
10 CrossTalk—March/April 2016

CYBER WORKFORCE ISSUES

Introduction
Software has been a process-driven product for the last few

decades. This view has inadvertently de-emphasized the importance
of people in the software lifecycle [1]. The reality today is that:

People with appropriate training perform software-related activ-
ities, often subject to governing standards and legacy constraints
within development environments to achieve desired outcomes.

Today with ever-increasing software sophistication, human in-
genuity is being challenged like never before. No longer does it
suffice to just follow a disciplined development process because
people are becoming increasingly crucial in performing trade-off
analysis and in creating a satisfying user experience [1-2]. In
addition, people are key to ensuring that software performance,
quality attributes, schedule and cost objectives are being met.
Exclusive focus on software process can potentially stifle hu-
man creativity and inhibit human contributions throughout the
software lifecycle. Furthermore, as software continues to grow
in complexity and humans continue to become more and more
an integral part of software-based systems, predictable software
behavior is becoming crucial to software system safety [3].

People-driven
Process-enabled
Software Development:
A 21st Century Imperative
Azad M. Madni, USC and Intelligent Systems Technology

Abstract. In the 21st century, software will continue to “grow” in a sociotechni-
cal ecosystem comprising customers, end users, developers, maintainers, testers,
and other stakeholders. Their continued participation is crucial to software
acceptance both in the DOD and the commercial sector. In the recent past,
software has been a process-driven product. However, with increasing software
complexity, it is becoming apparent that the people aspect of software deserves
greater attention and emphasis. The people aspect comprises people decisions,
personnel skillset, training, motivation, creativity, and talent. This paper explores
the shift from process-driven to people-driven, process-enabled software devel-
opment. The key enablers to accomplish this shift are also discussed. This paper
concludes with a reminder that while people are becoming increasingly important
in software development, process will continue to be a key enabler.

Today the proportion of software in systems continues to
increase dramatically. This recognition has led to the creation
of the term “software-intensive systems.” And people contribute
in a variety of ways to software-intensive systems. For example,
humans create new paradigms, explore the software design
tradespace, discover patterns and trends, provide decision
rationale, attempt to explain anomalous behavior, and assure
smooth integration of people and software. Yet, the importance
of people in the software lifecycle continues to be underem-
phasized. This is surprising in that software is largely a people
creation that is maintained, supported, and adapted by people.
People are also responsible for software quality, and yet scant
attention is devoted to the talent, training, creativity and motiva-
tion of people responsible for assuring software quality [4].
Clearly, process will always play an important role, but more as
an enabler than a driver. This paper argues that to achieve dra-
matic advances in software quality, the people dimension needs
to become a central focus with process as an enabler. After all,
software innovation is primarily the result of human creativity,
passion and motivation. While process will continue to play an
important role in the software life cycle and provide context for
collaboration, the process perspective will be a necessary and
valuable adjunct to the people perspective as software contin-
ues to increase in complexity [5]. People-driven software spans
the 5 P’s: people, purpose, passion, patterns, perspectives, and
processes. Table 1 presents the key elements underlying the
shift in mindset from process-driven to people-driven, process-
enabled software development.

There are several compelling reasons to make people the
primary focus in software development today (Table 1). First,
software is a creation of people, and quite frequently for the
use of people. Exclusive focus on process can stifle creativity,
and compromise user acceptance. Second, safety is becoming
an increasingly important consideration in software-intensive
systems. Safety subsumes predictable software behavior in
the face of disruptive events [3]. It is important to note that
processes do not automatically address safety concerns. It is
people who introduce safety concerns in the software life cycle.
Third, with the need for adaptive processes (e.g., agile), and the
need for adaptable systems (to survive and operate in changing
operational environments), the shift toward people-driven de-
velopment is becoming inevitable [6-8]. Finally, with the advent
of multi-domain software that cuts across multiple domains
(e.g., electrical, optical, mechanical) and multiple disciplines (e.g.,
physics, social sciences, cognitive science), software complexity
has increased dramatically. Collectively, these trends speak to
the need for people-driven, process-enabled software develop-
ment and use (Figure 1).

