
4     CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

Introduction 
Much of the software literature deals with “best practices.” 

This article concentrates on “worst practices,” or the factors that 
most often lead to software failure and litigation.

For the purposes of this article, software “failures” are defined 
as software projects that have any of these attributes:

1. Termination of the project due to cost or schedule overruns.
2. Sche dule or cost overruns in excess of 50 percent of

initial estimates.
3. Applications that, upon deployment, fail to operate safely.
4. Law suits brought by clients for contractual noncompliance.

Although there are many factors associated with schedule 
delays and project cancellations, the failures that end up in court 
always seem to have six major deficiencies:

1. Accurate estimates were either not prepared or were rejected.
2. Accurate estimates were not supported by objective

benchmarks.
3. Change control was not handled effectively.
4. Quality control was inadequate.
5. Progress tracking did not reveal the true status of the project.
6. The contracts omitted key topics, such as quality and

out-of-scope changes

Readers are urged to discuss outsource agreements with 
their attorneys. This paper is based on observations of actual 
cases, but the author is not an attorney, and the paper is not 
legal advice. It is advice about how software projects might be 
improved to lower the probability of litigation occurring.

To begin the discussion of defenses against software litigation, 
let us consider the normal outcomes of 15 types of U.S. software 
projects. Table 1 shows the percentage of projects that are likely 
to be on time, late, or canceled without being completed at all due 
to excessive cost, schedule overruns or poor quality:

Minimizing the 
Risk of Litigation
Problems Noted in Breach 
of Contract Litigation
Capers Jones, Vice President and CTO, Namcook Analytics LLC

Abstract. While working as an expert witness in a number of lawsuits where 
large software projects were canceled or did not operate correctly when de-
ployed, the author has observed six major problems that occur repeatedly: 1 — 
Accurate estimates are not produced or are overruled. 2 — Accurate estimates 
are not supported by defensible benchmarks. 3 — Requirements changes are not 
handled effectively. 4 — Quality control is deficient. 5 — Progress tracking fails to 
alert higher management to the seriousness of issues. 6 — Contracts omit impor-
tant topics such as change control and quality, or include hazardous terms.  

As can be seen, schedule delays and canceled projects are 
distressingly common among all forms of software this year. 
This explains why software is viewed by most CEOs as the least 
competent and least professional form of engineering in the 
current business world.  

Note that the data in Table 1 is from benchmark and assess-
ment studies carried out by the author and his colleagues be-
tween 1984 and 2016. Unfortunately, recent data since 2010 is 
not much better than older data before 1990. This is due to sev-
eral factors, including the following: 1) very poor measurement 
practices and distressingly bad metrics, which prevent improve-
ments from being widely known, and 2) software that continues 
to use custom designs and manual coding, both of which are 
intrinsically expensive and error prone. Until the software indus-
try adopts modern manufacturing concepts that utilize standard 
reusable components instead of custom-built artifacts, software 
can never be truly cost effective.

Let us consider each of these six topics in turn.    

Problem 1: Estimating Errors and Estimate Rejection
Although cost estimating is difficult, there are a number of 

commercial software parametric cost estimating tools that do a 
capable job. COCOMO III, CostXpert, ExcelerPlan, Knowledge-
Plan, True Price, SEER, SLIM and the author’s Software Risk 
Master™ (SRM) are examples available in the United States.  

Despite the proven accuracy of parametric estimation tools and 
their widespread availability, as of 2016, less than 20 percent of the 
author’s clients used any formal estimating methods at all when we 
first carried out software process evaluation studies.  It is alarming 
that 80 percent of U.S. software companies and projects in 2016 
still lag in formal sizing and the use of parametric estimation tools.

Table 1:  Outcomes of U.S. software projects circa 2016

Column1Application Types On-time Late Canceled

1 Scientific 68% 20% 12%

2 Smart	phones 67% 19% 14%

3 Open source 63% 36% 7%

4 U.S. outsource 60% 30% 10%

5 Cloud 59% 29% 12%

6 Web applications 55% 30% 15%

7 Games and entertainment 54% 36% 10%

8 Offshore outsource 48% 37% 15%

9 Embedded software 47% 33% 20%

10 Systems and middleware 45% 45% 10%

11 Information technology (IT) 45% 40% 15%

12 Commercial 44% 41% 15%

13 Military and defense 40% 45% 15%

14 Legacy	renovation 30% 55% 15%

15 Civilian government 27% 63% 10%

Total Applications 50.13% 37.27% 13%



CrossTalk—September/October 2016 5

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

However, even if accurate estimates can be produced using 
commercial parametric estimating tools, clients or executives 
may not accept them. In fact, about half of the cases the author 
observed during litigation did not produce accurate estimates at 
all and did not use parametric estimating tools. Manual esti-
mates tend toward optimism, or predicting shorter schedules 
and lower costs than actually occur.  

