
CrossTalk—March/April 2016 31

CYBER WORKFORCE ISSUES

Introduction
A “Completely Automated Public Turing Test to tell Computers

and Humans Apart,” or “CAPTCHA,” is used to prevent
automated software from performing actions that degrade the
quality of service of a given system. CAPTCHAs aim to ensure
that the users of applications are human and ultimately aid in
preventing unauthorized access and abuse.

There are several types of CAPTCHA schemes that present
audio and/or visual challenges to the user. These challenges
require a human to interpret them and supply the solution that
is validated by the server to allow or disallow the request. Image
shows a reCAPTCHA [2] example

Character segmentation is typically the more difficult part
of the automated CAPTCHA solving process. Once individual
characters are segmented, computer algorithms can do a
very good job of classifying the individual character images to
corresponding alphabet/numeric characters. Given the small
number of possible characters in the existing CAPTCHAs,
automated classifiers can be written for a large number of
the existing CAPTCHA schemes. The automated solvers can
also use supervised machine learning algorithms to extract the
features from the large number of test CAPTCHAs and solve
new CAPTCHAs with high accuracy.

Owing to a common threat model between the visual, text
based CAPTCHAs, researchers have experimented with
alternate forms of CAPTCHAs with different threat models.
These CAPTCHAs require you to interpret real world images,
videos, solve calculus problems, read advertisements etc.
Several of these alternate CAPTCHA implementations require
a prior manual generation effort into building a knowledge
base on which the users are tested. A few examples are
sweetcaptcha, random.irb.hr etc…

The image below shows an example sweetCaptcha [4].

PixelCAPTCHA
A Unicode Based
CAPTCHA Scheme
Gursev Singh Kalra, Salesforce.com
Abstract. This paper will discuss a new visual CAPTCHA [1] scheme that
leverages the 64K Unicode code points from the Basic Multilingual Plane (plane
0) to construct the CAPTCHAs that can be solved with 2 to 4 mouse clicks.
We will review the design principles, the security mechanisms and its various
features. We will also discuss the potential attack vectors on the proposed
CAPTCHA scheme. The proposed CAPTCHA scheme will also be available as
an open source Java library in near future.

This paper has two main sections: the first discusses challenges
with existing visual CAPTCHA schemes and the second section
discusses the new PixelCAPTCHA scheme in detail.

Challenges with existing CAPTCHA schemes
Most of the visual CAPTCHAs rely on English alphabets and

numerals, which makes them keyboard and locale sensitive.
When the conforming fonts are used to build CAPTCHAs,
solving the CAPTCHA can be as easy as running the Optical
Character Recognition engines after removing the noise. The
visual CAPTCHAs often have a similar threat model where
the attackers follow three-step process to automatically solve
them. The first step is to remove the noise, also called as
preprocessing. Individual characters are then segmented in the
second step followed by third step of character classification.

The image below shows a simple segmentation example [3].

The image below shows a calculus based CAPTCHA [5].

PixelCAPTCHA
Let us now look at a simple PixelCAPTCHA example and

build an intuition around the proposed CAPTCHA scheme. On
the image below, you will see 2 blue characters on the left and
10 characters in black on the right. You will also see the helper
blue and red dots on the CAPTCHA. These dots are only for
demonstration and to help build an intuition.

The blue characters are the challenge and the black
characters contain the solution among other random characters.
To solve the CAPTCHA, you will need to identify the black
characters similar to the blue characters and click on the black
ones. In the image below, the blue dots on the black characters
are the actual solution coordinates and the red dots are the
points where the user has clicked. The set of mouse click

32 CrossTalk—March/April 2016

CYBER WORKFORCE ISSUES

coordinates makes your solution, which is submitted to the
server for verification. The server computes the sum of minimum
distance between the correct solution coordinates and the ones
submitted by the user.

In the current example, the server will compute the two
distances between the red and the blue dots and sum them up
to arrive at a total distance/deviation from the correct solution
coordinates. This deviation then will be compared against a pre-
computed threshold for a given CAPTCHA to make a decision.
The comparison threshold is different for each CAPTCHA and is
calculated during the CAPTCHA generation process.

CAPTCHAs for Various Device Types
The PixelCAPTCHA library accepts custom dimensions and

calculates the minimum and maximum Font sizes to be used
to draw individual characters for the CAPTCHAs in addition to
adjusting the challenge text orientation as discussed below.

Horizontal Orientation: When the CAPTCHA width is more
than the height, the CAPTCHA gets a horizontal orientation,
and the challenge text is drawn vertically to the left side of the
CAPTCHA. The horizontal orientation is more appropriate for
desktops or devices with larger screen areas. The examples
discusses so far are of the horizontal orientation.

Vertical Orientation: When the CAPTCHA height is more than
the width, the CAPTCHA gets a vertical orientation, and the
challenge text is horizontally drawn to the top of the CAPTCHA.
I may be easier for mobile users to view and solve vertical
CAPTCHAs on their devices. The image below shows an example
of vertical CAPTCHA generated by the PixelCAPTCHA library.

	

Features
Now that we have built an intuition for the CAPTCHA

scheme, we will look at the various supported features in this
section. These features allow you to control the CAPTCHA size,
orientation, choose a character set and more.