Figure 2 presents a notional graph illustrating the approxi-
mate relationships between process importance and software
complexity, and between people importance and software com-
plexity. As shown in this figure, as software complexity increas-
es, software development becomes less and less process-driv-
en, and more and more people-driven, albeit process-enabled. A
key implication of this trend is that if the developing organization
expects software to grow in scale and complexity, the organi-
zation is better off adopting people-driven, process-enabled
software development practices [1,3,4,9].

Process-Driven People-Driven, Process Enabled

Process flows

Process enforcement

Process prescription

Process integration

Process recipe

Disciplinary focus

Process knowledge

Process discipline

Technical stories

Process guidance

Software patterns

People collaboration

Human creativity/innovation

Transdisciplinary perspective

Human imagination

People passion

 Table 1: From Process-Driven to People-Driven Process-enabled Development

CrossTalk—March/April 2016 11

CYBER WORKFORCE ISSUES

Figure 1: Developments Contributing to Increasing Software Complexity
	

=In the recent past, several developments have collectively
pointed to a much needed shift from process-driven to people-
driven software development. First and foremost, is the uncer-
tainty about the operational environment, rate of maturation
of promising technologies, and personnel turbulence result-
ing from retirements, layoffs and personnel moves. Second,
software is becoming increasingly more complex because of
ever-increasing scale, and ever-growing need for adaptability
in light of the changing roles of humans in relation to software.
These trends are being driven by the need for systems to be
long-lived and capable of coping with unknown operational
environments. Third, organizations are increasingly turning to
adaptive processes such as agile development paradigm, which
is increasingly being viewed as a source of competitive advan-
tage when applied correctly. It requires an accomplished team of
developers, effective leadership in pulling the team together, and
a change in mindset associated with traditional process-driven
development in which roles are important but individual people
are viewed as interchangeable/substitutable parts, with people
availability trumping people skillset [5,9,10].

Alistair Cockburn, in his book “Characterizing People as Non-
linear, First Order Components in Software Development” argues
that predictable processes require components with predict-
able behavior. And, people are anything but predictable. Treating
humans as interchangeable components or replaceable parts in
software development is a misjudgment. Human behavior tends
to be variable and nonlinear. Humans exhibit an uncanny ability
to succeed in novel ways, while also exhibiting a disconcerting
capacity to fail in unimagined ways. It is the failure to account for
these factors in software development that inevitably result in
schedule and cost over-runs. In fact, it is fair to say that humans
strongly figure in both project successes and failures [3].

Unfortunately, the mistaken belief that people are interchange-
able resources is deeply ingrained in business thinking. It dates
back to Frederick Taylor’s Scientific Management approach
for performing repetitive tasks such as running a factory [11].
However, for highly creative work such as software development,
this view is clearly inapplicable. And today, with the advent of
smart manufacturing, manufacturing also no longer abides by this
tenet. Another key tenet of Taylor’s theory is that the people doing
the work are not best-suited to determining how best to do the
work. While this tenet may hold, to a degree, on the factory floor,
it is untrue of software development. In fact, people attracted to
software engineering tend to be the best and the brightest, with
the culture of youth pervading the field [3, 11].

So, what is it that people bring to software? People bring
imagination, novel insights, storytelling ability, and an uncanny
ability to discern and exploit patterns [2, 4]. These capabilities
have the potential to transform software development in un-
precedented ways to achieve dramatic improvement in software
quality, responsiveness, cycle times, and life cycle costs. Some
of the unique human capabilities that bear on software quality
and costs are presented in Table 2.

A people-driven, process-enabled view of software goes well
beyond the process perspective. It is sensitive to business concerns
and constraints, implications of software-related decisions on short-
term, mid-term, and long-term concerns of a program or business. It

Figure 2: Increasing Software Complexity Driving Paradigm Shift
	

Table 2. Unique Human Capabilities that Bear on Software Quality

• Systems Thinking Think holistically to understand “big picture,” relationships, and interdependencies

• Associative
Thinking

Exploit metaphors and analogies to simplify software architectures, and circumvent
constraints

• Storytelling Engage all stakeholders in upfront software engineering to ensure their timely
participation, contributions, and acceptance

• Visual Analysis Discern patterns and trends that can be exploited in software simplification and
implementation

• Abstractions Abstract details to develop a mental representation that informs development of
scalable and extensible software

• Tradeoff Analysis Place right emphasis on conflicting objectives to create responsive software that
meets stakeholder needs while satisfying schedule, budget, technical, and legacy
constraints

is cognizant of the available skillset in both management and development teams. It
shows understanding of programmatic and technical trade-offs, and the importance
of collaboration and full stakeholder participation in the software lifecycle. The latter
is essential for reasoned compromise that addresses stakeholders’ concerns and re-
solves issues. It is also essential for stakeholder acceptance of collaboratively made
decisions, and elimination of extraneous design iterations and rework [1].