Problem 2: Missing Defensible Objective Benchmarks
Somewhat surprisingly, the other half of the cases in litiga-

tion had accurate parametric estimates that had been rejected 
and replaced by arbitrary forced “estimates” based on business 
needs rather than team abilities. These pseudo-estimates were 
not produced using parametric estimation tools but were arbi-
trary schedule demands by clients or top executives based on 
perceived business needs.

The main reason that the original accurate parametric 
estimates were rejected and replaced was the absence of 
supporting historical benchmark data. Without accurate history, 
even accurate estimates may not be convincing. A lack of solid 
historical data makes project managers, executives and clients 
blind to the realities of software development.  

Some foreign governments have improved contract accuracy by 
mandating function point metrics: the governments of Brazil, Japan, 
Malaysia, Mexico and Italy require function point size and cost infor-
mation for all government software contracts. Eventually all govern-
ments will probably require function point metrics for contracts, but 
no doubt U.S. state governments and the U.S. federal government 
will be among the last to do this since they lag in so many other 
software disciplines. (The author has been an expert witness in 
more lawsuits involving state governments than any other industry. 
Government software problems are often national news, e.g., the 
delay of President Barack Obama’s Affordable Care Act.)

Problem 3: Rapidly Changing Requirements
The average rate at which software requirements change has 

been measured to range from about 0.5 percent per calendar 
month to as high as 4 percent per calendar month. Thus, for a 
project with a 12-month schedule, more than 10 percent of the 
features in the final delivery will not have been defined during the 
requirements phase. For a 36-month project, almost a third of the 
features and functions may have come in as afterthoughts.

The current state of the art for dealing with changing require-
ments includes the following:
• Estimating the number and rate of development changes

before starting.
• Using function point metrics to quantify changes.
• Using a joint client/development change control board or

designated domain experts.
• Using model-based requirements methodologies.
• Calculating the FOG and Flesch readability indices of requirements.
• Involving full-time user representatives for Agile projects.
• Using joint application design (JAD) to minimize down-

stream changes.
• Using quality function deployment (QFD) for quality requirements.
• Training in requirements engineering for business analysts

and designers.

• Using formal requirements inspections to minimize down-
stream changes.

• Using formal prototypes to minimize downstream changes.
• Planning usage of iterative development to accommodate

changes.
• Formally reviewing all change requests.
• Revising cost and schedule estimates for all changes greater

than 10 function points.
• Prioritizing change requests in terms of business impact.
• Formally assigning change requests to specific releases.
• Using automated change control tools with cross-reference

capabilities.
In projects where litigation occurred, requirements changes

were numerous but their effects were not properly planned for 
in cost, schedule and quality estimates. As a result, unplanned 
slippages and overruns occurred.

Requirements changes will always occur for large systems. 
It is not possible to freeze the requirements of any real-world 
application, and it is naive to think this can occur. Therefore, 
leading companies are ready and able to deal with changes and 
do not let them become impediments to progress. For projects 
developed under contract, the contract itself must include unam-
biguous language for dealing with changes.

Problem 4: Poor Quality Control
It is dismaying to observe the fact that two of the most effective 

technologies in all of software are almost never used on projects 
that turn out to be disasters and end up in court. First, formal 
design and code inspections have a 50-year history of successful 
deployment on large and complex software systems. All “best in 
class” software producers utilize software inspections.  

Second, the technology of static analysis has been available 
since 1984 and has proven to be effective in finding code bugs 
rapidly and early (although static analysis does not find require-
ments, architecture and design problems). 

Effective software quality control is the most important 
single factor that separates successful projects from delays 
and disasters. This is because finding and fixing bugs is the 
most expensive cost element for large systems and takes 
more time than any other activity.  

Both “defect potentials” and “defect removal efficiency” 
should be measured for every project. The “defect potentials” 
are the sum of all classes of defects; i.e., defects found in 
requirements, design, source code, and user documents and 
“bad fixes” or secondary defects. It would be desirable to include 
defects in test cases too, since there may be more defects in 
test libraries than in the applications being tested.

The phrase “defect removal efficiency” (DRE) refers to the 
percentage of defects found before delivery of the software to 
its actual clients or users. If the development team finds 900 
defects before delivery and the users find 100 defects in a 
standard time period after release (normally 90 days), then the 
defect removal efficiency is 90 percent.  

The author strongly recommends that defect removal efficiency 
levels (DRE) be included in all software outsource and develop-
ment contracts, with 96 percent being a proposed minimum 



6     CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

acceptable level of defect removal efficiency. For medical devices 
and weapons systems, a higher rate of about 99 percent defect 
removal efficiency should be written into the contracts.