Configurable Challenge and Response Count
The image discussed above was an example of a minimum

complexity CAPTCHA that has 2 challenges and 10 responses
to choose from, with a character set limited to 0 to 255
Unicode range. The PixelCAPTCHA library supports multiple
configurations using which you can build CAPTCHAs that have
2 to 4 challenges, 10 to 12 responses to choose from and any
set of characters from the Unicode Basic Multilingual Plane [6]
(a.k.a. plane 0). Below is an additional PixelCAPTCHA example.

The image below shows a CAPTCHA with 3 challenges and
11 responses derived from 0-4095 Unicode code points

	

	

Configurable Character Set
Based on your requirements you can choose the character set

for your CAPTCHA. The character set can be a list of Unicode
code points from the Unicode plan 0 or multiple character ranges.
This allows you to test out user acceptability before finalizing the
CAPTCHA configuration for your application. A few examples to
custom character sets are shown below:

• 0-255 – configures the PixelCAPTCHA library to use
characters only from 8-bit ASCII character range.

• 0-4095 - configures the PixelCAPTCHA library to use
characters only from 0 to 4095 Unicode code points.

• 65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,
84,85,86,87,88,89,90 – instructs the library to include only
the uppercase characters

CrossTalk—March/April 2016 33

CYBER WORKFORCE ISSUES

It is however recommended that the entire Unicode plane 0
code points be used for enhanced security as discussed in the
security analysis section below.

The image shows a CAPTCHA with 4 challenges and 12
responses derived from the Unicode plane 0.

The table shows the results of the analysis. To conclude: in
addition to code points corresponding to white space and non-
valid glyphs, there was a significant number of code points that
would not leave a visible imprint on the images.

Printable Character Identification
Since the CAPTCHA relies on character correlation in order

to be solved, it is very important that the characters leave a
distinct impression on the CAPTCHA images. To be able to
visually represent the various characters for correlation on the
CAPTCHA image, the challenge and response Unicode code
points could not be whitespaces and the Font [7] used to draw
those must have valid glyphs [8] for each of the chosen Unicode
code points. After checking for these conditions, the generated
CAPTCHAs continued to have missing characters and the effect
was more pronounced with smaller Unicode code points.

For example, when 0 to 255 Unicode code point range was
used, more number of CAPTCHAs had missing characters.
Further analysis revealed that Unicode code points 0 through
32 did not leave any visible imprints on the CAPTCHA images.

To ensure that the generated CAPTCHAs had visible and
distinct characters, the following checks (shown in image below)
were applied to each code point for all the characters in the
Unicode plane 0 to identify those characters.

Unicode
Range

Total # of
characters

Of
Whitespaces

Of
Font.canDisplay

Expected
printable
characters

Actual
Count

0-255 256 10 256 246 189

0-4095 4096 10 3080 3070 2958

0-65535 65536 26 51878 51852 51580

Inbuilt Cache
The PixelCAPTCHA library has its own, in memory cache

to store CAPTCHA solutions and corresponding identifiers.
The current release does not require any persistent storage
configuration. The storage times out individual CAPTCHA solutions
and expires CAPTCHAs on single access, providing better security.

Service Provider Interface
The PixelCAPTCHA library also provides a new Service Provider

Interface that you can implement to create wrappers around other
CAPTCHA libraries and use them in your code without making
extensive changes to your primary application. This allows you to
decouple PixelCAPTCHA from your main application code.

Functional and Usability Benefits
The proposed CAPTCHA scheme offers the following

additional benefits:
• It allows users to avoid typing and solve CAPTCHAs with

a few clicks. This will offer usability improvements on the
mobile devices where typing is a challenge and few taps
can be used to solve the CAPTCHAs.

• The CAPTCHA scheme is independent of language,
keyboard style and locale.

• The CAPTCHA generation process is completely automated.

Security Analysis
The suggested CAPTCHA scheme has been designed with

several security features in mind and this section will visit those
in some detail.

Probabilistic Analysis of Protection Against
Random Guessing

In the very first image of this whitepaper, we discussed a
CAPTCHA that has 2 challenges and 10 possible solution
options to choose from. Let us assume that an attacker tries to
solve that CAPTCHA by randomly selecting coordinates from
any 2 of the 10 solution characters. The probability of correctly
guessing the solution is 2/(10*9) = 1/45. This assumes that the
order of the mouse clicks is irrelevant. That is, the attacker can
click on the potential solution in any order.

For example, lets say that the two challenge characters are A
and B, drawn vertically in that order, with A on the top. Consider
the following two scenarios:

34 CrossTalk—March/April 2016

CYBER WORKFORCE ISSUES

First: To solve the CAPTCHA, a user may be required to click on
A and B in the solution area in any order, making up two possible
solutions. The server will check for two possible solutions. This
has a benefit of better usability, but offers less security in cases
when attackers plan to randomly guess solution coordinates.

Second: To solve the CAPTCHA, a user will be required to click on
A and B in the solution area in that particular order, making up only
possible solution. The server will also check for only one solution.
This has a benefit of higher security, but has a usability challenge.

