
CrossTalk—September/October 2016 11

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

Introduction
In this paper we are interested in what motivates the choice

of a particular set of software metrics, especially when these
metrics are to be used as part of a Performance Based Logis-
tics (PBL) [1] contract. These types of contract are being imple-
mented for large and complex software systems such as the
F-35 Lightning II [2]. In particular, we are concerned with how
the chosen metrics will influence the behavior of the software
maintenance and sustainment system. Of particular concern is
protecting against negative unintended consequences that may
occur if metrics are chosen poorly.

Initially, we consider how measurement can affect the be-
havior of human systems. We then develop some simple, and
incomplete, models that illustrate how poorly chosen metrics
could drive the software maintenance and sustainment system
toward undesirable behaviors. We close by summarizing how to
protect against this risk.

Measurement and Behavior
The relationship between measurement and system behavior

has been the subject of a number of studies of complex human
systems (e.g., implementation of Government policies [3], the
English National Health Service [4], and U.S. Veterans Health
Administration facilities [5]). In addition, the unintended conse-
quences of publishing performance data for U.K. public sector
organizations have been studied; this topic is discussed in the
following paragraphs, which are heavily based on Smith [6].

In his abstract, Smith states, “the performance indicator phi-
losophy is based on inadequate models of production and control.”
To put that quote into the context of this article, Performance
Indicators (PIs) can be considered analogous to software metrics,

The Measurement of
Software Maintenance
and Sustainment
Positive Influences and
Unintended Consequences
Rob Ashmore, U.K. Defence Science and Technology Laboratory
Mike Standish, U.K. Defence Science and Technology Laboratory

Abstract. Software metrics can provide valuable information to decision mak-
ers and can assist with the management of the software supply chain. However,
a poorly chosen set of metrics may have negative unintended consequences,
resulting in software that is more expensive to maintain. Among other things,
a crucial component in the intelligent and effective use of software metrics is
a sound, system-level understanding of the underlying software sustainment
process. This article illustrates one mechanism that can be used to develop this
understanding and highlights the benefits that it can deliver.

and the phrase “models of production and control” relates to a
system-level model of the activity that is being undertaken, which
in our case is software maintenance and sustainment.

Smith goes on to note, “the findings of the paper are therefore
likely to be relevant to any situation in which performance data —
whether directed at political, agency or managerial control — play a
significant part in guiding the activities of the organization.” This situ-
ation is precisely the one we are interested in, where performance-
based measures (i.e., software metrics) are used to influence the
behavior of the software maintenance and sustainment organization
so that defined outcomes are achieved for the warfighter.

Potential Unintended Consequences
Smith highlights a number of negative unintended conse-

quences of using performance data to influence system behav-
ior. These are all based on observations of U.K. public sector
organizations and can be grouped into eight distinct types:
• Tunnel vision, when management focuses on quantified

aspects of performance rather than overall quality.
• Suboptimization, where narrow, local objectives are priori-

tized over the wider objectives of the organization as a whole.
• Myopia, which involves the pursuit of short-term targets at

the expense of legitimate long-term objectives or outcomes.
• Measure fixation, where managers focus on the metric,

rather than the objective for which the metric was developed.
• Misrepresentation, where the reported metrics do not

match the behavior on the ground.
• Misinterpretation, where those to whom the metrics are

reported make incorrect or inappropriate decisions.
• Gaming, where behavior is deliberately altered so as to

exploit loopholes in the measurement system.
• Ossification, where an overly rigid measurement system

prevents innovation.

Mitigation Strategies
Smith advances a number of strategies that may be used to

mitigate the risk of such unintended consequences. Two prime
examples are the following:
• Involving staff at all levels when setting metrics; this readily

protects against suboptimization.
• Retaining flexibility in the chosen metrics and not relying on

them exclusively for control purposes; this readily protects
against ossification.