(The U.S. average in 2016 is only about 92 percent. Agile 
projects average about 92 percent; waterfall are often below 85 
percent. TSP and RUP are among the quality strong methods 
that usually top 96 percent in defect removal efficiency.)

A rate of 96 percent is a significant improvement over current 
norms. For some mission-critical applications, a higher level such 
as 99.8 percent might be required. It is technically challenging 
to achieve such high levels of defect removal efficiency, and it 
can’t be done by testing alone.  

In order to top 98 percent in defect removal efficiency, formal 
inspections and pre-test static analysis plus at least eight forms 
of testing are needed (1 — unit test; 2 — function test; 3 — 
regression test; 4 — component test; 5 — performance test; 6 — 
usability test; 7 — system test; 8 — acceptance or beta test).

Table 2 shows combinations of quality control factors that can 
lead to high, average or poor defect removal efficiency (DRE).

Successful projects in the 10,000 function point range ac-
cumulate development totals of around 4.0 defects per function 
point and remove about 98 percent of them before delivery to 
customers. In other words, the number of delivered defects is 
about 0.2 defects per function point, or 800 total latent defects. 
Of these, about 10 percent — or 80 — would be fairly serious 
defects. The rest would be minor or cosmetic defects. Stabiliza-
tion, or the number of calendar months required to achieve safe 
operation of the application, would be about 2.5 months.

By contrast, the unsuccessful projects of 10,000 function 
points that end up in court accumulate development totals of 
around 6.0 defects per function point and remove only about 
85 percent of them before delivery. The number of delivered 
defects is about 0.9 defects per function point, or 9,000 total la-

tent defects. Of these, about 15 percent — or 1,350 — would be 
fairly serious defects. This large number of latent defects after 
delivery is very troubling for users. The large number of delivered 
defects is also a frequent cause of litigation. Stabilization, or the 
number of calendar months required to achieve safe operation 
of the application, might stretch out to 18 months or more.

Unsuccessful projects typically omit design and code inspec-
tions and static analysis and depend solely on testing. The 
omission of upfront inspections and static analysis causes four 
serious problems: 1) The large number of defects still present 
when testing begins slows the project to a standstill; 2) The 
“bad fix” injection rate for projects without inspections is alarm-
ingly high; 3) The overall defect removal efficiency associated 
with testing only is not sufficient to achieve defect removal rates 
higher than about 85 percent; and 4) Applications that bypass 
both inspections and static analysis have a strong tendency to 
include error-prone modules.

Problem 5: Poor Software Milestone Tracking
Once a software project is underway, there are no fixed and 

reliable guidelines for judging its rate of progress. The civilian 
software industry has long utilized ad hoc milestones, such as 
completion of design or completion of coding. However, these 
milestones are notoriously unreliable.

Tracking software projects requires dealing with two separate 
issues: 1) Achieving specific and tangible milestones; and 2) Ex-
pending resources and funds within specific budgeted amounts.

Because software milestones and costs are affected by 
requirements changes and “scope creep,” it is important to 
measure the increase in size of requirements changes when 
they affect function point totals. However, there are also require-
ments changes that do not affect function point totals, which 
are termed “requirements churn.” Both creep and churn occur 
at random intervals. Churn is harder to measure than creep and 
is often measured via “backfiring,” or mathematical conversion 
between source code statements and function point metrics.

There are also “non-functional requirements,” often due to 
outside influences. These can change abruptly and many are 
not under control of software groups. For example, a change in 
federal or state laws may require changes to hundreds of ap-
plications, including some that are under development.  

As of 2016, there are automated tools available that can as-
sist project managers in recording the kinds of vital information 
needed for milestone reports. These tools can record schedules, 
resources, size changes, and issues or problems.

Examples of tracking tools include Automated Project Office 
(APO), Microsoft project management suite, OmniTracker, Capterra, 
and perhaps 50 others with various capabilities. However, in spite 
of the availability of these tools, less than 45 percent of the author’s 
clients in our initial process evaluation studies used any of them.

For an industry now more than 65 years of age, it is some-
what surprising that there is no general or universal set of 
project milestones for indicating tangible progress. From the 
author’s assessment and baseline studies, following are some 
representative milestones that have shown practical value.

Note that these milestones assume an explicit and formal review 
or inspection connected with the construction of every major soft-Table 2: Ranges of DRE for 1,000 function point applications

Column1Defect Removal Efficiency (DRE) > 99 % 95% < 87%

1 Formal requirement inspections Yes No No

2 Formal design inspections Yes No No

3 Formal code inspections Yes No No

4 Formal security inspections Yes No No

5 Static analysis Yes Yes No

6 Unit test Yes Yes Yes

7 Function test Yes Yes Yes

8 Regression test Yes Yes Yes

9 Integration test Yes Yes Yes

10 Usability test Yes Yes No 

11 Security test Yes Yes No

12 System test Yes Yes Yes

13 Acceptance test Yes Yes



CrossTalk—September/October 2016 7

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

ware deliverable. Formal reviews and inspections have the highest 
defect removal efficiency levels of any known kind of quality control 
activity and are characteristics of “best in class” organizations.

