503
Phone: (800) 824-0022
Fax: (703) 404-9295
E-mail: communications@cigital.com

ABOUT THE AUTHOR

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

secure development training as we continue our education.
Some of this needs to come during our code reviews as we
cover the problems in our code. We need to deploy lightweight
static analysis tools to the developer workstations that can catch
mistakes as we create them, similar to the way spell checkers
work today, and then the tools teach them the right way to do
things. The instructors, code reviewers and tools must stay up to
date with the latest trends.

Within organizations, trends in their own code should be shared
organization wide, especially when there is a significant failure. Imagine
the airline industry if the lesson learned from the Comet had not been
shared. If organizations are brave enough, they can share the lessons
learned with those outside the organization similar to the way Microsoft’s
SDL blog did on occasion after a patch Tuesday. Share the lesson
learned. The wider the lessons are shared, the better for all of us.

Other engineering disciplines have successfully merged learning
from failures into their basic education and continuing to learn from
new failures in their continuing education. They no longer make
the same mistakes over and over like the software industry does.
Because of this, we no longer have to worry about boarding a
new airliner with square windows feeding metal fatigue problems
in the fuselage. Wouldn’t it be nice if the developers of our shiny
new software had also learned the lessons of history and did not
recreate problems we learned to avoid long ago?

mailto:communications@cigital.com
mailto:309SMXG.Recruiting@us.af.mil
http://www.facebook.com/