While these strategies provide some level of mitigation, a
more holistic approach involves gaining a system-level under-
standing of what is being measured. This is a key consideration,
which is highlighted in the abstract of Smith’s paper. Although
the development of a completely accurate model is impos-
sible, relatively simple models can still provide a helpful level
of understanding. More importantly, they allow the effects of
measurement to be monitored so that, if necessary, the adopted
measures can be altered.

One way of representing system-level models is by using
Causal Loop Diagrams (CLDs). To illustrate these diagrams, we
begin with a simple example relating to technical debt and its
potential effect on software release schedules.

12 CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

Technical Debt and Preventive Changes
The term “technical debt” was coined by Ward Cunningham

in a talk at the 1992 Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA) conference [7].It
refers to code that is known to be ‘not quite right’ but a deci-
sion has been made to postpone making it right. Often, but not
always, the ‘not quite right’ piece relates to the way new code
integrates with an existing software architecture.

Incurring technical debt allows, for example, a new release to be
produced sooner than otherwise would be the case. This usually
comes at a longer-term cost, as indicated by the debt metaphor.
In particular, as this level of debt grows, it becomes more difficult
to make changes, slowing down future releases. Ultimately, an
unchecked growth in technical debt is likely to shorten the lifespan
of the software, hastening the need for its replacement.

Paying back the debt involves a software change, specifically
one that aims to ease future maintenance. This is one of the
four types of change discussed by Williams and Carver [8]:
• Perfective changes result from new or changed requirements.
• Corrective changes occur in response to defects.
• Adaptive changes occur when moving to a new environment,

or to a new platform, or to accommodate new standards.
• Preventative changes ease future maintenance by restruc-

turing or reengineering the system.
Figure 1 illustrates some of these concepts. Initially, we focus

on the items shown in black text; i.e., we focus on the reinforc-
ing loop, which is named “impending bankruptcy.” This may be
interpreted as follows:
• An increase in software schedule pressure leads to an increase

in technical debt. (The “S” on the arrow means that an increase
in the quantity at the arrow’s tail leads to an increase in the item
at its head; that is, they move in the Same direction.)

• The increase in technical debt leads to a reduction in the ease
with which future changes can be met. (The “O” on this arrow
means the quantities it joins move in Opposite directions.)

• The reduction in the ease with which future changes can be
met leads, in turn, to schedule pressure for future releases
(hence the delay).

Overall, working around the loop, an increase in schedule
pressure leads to a further increase in schedule pressure. Hence,
this is a reinforcing loop and is annotated with an “R” (in simple
terms, a loop that has an even number of “O” arrows will be
Reinforcing and a loop with an odd number of “O” arrows will be
Balancing). The system-level effect is that increasing technical
debt to achieve one release will, if left uncorrected, make it more
and more difficult to complete future releases. Ultimately, this will
reduce the software’s lifespan or, extending the debt metaphor,
lead to technical bankruptcy.

It is appropriate to note that the preceding description (and
the associated CLD) is just one selection from a range of poten-
tial situations. For example, a small amount of technical debt
residing in a stable part of the software (i.e., a part where few,
if any, changes are made) might be maintained indefinitely with
little adverse effect. More generally, any CLD is just one way
of representing a system. Different representations, and hence
different system-level behaviors, are often plausible. This is one
reason why flexibility should be retained in the chosen metrics.
It also highlights the importance of monitoring system behavior
and comparing it with expectations.

With that caveat in mind, consider the red text in Figure 1;
i.e., where we focus on the loop named “scheduled repayments.”
This may be interpreted in the following fashion:
• An increase in schedule pressure leads to an increase in

technical debt; this prompts an increase in the number of
preventive changes, which makes future changes easier, thus
re-balancing schedule pressure across future releases.

In this case, an initial increase in schedule pressure works
through the loop to result in a reduction in schedule pressure
later. This is a balancing loop (as denoted by the “B”).