The most important aspect of Table 3 is that every milestone is 
based on completing a review, inspection or test. Just finishing up 
a document or writing code should not be considered a milestone 
unless the deliverables have been reviewed, inspected or tested.

In the litigation where the author worked as an expert witness, 
these criteria were not met. Milestones were very informal and 
consisted primarily of calendar dates without any validation of 
the materials themselves.

Also, the format and structure of the milestone reports were 
inadequate. At the top of every milestone report, problems and 
issues or “red flag” items should be highlighted and discussed 
first. These “red flag” topics are those that are likely to cause 
schedule delays, cost overruns or both.

During depositions and review of court documents, it was 
noted that software engineering personnel and many managers 
were aware of the problems that later triggered the delays, cost 
overruns, quality problems and litigation. At the lowest levels, 
these problems were often included in weekly status reports or 
discussed at team meetings. But in the higher-level milestone 
and tracking reports that reached clients and executives, the 
hazardous issues were either omitted or glossed over.

A suggested format for monthly progress tracking reports 
delivered to clients and higher management would include 
these sections:

Although the suggested format somewhat resembles the items 
calculated using the earned value method, this format deals ex-
plicitly with the impact of change requests and also uses function 
point metrics for expressing costs and quality data.

An interesting question is the frequency with which milestone 
progress should be reported. The most common reporting 
frequency is monthly, although exception reports can be filed at 
any time that it is suspected that something has occurred that 
can cause perturbations. For example, serious illness of key 
project personnel or resignation of key personnel might affect 
project milestone completions, and this kind of situation cannot 

Table 3: Representative tracking milestones for large software projects

1. Application sizing completed using both function points and code statements

2. Application risk predictions completed

3. Application size and risk predictions reviewed

4. Requirements document completed

5. Requirements document inspection completed

6. Initial cost estimate completed

7. Initial cost estimate review completed

8. Development plan completed

9. Development plan review completed

10. Cost tracking system initialized

11. Defect tracking system initialized

12. Prototype completed

13. Prototype review completed

14. Complexity analysis of base system (for enhancement projects)

15. Code restructuring of base system (for enhancement projects)

16. Functional specification completed

17. Functional specification review completed

18. Data specification completed

19. Data specification review completed

20. Logic specification completed

21. Logic specification review completed

22. Quality control plan completed

23. Quality control plan review completed

24. Change control plan completed

25. Change control plan review completed

26. Security plan completed

27. Security plan review completed

28. User information plan completed

29. User information plan review completed

30. Code for specific modules completed

31. Code inspection for specific modules completed

32. Code for specific modules unit tested

33. Test plan completed

34. Test plan review completed

35. Test cases for specific test stage completed

36. Test case inspection for specific test stage completed

37. Test stage completed

38. Test stage review completed

39. Integration for specific build completed

40. Integration review for specific build completed

41. User information completed

42. User information review completed

43. Quality assurance sign off completed

44. Delivery to beta test clients completed

45. Delivery to clients completed

1. Status of last month’s “red flag” problems

2. New “red flag” problems noted this month

3. Change requests processed this month versus change requests predicted

4. Change requests predicted for next month

5. Size in function points for this month’s change requests

6. Size in function points predicted for next month’s change requests

7. Schedule impacts of this month’s change requests

8. Cost impacts of this month’s change requests

9. Quality impacts of this month’s change requests

10.  Defects found this month versus defects predicted

11.  Defects predicted for next month

12.  Costs expended this month versus costs predicted

13.  Costs predicted for next month

14.  Deliverables completed this month versus deliverables predicted

15.  Deliverables predicted for next month

Table 4: Suggested format for monthly status reports for 
software projects



8     CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

be anticipated. The same is true of natural phenomena such as 
hurricanes or earthquakes, which can shut down businesses.

The simultaneous deployment of software sizing tools, esti-
mating tools, planning tools and methodology management tools 
can provide fairly unambiguous points in the development cycle 
that allow progress to be judged more or less effectively. For 
example, software sizing technology can now predict both the 
sizes of specifications and the volume of source code needed. 
Defect estimating tools can predict the number of bugs or errors 
that might be encountered and discovered. Although such mile-
stones are not perfect, they are better than former approaches.