The people-driven view of software is especially sensitive to the required
skillset and available expertise when it comes to the selection of the software
development process (e.g., spiral, waterfall, evolutionary prototyping, incremental
commitment) [3]. With a people perspective, software development process se-
lection is not based just on problem particulars (i.e., objectives, schedule, budget,

12 CrossTalk—March/April 2016

CYBER WORKFORCE ISSUES

risks) but also availability (or lack thereof) of the required talent
and skillset in the development team [12]. The maturity and the
experience of the team members and leadership play a pivotal
role in defining use cases, specifying architecture, and develop-
ing the right set of abstractions.

From Process-Driven to People-Driven, Process-
Enabled Development

People-driven development is more than stakeholders influenc-
ing and agreeing on what is being created. It is more than empow-
ering engineering teams and the activities they perform to develop
software. And it is more than directing software users in the use of
software. It is in fact all of the above. People-driven development
means humans playing an active role in software-related trade-offs,
designing the software, managing the software development pro-
cess, and even distributing software development activities to the
development team members. People-driven development is also
influenced by culture and power distance [13]. Compounding the
problem is the “clash of values” between developers and program
managers [14]. And, of course, human behavior exhibits nonlinearity
and variability [2, 15]. These factors influence both the develop-
ment process and the software product. Cockburn [15] and Madni
[2, 4] identify specific factors that influence the outcome: humans
are social beings who perform best in face-to-face collaboration;
human are inconsistent and inconsistency shows up over time; hu-
mans exhibit variability from day-to-day and place-to-place; human
generally want to do the right thing for their organizations.

These characteristics bear directly on process. It is important to
recognize that process enforcement can vary from strict to loose. In
light of human characteristics and ever-growing system complexity,
loose process enforcement is preferable to strict enforcement. In
cases, where strict process enforcement is required, there is a need
for performance support for humans to behave consistently.

Software lifecycle processes provide a structured disci-
plined means to guide the development of complex, real world
software [16]. This software spans: primary processes (acquisi-
tion, supply, development, operation, maintenance); supporting
processes (documentation, configuration management, quality
assurance, reviews and audits, problem resolution); and organi-
zational processes (management, infrastructure, maintenance,
improvement, training). The question that needs to be asked
in where do lifecycle processes benefit software design and
where do they become an impediment. For most support and
organizational processes, following software life cycle process
is a benefit. Also, periodic architecture and design reviews help
to ensure design quality, and traceability between requirements
and design elements to ensure design completeness. However,
there are times where strict process enforcement becomes a
hindrance to creativity and innovation [17]. In this case, humans
can “dial back” on strict process enforcement and adopt loose
process enforcement. This shift puts people in charge of the
process, making it people-driven, process enabled software. This
recognition is at the heart of adaptive software development in
general, and agile development in particular.

Agile processes (or agile, for short) are a prime example of
people-driven, adaptive development. Agile relies on process
acceptance by the development team, not process imposi-
tion by management [6-8, 12]. In other words, only developers
themselves can choose to follow an adaptive process. This is
especially true of extreme programming (XP), which requires
disciplined execution, with developers making all the decisions
and generating all time estimates. This is a huge cultural shift

for management in that it requires sharing of responsibility
between developers and management [12].

Measuring software productivity is a challenge with adaptive
processes. In this regard, Robert Austin distinguishes between
measurement-based and delegatory management in software
development. Measurement-based management is best suited to
repetitive work with minimal knowledge requirements and easily
measured outputs. For software development, the delegatory style
of management is appropriate. Delegatory management calls for
developers to decide how to do the work. In fact, this approach is
central to the agile philosophy. This does not mean that develop-
ers have to do it all. In fact, developers rely on management for
guidance when it comes to business needs. Finally, in adaptive
development, change is an expected and frequent occurrence.
Consequently, people need to be kept apprised as they continu-
ally adapt the process to fit changing needs [18].