Applying Smith’s observations on unintended consequences to
this simple example suggests that using software metrics based
solely on the time taken to complete the current release risks the
system being driven to behave as in the “impending bankruptcy”
loop; that is, the longer-term future of the software will be jeopar-
dized by tightly focusing on short-term issues. In contrast, including
metrics that encourage the implementation of perfective changes
is, according to this model, more likely to drive the system into a
balanced behavior, which should yield through-life benefits.

Of course, both of these examples are simplistic and fail to cap-
ture the full complexities of system behavior. Nevertheless, they still
provide useful insights on the potential unintended consequences
of adopting a particularly narrow set of software metrics.

A Simple Model of Software Maintenance and
Sustainment

Figure 2 provides a larger, but still incomplete, model of software
maintenance and sustainment; a separate model of the same activ-
ity was discussed by Ferguson, et. al., in “Modeling Software Sus-
tainment” [9]. Like the model discussed in the previous sub-section,
the one presented here is just one representation of a Figure 1. Initial causal loop diagram for technical debt

CrossTalk—September/October 2016 13

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

potential behavior. Nevertheless, it captures some important
features, which can be used to inform the choice of metrics.
The following points highlight some of the key nodes in the model:
• The central portion of the model (shown in gray) reproduces

the relationship discussed previously (shown within Figure 1).
• On the bottom left of the diagram is a node that captures

“Software Contribution to ‘Lost Effectiveness.’” Note that
this node also captures effectiveness that is “lost” due to an
inability to meet new requirements.

• The lost effectiveness highlighted in the previous node is likely
to affect the “Number of Corrective Changes” that are required.

• The “Software Cost Pressure” node is self-explanatory. It is
included in the model as it addresses a metric that, by definition,
has to be included in any PBL contract (i.e., cost).

• The “Completeness of Processes” node is included to
represent the balance between maintaining a planned
release date (which can involve reducing the amount of time
available for testing) and, for want of a better phrase, the
level of “thoroughness” involved in the process.

• The “Faults in Delivered Software” node implicitly captures
both the number and the importance of any faults that are
present (i.e., it covers issues like whether a workaround is
available, the number of missions that would exercise the
faulty software, and so on).

• The “Quality Adjusted Staff Numbers” node (shown in red
on the right of the diagram) combines both the number of
staff that are available and their quality. This node covers

all software-related staff, including, for example, managers,
developers, reviewers and testers.

• On the bottom of the diagram are four external inputs, which
are shown in blue text:
• The first two external inputs, “Number of Perfective Chang-

es” and “Number of Adaptive Changes” capture the impact
of new requirements, whether these arise, for example, from
a desire to conduct new missions (perfective) or a need to
accommodate new standards (adaptive).

• The next external input relates to the “Quality of the Initial
Software;” i.e., the quality of the software when the system
achieves Initial Operating Capability (IOC). Unlike new
requirements, which may arise multiple times during the
aircraft’s life, this external input is a one-off.

• The final external input relates to the “Quality Assurance
Process.” This is included as the Quality Assurance (QA)
organization is independent of the software development
one and, as such, QA should be able to, for example, prevent
inappropriate short cuts (i.e., ones that violate agreed proce-
dures) being taken.

Reinforcing Loop — “Focus on This Release”
Initially, we consider the reinforcing loop named “focus on

this release.” This interpretation of system behavior can be
described as follows:
• An increase in “lost effectiveness” due to shortfalls in software

functionality increases both the demand for corrective changes

Figure 2. A simple model of software maintenance and sustainment

14 CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

and the pressure for a new release to be produced quickly. This
is assumed to lead to an increase in cost pressure, a link that is
somewhat debatable; sometimes doing things more quickly also
means doing them more cheaply.

• The combination of increased schedule pressure and increased
cost pressure reduces the completeness of the processes
(e.g., the number of resources devoted to testing). In turn, this
increases the number of faults in the software, which further
increases “lost effectiveness.”