Project management is responsible for establishing mile-
stones, monitoring their completion, and reporting truthfully 
whether the milestones were successfully completed or encoun-
tered problems. When serious problems are encountered, it is 
necessary to correct the problems before reporting that the 
milestones have been completed. 

Failing or delayed projects usually lack serious milestone 
tracking. Activities are often reported as finished while work is 
still ongoing. Milestones on failing projects are usually dates on a 
calendar rather than completion and review of actual deliverables.  

Delivering documents or code segments that are incomplete, 
contain errors and cannot support downstream development 
work is not the way milestones are used by industry leaders.

In more than a dozen legal cases involving projects that failed 
or were never able to operate successfully, project tracking was 
inadequate. Problems were either ignored or brushed aside 
rather than being addressed and solved.  

Because milestone tracking occurs throughout software 
development, it is the last line of defense against project failures 
and delays. Milestones should be established formally and 
should be based on reviews, inspections and tests of deliver-
ables. Milestones should not be the dates that deliverables were 
more or less finished. Milestones should reflect the dates that 
finished deliverables were validated by means of inspections, 
testing and quality assurance review. 

Problem 6: Flawed Outsource Agreements That 
Omit Key Topics

In several of the cases where the author has been an expert 
witness, the contracts themselves seemed flawed and omitted 
key topics that should have been included. Worse, some con-
tracts included topics that probably should have been omitted. 
Here are some examples:

• In one case the contract required that the software delivered
by the vendor should have “zero defects.” Since the application 
approached 10,000 function points in size, zero-defect software is 
beyond the current state of the art. The software as delivered did not 
have very many defects and, in fact, was much better than average. 
But it was not zero-defect software, and hence the vendor was sued.

• A fixed-price contract had clauses for “out of scope”
requirements changes. In this case, the client unilaterally added 
82 major changes totaling about 3,000 new function points. But 
the contract did not define the phrase “out of scope,” and the 
client asserted that the changes were merely elaborations to 
existing requirements and did not want to pay for them.

• In another fixed-price contract the vendor added about
5,000 function points of new features very late in development. 
Here the client was willing to pay for the added features. How-
ever, features added after design and during coding are more 
expensive to build than features during normal development. 
In this case the vendor was asking for additional payments to 
cover the approximate 15 percent increase in costs for the 
late features. Needless to say, there should be a sliding scale 
of costs that goes up for features added three, six, nine, 12 or 
more months after the initial requirements are defined and ap-
proved by the client. The fee structure might be something like 
an increase of 3 percent, 5 percent, 7 percent, 12 percent and 
15 percent based on calendar month intervals.

—In several contracts where the plaintiff alleged poor quality 
on the part of the vendor, the contracts did not have any clauses 
that specified acceptable quality, such as defect removal ef-
ficiency (DRE) or maximum numbers of bugs found during an 
acceptance test. In the absence of any contractual definitions of 
“poor quality,” such charges are difficult to prove.

The bottom line is that clients, vendors and their attorneys 
should be sure that all outsource contracts include clauses deal-
ing with requirements changes, quality, and delivered defects, and 
also penalties for schedule delays caused by vendor actions.  

Note that the author is not an attorney and this is not legal ad-
vice. But it is obvious that every software outsource contract should 
include clauses for quality and for requirements changes, especially 
late requirements changes. Attorneys should be involved in struc-
turing the proper clauses in software outsource agreements.

Summary and Observations Based on Breach of 
Contract Litigation

Successful software projects can result from nothing more 
than avoiding the more serious mistakes that lead to disaster. 
A set of basic steps can lower the odds of a failing project and 
litigation: 1) Use parametric estimation tools and avoid manual 
estimates; 2) Look at the actual benchmark results of similar 
projects; 3) Make planning and estimating formal activities; 4) 
Plan for and control creeping requirements; 5) Use formal in-
spections as milestones for tracking project progress; 6) Include 
pre-test static analysis and inspections in quality control; 7) 
Collect accurate measurement data during your current project 
to use with future projects; 8) Ensure with your attorneys that 
contracts have suitable clauses for requirements growth and 
quality levels of delivered materials. Omitting these two topics 
can lead to very expensive litigation later.

Overcoming the risks shown here is largely a matter of op-
posites, or doing the reverse of what the risk indicates. Thus, a 
well-formed software project will create accurate estimates de-
rived from empirical data and supported by automated tools for 
handling the critical path issues. Such estimates will be based 
on the actual capabilities of the development team and will not 
be arbitrary creations derived without any rigor. The plans will 
specifically address the critical issues of change requests and 
quality control. In addition, monthly progress reports will also 
deal with these critical issues. Accurate progress reports are the 
last line of defense against failures.