Recent Trends
Several recent developments make a people-driven view

of software both attractive and eminently viable. Three of the
more compelling advances that bear on a people-driven view
are: Model-Based Engineering, Experiential Design and Visual
Analytics; and Interactive Technical Storytelling in Virtual Worlds
[1,9]. Each is discussed next.

Model Based Engineering transforms traditional approaches
in a number of ways. First, it replaces document-centric engi-
neering with software models at the center of the development
process. The model serves as the sole source of truth, from which
documents can be created on demand. Second, model-based
software engineering assures consistency among the different
perspectives embodied in the model. Third, model-based software
engineering can provide different lenses for different stakehold-
ers allowing them to explore the consequences of changes in
assumptions, constraints, and resource/data availability.

Experiential Design and Visual Analytics is the combina-
tion and use of context-sensitive visualization interfaces and
analytical reasoning methods to enable visual debugging,
simplification, and redesign of both systems and processes. As
importantly, visual analytics appeals to all stakeholders because
it transforms calculation results into easy-to-assimilate visuals,
patterns and trends [9]

Interactive Technical Storytelling in Virtual Worlds is a means
to engage all stakeholders in upfront engineering to ensure
that the inputs and concerns of all stakeholders are known and
addressed when conducting trade-off analysis [1]. By providing
each stakeholder with an appropriate “lens” into story execution,
meaningful inputs and concerns from all stakeholders can be
elicited and resolved through timely, multi-stakeholder collabora-
tion [9]. Virtual Worlds are simulated environments within which
stories unfold and stakeholders explore the consequence of
“what-if” assumptions, decisions and tradeoffs. By providing
appropriate “lenses” for the different stakeholders, instrumented
virtual world offers a convenient means for knowledge acquisi-
tion, data collection, and uncovering surprising behaviors.

What it Takes
To realize this shift in mindset, requires advances on sev-

eral fronts: a) a persuasive value proposition of people-driven
development; b) demonstration of how people-driven software
delivers superior value than process-driven software; and c) a
risk-mitigated, staged process to gradually make the transition
from process-driven to people-driven development.

CrossTalk—March/April 2016 13

CYBER WORKFORCE ISSUES

Value Proposition: Software development is a collaborative
process that involves multiple stakeholders who need to jointly
explore tradeoffs and reach consensus. Expanding stakeholder
participation is critical. An experiential, stakeholder-oriented
interface [9] is the key to ensuring full stakeholder participation
early and throughout software development.

Demonstration of the value proposition: The demonstration
should highlight the key elements of a people-centric approach
to developing high quality software. The approach should
highlight: an experiential interface with “lenses” for various
stakeholders; an interactive storytelling capability to engage
the various stakeholders from their respective perspectives; an
instrumented virtual world that supports story execution and that
can be collaboratively and individually explored by the different
stakeholders under a variety of “what-if” assumptions, parameter
values, and technical and programmatic tradeoffs [9].

Staged transition: The transition from a process-driven view
of software development to a people-driven, process-enabled
view has to be accomplished in stages. It is a cultural change for
both management and developers. In this regard, the first stage
is the transition from traditional use cases to stories. The second
stage is the introduction of storytelling in virtual worlds with
stakeholder-oriented “lenses” that allow stakeholders to explore
the software tradespace and understand the CONOPS when
the stories execute in the virtual world. The third stage is story-
enabled collaborative trade-off studies supported by sensitivity
analysis and comparative evaluation.

Conclusion
Software has been a process-driven discipline for quite some

time. While “process” will continue to be a key enabler of software
development, the people aspect will continue to gain in impor-
tance as software continues to grow in scale and complexity
requiring greater human involvement. Surprisingly, the growing
importance of people in software development has not produced
a paradigm shift in software development. And yet it is people
that bring ingenuity, imagination, and creativity that can dramati-
cally improve software quality and development efficiency and
effectiveness. This paper emphasizes the importance of people-
driven, process-enabled software development. Additionally, in
light of growing emphases on people, four significant advances
are identified as key enablers of this transformation: model-driven
engineering, experiential interfaces, visual analytics, and interac-
tive storytelling in virtual worlds. Looking down the line, as various
relevant technologies mature, software quality and development
will increasingly depend on the “people factor,” with process con-
tinuing to be an important enabler, but not the sole driver.