As with all the causal loops discussed in this article, this
description presents a very simple view of what is, in reality, a
complex system; it also contains general statements for which
specific counter-examples could be provided. For example, the
“lost effectiveness” may not be felt immediately, as the new
release may be expected to fix most (if not all) of the faults
that were impacting effectiveness. Likewise, the relationship
between schedule pressure and testing completeness is not
entirely governed by cost pressure. Nevertheless, this discussion
again highlights the potential risk of focusing too tightly on cost
and schedule metrics for each upcoming release in isolation.

Balancing Loop — “People Power”
Finally, we consider the balancing loop named “people power.”

Much of the description of this loop is similar to the previous
discussion. The new features may be summarized as follows:
• An increase in schedule pressure is used to justify an increase

in staff numbers and/or quality. This acts to reduce the number
of faults in the delivered software, thus providing a degree of
balance to the system.

Yet again, this description is somewhat simplified and ide-
alistic. It could be argued, for example, that schedule pressure
will not lead to an increase in staff numbers and/or staff quality
(e.g., because suitable staff cannot be recruited, or because
there is a perception that there is no spare time for training).
Likewise, there is some evidence that simply adding more staff
to a late-running software project may make it later (this is
sometimes referred to as Brooks’ Law and is described in [10]).
Conversely, bringing experienced staff with detailed knowledge
of the project’s history back onto the team could be beneficial.

Despite these limitations, this loop does illustrate the benefit
that can be obtained by combining an appropriate set of metrics
with an understanding of the desired system-level behavior. In
particular, measuring the planned staff attributes at the be-
ginning of a release cycle and comparing this with the likely
schedule pressure — which may be informed by data from previ-
ous releases — should help drive the overall system into a more
balanced state than otherwise would be the case. Achieving and
maintaining such a state is an important aspect of the through-
life cost-effectiveness of defense software; it should also help
make software release schedules more predictable.

Conclusions
It is well understood that measurement influences behavior.

However, when applied to complex human systems that are in-
volved in software maintenance and sustainment, the inappropri-
ate use of metrics can have negative unintended consequences.

There are several strategies that can be used to mitigate the
risk of unintended consequences. However, the most com-
prehensive mitigation strategy involves gaining a system-level
understanding of the process that is being measured and using
that understanding to identify likely responses to different mea-
surement choices. The system-level understanding should also
be used to monitor the measurement-induced effects so that, if
necessary, corrective action can be taken.

To illustrate the concept, a simple CLD representation of the
software maintenance and sustainment process has been devel-
oped. This indicates that, for example, focusing solely on metrics
associated with the current release could have negative impacts
on through-life cost-effectiveness. Although this observation (and
others discussed in this article) may be helpful, the key conclusion
is that any proposed set of software maintenance and sustain-
ment metrics should be accompanied by the following:
• A system-level description of the process that is being measured.
• A description of how the metrics are intended to influence the

system toward the desired behavior, including how they might
interact to generate unintended consequences.

• An explanation of how the risk of unintended consequences
will be mitigated. This should include a description of how the
effects induced by the metrics will be monitored and how the
selection of metrics will be altered if necessary.

Acknowledgements
Lieutenant Commander Steven “Dutch” Holland, R.N.,

provided valuable assistance as the concepts discussed in
this article were developed.

Disclaimer and Copyright
This article is an overview of UK MOD-sponsored research and

is released for informational purposes only. The contents of this
article should not be interpreted as representing the views of the
UK MOD, nor should it be assumed that they reflect any current
or future UK MOD policy. The information contained in this article
cannot supersede any statutory or contractual requirements or
liabilities and is offered without prejudice or commitment.

(c) Crown copyright 2016, Dstl. This material is licensed
under the terms of the Open Government Licence except where
otherwise stated. To view this licence, visit http://www.nation-
alarchives.gov.uk/doc/open-government-licence/version/3 or
write to the Information Policy Team, The National Archives,
Kew, London TW9 4DU, or email: psi@nationalarchives.gsi.gov.
uk. [DSTL/DOC86875].