CrossTalk—September/October 2016 9

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

SUGGESTED READINGS
1.   Abrain, A. (2015.) Software Estimating Models. Wiley-IEEE Computer Society.
2.   Abrain, A. (2010.) Software Metrics and Metrology. Wiley-IEEE Computer Society.
3.   Abrain, A. (2008.) Software Maintenance Management: Evolution and Continuous 

Improvement. Wiley-IEEE Computer Society.
4.   Beck, K. (2002.) Test-Driven Development. Addison Wesley, Boston, Mass. ISBN 10: 

0321146530, 240 pages.
5.  Black, R. (2009.) Managing the Testing Process: Practical Tools and Techniques for 

Managing Hardware and Software Testing. Wiley. ISBN-10 0470404159, 672 pages.
6.   Boehm, B. (1981.) Software Engineering Economics. Prentice Hall, Englewood Cliffs, N.J., 900 pages.
7.   Brooks, F. (1974, rev. 1995.) The Mythical Man-Month. Addison-Wesley, Reading, Mass.
8.   Bundschuh, M. & Dekkers, C. (2005.) The IT Metrics Compendium. Springer.
9.   Charette, B. (1989.) Software Engineering Risk Analysis and Management. McGraw-

Hill, New York, N.Y.
10.  Charette, B. (1990.) Application Strategies for Risk Management. McGraw-Hill, New York, N.Y.
11.  DeMarco, T. (1982.) Controlling Software Projects. Yourdon Press, N.Y. ISBN 

0-917072-32-4, 284 pages.
12.  Ebert, C., Dumke, R. & Bundschuh M. (2004.) Best Practices in Software Measure-

ment. Springer.
13.  Everett, G. D. & McLeod, R. (2007.) Software Testing – Testing Across the Entire 

Software Development Life Cycle. IEEE Press.
14.  Ewusi-Mensah, K. (2004.) Software Development Failures. MIT Press, Cambridge, Mass. 

ISBN 0-26205072-2276.
15.  Fernandini, P. L. (2002.) A Requirements Pattern. Addison Wesley, Boston, Mass. 

ISBN 0-201-73826-0.
16.  Flowers, S. (1996.) Software Failures: Management Failures; Amazing Stories and 

Cautionary Tales. John  Wiley & Sons.
17.  Gack, G. (2010.) Managing the Black Hole: The Executive’s Guide to Software Proj-

ect Risk. Business Expert  Publishing, Thomson, Georgia. ISBN10: 1-935602-01-9.
18.  Galorath, D. & Evans, M. (2006.) Software Sizing, Estimation, and Risk Management: 

When Performance is Measured Performance Improves. Auerbach; Philadelphia, Penn. 
19.  Garmus, D. & Herron, D. (2001.) Function Point Analysis – Measurement Practices 

for Successful Software Projects. Addison Wesley Longman, Boston, Mass. ISBN 
0-201-69944-3, 363 pages.

20.  Garmus, D. & Herron, D. (1995.) Measuring the Software Process:  A Practical 
Guide to Functional Measurement. Prentice Hall, Englewood Cliffs, N.J.

21.  Garmus, D., Russac, J. & Edwards, R. (2010.) Certified Function Point Counters 
Examination Guide. CRC Press.

22.  Glass, R.L. (1998.) Software Runaways:  Lessons Learned from Massive Software 
Project Failures. Prentice Hall, Englewood Cliffs.

23.  Gibbs, T. W. (1994, September.) Trends in Computing: Software’s Chronic Crisis. 
Scientific American Magazine, 271(3), International edition, 72-81.

24.  Gilb, T. & Graham, D. (1993.) Software Inspection. Addison Wesley, Harlow, U.K. 
ISBN 10: 0-201-63181-4.

25.  Glass, R.L. (1998.) Software Runaways:  Lessons Learned from Massive Software 
Project Failures. Prentice Hall, Englewood Cliffs.

26.  Harris, M. D. S., Herron, D. & Iwanicki, S. (2008.) The Business Value of IT. CRC 
Press, Auerbach; Boca Raton, Fla. ISBN 978-14200-6474-2.

27.  Hill, P., Jones, C. & Reifer, D. (2013 September.) The Impact of Software Size on Produc-
tivity. International Software Standards Benchmark Group (ISBSG), Melbourne, Australia.

28.  International Function Point Users Group (IFPUG). (2002.) IT Measurement – 
Practical Advice from the Experts. Addison Wesley Longman, Boston, Mass. ISBN 
0-201-74158-X, 759 pages.

29.  Johnson, J. et al. (2000.) The Chaos Report. The Standish Group, West Yarmouth, Mass.
30.  Jones, C. (2015.) The Technical and Social History of Software Engineering. Ad-

dison Wesley (contains summaries of important software industry lawsuits such as 
anti-trust and patent violations).