The PixelCAPTCHA library can be configured to run in
either of the two modes and instructed to honor or ignore the
order of the clicks. The table below shows different CAPTCHA
configurations and corresponding probabilistic analysis of
protection against random guessing when ordered or unordered
solution clicks are required.

along the vertical axis. This increases the difficulty to segment
individual characters and provides better security.

Probability

Challenge Count Response Count Unordered Clicks Ordered Clicks

2 10 1/45 1/90

2 11 1/55 1/110

2 12 1/66 1/132

3 10 1/120 1/720

3 11 1/165 1/990

3 12 1/220 1/1320

4 10 1/210 1/5040

4 11 1/330 1/7920

4 12 1/495 1/11880

Higher Classification Complexity
The Basic Multi Lingual Unicode plain consists of 65536

code points. It was concluded during the analysis that out of the
possible 65536 Unicode code points, 51,000+ code points could
be reliably drawn on the CAPTCHA. Having a large character
space increases the complexity to write reliable classification
algorithms. The Printable Character Identification section above
has discussed how these Unicode code points were identified.

Collapsed Challenge Characters to add
Segmentation Complexity

Individual character segmentation is an important
aspect of automatically solving CAPTCHAs and one of the
PixelCAPTCHA features is to add segmentation difficulty to the
challenge characters; achieved by a random overlap between
successive challenge characters.

The images below show the challenge component of two
different CAPTCHAs. The top portion of each image shows the
plotted challenge text and the lower portion shows the black
pixel distribution [9] along the vertical axis. Since the challenge
characters were not collapsed in the upper image, automated
algorithms will be able to segment individual characters because
of lower number of black pixels along the vertical axis. However,
the bottom image has a random overlap between the challenge
characters and there was no visible dip in the black pixel count

Random Font Construction
Randomly generated Fonts are used for each CAPTCHA

character to augment the character correlation/classification
complexity. The bullet points and the image below depict the
process used to generate a separate Font for each CAPTCHA
character.

• Pick a random logical Font from the list below. The current
version uses Logical Fonts [10] as they are always present.
The Physical Fonts [10] that may differ between systems.

Font.SANS_SERIF
 Font.SERIF
 Font.DIALOG
 Font.DIALOG_INPUT
 Font.MONOSPACED

• Choose random values for the following attributes:
Size
Bold (boolean)
Italic (boolean)

CYBER WORKFORCE ISSUES

• Construct a Font from the values in step 1 and 2.
• Choose random values for the following

Font size multipliers for X and Y-axis (two separate values
Rotation in degrees (positive or negative)
Shear values for X and Y-axis (two separate values).
To aid text readability and identification, the absolute
shear values are restricted to be less than 0.5.

• Use the random scaling, rotation and shear parameters to
construct an AffineTransform [11].

• Apply the AffineTransform to the Font constructed in step
3 to get a new Font, which is then used for drawing a
character on the CAPTCHA.

Potential Attacks
Having both challenge and the solution text are part of the

same CAPTCHA image presents a security risk. A typical attack
pattern may be segmentation of the challenge characters and
correlation between the segmented challenge and the solution
characters. Computer vision and machine learning algorithms
may also be leveraged to solve the proposed scheme.

Gursev Singh Kalra is a Sr. Product
Security Engineer at Salesforce.com. He
worked with McAfee as a Senior Principal
Consultant and led multiple software
security service lines. He has authored
free security tools like JMSDigger,
TesserCap, Oyedata, SSLSmart etc.
He has written several security-related
whitepapers and his research has been
voted among the top ten web hacking
techniques of 2011 and 2012. He has
spoken at conferences like BlackHat,
OWASP AppSec, NullCon, Focus,
ToorCon, and Infosec Southwest etc.
E-mail: gkalra@salesforce.com

ABOUT THE AUTHOR

REFERENCES
1. http://<en.wikipedia.org/wiki/CAPTCHA>
2. http://<www.google.com/recaptcha/intro/index.html>
3. http://<citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.3886&rep=rep1&typ

e=pdf>
4. http://<sweetcaptcha.com/>
5. http://<random.irb.hr/signup.php>
6. http://<en.wikipedia.org/wiki/Plane_%28Unicode%29>
7. http://<docs.oracle.com/javase/7/docs/api/java/awt/Font.html>
8. http://<en.wikipedia.org/wiki/Glyph>
9. http://<imagej.nih.gov/ij/>
10. http://<docs.oracle.com/javase/tutorial/2d/text/fonts.html>
11. http://<docs.oracle.com/javase/7/docs/api/java/awt/geom/AffineTransform.html>

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,

CrossTalk can get the word out. We are specifically looking for articles on soft-
ware-related topics to supplement upcoming theme issues. Below is the submittal

schedule for the areas of emphasis we are looking for:

Supply Chain Risks in Critical Infrastructure
Sep/Oct 2016 Issue

Submission Deadline: Apr 10, 2016

Agile Methods
Nov/Dec 2016 Issue

Submission Deadline: Jun 10, 2016

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

mailto:gkalra@salesforce.com
http://www.google.com/recaptcha/intro/index.html
http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