• Meadows, D.H. Thinking in Systems: A Primer. Chelsea Green Publishing, ISBN
1-603-58055-7, 2008.

• Sterman, J. Business Dynamics: Systems Thinking and Modeling for a Complex
World. McGraw-Hill Higher Education, ISBN 0-071-17989-5, 2000.

• Coyle, R. System Dynamics Modelling: A Practical Approach. Chapman and Hall/
CRC, ISBN 0-412-61710-2, 1996.

ADDITIONAL READING

http://www.nation-alarchives.gov.uk/doc/open-government-licence/version/3
http://www.nation-alarchives.gov.uk/doc/open-government-licence/version/3
mailto:psi@nationalarchives.gsi.gov

CrossTalk—September/October 2016 15

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

1. Defense Acquisition University. Performance Based Logistics Community of Practice.
Retrieved from https://acc.dau.mil/pbl. (Accessed 2015, February 10.)

2.	 Huff, L. & Novak, G. (2007). Performance-Based Software Sustainment for the F-35
Lightning II. CrossTalk – The Journal of Defense Software Engineering. 20 (12) 9-14.

3. Johnsen, Å. (2005). What Does 25 Years of Experience Tell Us About the State of
Performance Measurement in Public Policy and Management? Public Money &
Management. 25 (1) 9-17.

4.	 Mannion, R. & Braithwaite, J. (2012). Unintended consequences of performance mea-
surement in healthcare: 20 salutary lessons from the English National Health Service.
Internal Medicine Journal. 42 (5) 569-574.

5. Powell, A., et al. (2012). Unintended Consequences of Implementing a National
Performance Measurement System into Local Practice. Journal of General Internal
Medicine. 27 (4) 405412.

6. Smith, P. (1995). On the Unintended Consequences of Publishing Performance Data
in the Public Sector. International Journal of Public Administration. 18 (2/3) 277310.

7. Cunningham, W. (1992). The WyCash Portfolio Management System. Proc. OOPSLA
(Object-Oriented Programming, Systems, Languages & Applications), ACM. Retrieved
from http://c2.com/doc/oopsla92.html.

8. Williams, B. J. & Carver, J. C. (2010). Characterizing Software Architecture
Changes: A Systematic Review. Information and Software Technology 52, 31 51.

9.	 Ferguson, R., Phillips, M. & Sheard, S. (2014, January/February). Modeling Software Sustain-
ment. CrossTalk, 19-22.

10.	Brooks, F. P. (1995). The Mythical Man Month. Addison-Wesley, ISBN 0-201-83595-9.

Rob Ashmore is a principal software specialist at the U.K.
Defence Science and Technology Laboratory (Dstl), a trading
fund of the U.K. Ministry of Defence. He has over 20 years’
experience in defense software, covering all aspects of the
software life cycle. He holds both bachelor’s and master’s
degrees from the University of Cambridge and is a Chartered
Scientist (CSci) and a Fellow of the Institute of Mathematics
and its Applications (FIMA).

Mike Standish is a senior engineer in systems at the U.K.
Defence Science and Technology Laboratory (Dstl). He has
gained experience of all aspects of software and systems
life cycles through over 10 years within the defence sector.
He holds a Bachelor of Science in software engineering and
a Master of Science in Strategic Information Systems. He is
currently undertaking an Engineering Doctorate in Systems.
He is a Chartered Engineer (CEng) gained via the British
Computer Society (BCS).

ABOUT THE AUTHORSREFERENCES

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

https://acc.dau.mil/pbl
http://c2.com/doc/oopsla92.html
http://www.facebook.com/309SoftwareMaintenanceGroup
mailto:309SMXG.Recruiting@us.af.mil