31.  Jones, C. (2012.) Studio 38 in Rhode Island – A Study of Software Risks. Published 
in various Rhode Island newspapers such as “The Providence Journal,” “South County 
Independent,” “Narragansett Times,” etc.

32.  Jones, C. & Bonsignour, O. (2011.) The Economics of Software Quality. Addison 
Wesley, Boston, Mass. ISBN 10 0-13-258220-1, 587 pages.

33.  Jones, C. (2010.) Software Engineering Best Practices. McGraw Hill, New York, N.Y. ISBN 
978-0-07-162161-8, 660 pages.

34.  Jones, C. (2008.) Applied Software Measurement. McGraw Hill, 3rd edition.  
ISBN 978-0-07-150244-3, 662 pages.

35.  Jones, C. (1994.) Assessment and Control of Software Risks. Prentice Hall. ISBN 
0-13-741406-4, 711 pages.

36. Jones, C. (1995, December.) Patterns of Software System Failure and Success.  International 
Thomson Computer Press, Boston, Mass. 250 pages. ISBN 1-850-32804-8, 292 pages.

37. Jones, C. (1997.) Software Quality – Analysis and Guidelines for Success. Interna-
tional Thomson Computer Press, Boston, Mass. ISBN 1-85032-876-6, 492 pages.

38. Jones, C. (2007.) Estimating Software Costs. McGraw Hill, New York, N.Y. ISBN 
13-978-0-07-148300-1.

39. Jones, C. (2000.) Software Assessments, Benchmarks, and Best Practices. Addison 
Wesley Longman, Boston, Mass. ISBN 0-201-48542-7, 657 pages.

40. Jones, C. (1998, December.) Sizing Up Software. Scientific American Magazine, Vol. 
279, No. 6, 104–111.

41. Jones, C. (2007.) Conflict and Litigation Between Software Clients and Developers; 
Software Productivity Research technical report. Narragansett, R.I., 65 pages.

42. Kan, S. H. (2003.) Metrics and Models in Software Quality Engineering, 2nd edition.  
Addison Wesley Longman, Boston, Mass. ISBN 0-201-72915-6, 528 pages.

43. Pressman, R. (2005.) Software Engineering – A Practitioner’s Approach. McGraw 
Hill, N.Y. 6th edition. ISBN 0-07-285318-2.

44. Radice, R. A. (2002.) High Quality Low Cost Software Inspections. Paradoxicon 
Publishing, Andover, Mass. ISBN 0-9645913-1-6, 479 pages.

45. Robertson, S. & Robertson, J. (2005.) Requirements-Led Project Management. 
Addison Wesley, Boston, Mass. ISBN 0-321-18062-3.

46. Wiegers, K. E. (2002.) Peer Reviews in Software – A Practical Guide. Addison 
Wesley Longman, Boston, Mass. ISBN 0-201-73485-0, 232 pages.

47. Yourdon, E. (1997.) Death March - The Complete Software Developer’s Guide to 
Surviving “Mission Impossible” Projects. Prentice Hall PTR, Upper Saddle River, N.J. 
ISBN 0-13-748310-4, 218 pages.

48. Yourdon, E. (2005.) Outsource: Competing in the Global Productivity Race. Prentice 
Hall PTR, Upper Saddle River, N.J. ISBN 0-13-147571-1, 251 pages.

Websites
Information Technology Metrics and Productivity Institute (ITMPI): www.ITMPI.org
International Software Benchmarking Standards Group (ISBSG): www.ISBSG.org
International Function Point Users Group (IFPUG): www.IFPUG.org
Namcook Analytics LLC: www.Namcook.com
Namcook Analytics Blog:  http://NamcookAnalytics.com
Reifer Consulting: www.Reifer.com
Software Engineering Institute (SEI): www.SEI.cmu.edu
Software Productivity Research (SPR): www.SPR.com

http://www.ITMPI.org
http://www.ISBSG.org
http://www.IFPUG.org
http://www.Namcook.com
http://NamcookAnalytics.com
http://www.Reifer.com
http://www.SEI.cmu.edu
http://www.SPR.com


10     CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

http://www.IASAhome.org	
This is the website for the nonprofit International Association of Software Archi-
tects (IASA). Software architecture is the backbone of all large applications. Good 
architecture can lead to applications with useful life expectancies of 20 years or more. 
Questionable architecture can lead to applications with useful life expectancies of fewer 
than 10 years, coupled with increasing complex maintenance tasks and high defect 
levels. The IASA is working hard to improve both the concepts of architecture and the 
training of software architects via a modern and extensive curriculum.

http://www.IIBA.org	
This is the website for the nonprofit International Institute of Business Analysis. This institute 
deals with the important link between business knowledge and software that supports busi-
ness operations. Among the topics of concern are the Business Analysis Body of Knowledge 
(BABOK), training of business analysts, and certification to achieve professional skills.  