1. Madni, A.M. “Expanding Stakeholder Participation in Upfront Systems Engineering”, System Engineering, 2015
2. Madni, A.M. “Integrating Humans With and Within Software and Systems: Challenges and Opportunities,”

(Invited Paper) CrossTalk, The Journal of Defense Software Engineering, May/June 2011, “People Solutions.”
3. Cockburn, A. “People and Methodologies in Software Development,” Ph.D. Dissertation, University of Oslo Press,

University of Oslo, February 2003.
4. Madni, A.M. “Integrating Humans with Software and Systems: Technical Challenges and a Research Agenda,”

Systems Engineering, Vol. 13, No. 3, pp. 232-245, Autumn (Fall) 2010.
5. Madni, A.M. “Thriving on Change through Process Support: The Evolution of the ProcessEdge™ Enterprise

Suite and TeamEdge™,” International Journal on Information - Knowledge - Systems Management, Special
Issue Vol. 2, No. 1, pp. 7-32, 2000.

6. Cockburn, A. “Agile Software Development: The Cooperative Game, 2nd Edition, Addison-Wesley
Professional, October 2006.

7. Madni, Azad M. “AgileTecting™: A principled approach to introducing agility in systems engineering and
product development enterprises.” JIDPS 12.4 (2008): 49-55.

8. Madni, A. M. “Agile systems architecting: Placing agility where it counts.” Conference on Systems Engineer-
ing Research (CSER). 2008.

9. Madni, A.M., Spraragen, M., and Madni, C.C., “Exploring and Assessing Complex System Behavior through
Model-Driven Storytelling,” IEEE Systems, Man and Cybernetics International Conference, special session
“Frontiers of Model Based Systems Engineering”, San Diego, CA, Oct 5-8, 2014.

10. Austin, R.D. Measuring and Managing Performance in Organizations, Dorsett House Publishing, 1996.
11. Taylor, F.W. “The principles of Scientific Management, New York and London, Harper and Brothers, 1911.
12. Taylor, F. W. “Shop Management,” New York and London, Harper and Brothers, 1903
13. Geert, H., and Hofstede, G.”Cultures and organizations: Software of the mind.” McGraw-Hill, New York (1991).
14. Cockburn, A. “Software development as Community Poetry Writing. Cognitive, cultural, sociological, human

aspects of software development.” Annual Meeting of the Central Ohio Chapter of the ACM, 1997.
15. Cockburn, A. “Characterizing people as non-linear, first-order components in software development.”

International Conference on Software Engineering 2000. 1999.
16. Suryanarayana, G., Sharma, T., Samarthyam, G. “Software Process versus Design Quality: Tug of War”, IEEE

Computing Edge, Aug 2015.
17. Madni, C.C., and Madni, A.M., “Web-enabled collaborative design process management: application to multichip

module design.” Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference on. Vol. 3. IEEE, 1998.
18. Bramble, P. “Patterns for Effective Use Cases, Addison-Wesley Professional, August 2002

Dr. Azad Madni is a Professor and Director of the Systems
Architecting and Engineering Program in the Viterbi School
of Engineering at the University of Southern California. He
is also the founder and Chief Scientist of Intelligent Systems
Technology, Inc. He received his B.S., M.S., and Ph.D. degrees
in engineering from UCLA. His government research spon-
sors include DOD, DARPA, AFRL, AFOSR, ONR, NAVAIR,
NAVSEA, SPAWAR, ARL, ARI, RDECOM, DHS S&T, DTRA,
NIST, DoE, and NASA. His research has also been sponsored
by commercial companies including Boeing, Northrop Grum-
man, Raytheon, Hughes, Orincon, and General Motors. He is
an elected Fellow of AAAS, AIAA, IEEE, INCOSE, SDPS, and
IETE. He is listed in the major Marquis’ Who’s Who, including
Who’s Who in America.
Phone: 213-740-9211
E-mail: azad.madni@usc.edu

ABOUT THE AUTHOR

REFERENCES

mailto:azad.madni@usc.edu