http://www.IFPUG.org	
This is the website for the nonprofit International Function Point Users Group. IFPUG is 
the largest software metrics association in the world and the oldest association of func-
tion point users. This website contains information about IFPUG function points them-
selves and also includes citations to the literature dealing with function points. IFPUG 
also offers training in function point analysis and administers. IFPUG also administers a 
certification program for analysts who wish to become function point counters.

http://www.ITMPI.org	
This is the website for the Information Technology Metrics and Productivity Institute. 
ITMPI is a wholly owned subsidiary of Computer Aid Inc. The ITMPI website is a useful 
portal into a broad range of measurement, management and software engineering 
information. The ITMPI website also provides useful links to many other websites that 
contain topics of interest on software issues.

SUGGESTED WEBSITES
http://www.ISBSG.org	
This is the website for the nonprofit International Software Benchmark Standards 
Group. ISBSG, located in Australia, collects benchmark data on software projects 
throughout the world. The data is self-reported by companies using a standard 
questionnaire. About 4,000 projects comprise the ISBSG collection as of 2007, and the 
collection has been growing at a rate of about 500 projects per year. Most of the data 
is expressed in terms of IFPUG function point metrics, but some of the data is also 
expressed in terms of COSMIC function points, NESMA function points, Mark II function 
points, and several other function point variants. Fortunately, the data in variant metrics 
is identified. It would be statistically invalid to include attempts to average IFPUG and 
COSMIC data, or to mix up any of the function point variations.

http://www.iso.org	
This is the website for the International Organization for Standardization (ISO). The 
ISO is a nonprofit organization that sponsors and publishes a variety of international 
standards. As of 2007 the ISO published about a thousand standards per year, and the 
total published to date is approximately 17,000. Many of the published standards affect 
software. These include the ISO 9000-9004 quality standards and the ISO standards for 
functional size measurement. 

http://www.namcook.com
This website contains a variety of quantitative reports on software quality and risk fac-
tors. It also contains a patented high-speed sizing tool that can size applications of any 
size in 90 seconds or fewer. It also contains a catalog of software benchmark providers 
that currently lists 20 organizations that provide quantitative data about software 
schedules, costs, quality and risks.

http://www.PMI.org
This is the website for the Project Management Institute (PMI). PMI is the largest 
association of managers in the world. PMI performs research and collects data on 
topics of interest to managers in every discipline: software, engineering, construc-
tion, and so forth. This data is assembled into the well-known Project Management 
Body of Knowledge, or PMBOK.

http://www.sei.cmu.edu	
This is the website for the Software Engineering Institute (SEI). The SEI is a federally 
sponsored nonprofit organization located on the campus of Carnegie Mellon University 
in Pittsburgh, Penn. The SEI carries out a number of research programs dealing with 
software maturity and capability levels, with quality, risks, measurement and metrics, 
and other topics of interest to the software community.

http://www.stsc.hill.af.mil/CrossTalk	
This is the website of both the Air Force Software Technology Support Center 
(STSC) and also the CrossTalk journal, which is published by the STSC. The STSC 
gathers data and performs research into a wide variety of software engineering 
and software management issues. The CrossTalk journal is one of few techni-
cal journals that publish full-length technical articles of 4,000 words or more. 
Although the Air Force is the sponsor of STSC and CrossTalk, many topics are 
also relevant to the civilian community. Issues such as quality control, estimating, 
maintenance, measurement and metrics have universal relevance.

ABOUT THE AUTHOR
Capers Jones is currently the Presi-

dent and CEO of Capers Jones & Asso-
ciates LLC.  He is also the founder and 
former chairman of Software Productiv-
ity Research LLC (SPR).  He holds the 
title of Chief Scientist Emeritus at SPR. 
Capers Jones founded SPR in 1984.

Before founding SPR, Capers was 
Assistant Director of Programming 
Technology for the ITT Corporation at 
the Programming Technology Center in 
Stratford, Conn. He was also a manager 
and researcher at IBM in California.

Capers is a well-known author and 
international public speaker. Some of his 
books have been translated into six lan-
guages. All of his books are translated 
into Japanese and his newest books are 
available in Chinese editions as well.  
www.Namcook.com
http://namcookanalytics.com
Capers.Jones3@gmail.com

http://www.IASAhome.org
http://www.IIBA.org
http://www.IFPUG.org
http://www.ITMPI.org
http://www.ISBSG.org
http://www.iso.org
http://www.namcook.com
http://www.PMI.org
http://www.sei.cmu.edu
http://www.stsc.hill.af.mil/CrossTalk
http://www.Namcook.com
http://namcookanalytics.com
mailto:Capers.Jones3@gmail.com



