
SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

CrossTalk—July/August 2016 29

1. Introduction
The software development life cycle contains many phases,

including requirements engineering, design, coding, testing and
debugging, and maintenance. Maintenance is regarded as the
last stage of development [1]. But what if this phase continues
for years? This is where the issue of serviceability comes in.
Serviceability of software can be defined as the condition in which
software is still useful or maintainable. Serviceability of software
should be durable to achieve maintainability. Durability, in terms of
software, is the time period during which software gives services.

There has been lot of work done in the field of software
maintenance with regard to durability. In his article “When good
software goes bad: the surprising durability of an ephemeral
technology,” Nathan Ensenger discusses problems in mainte-
nance [2]. He also stated that there is a need to focus more on
problems related to maintenance achievement. He stated that
software durability is related to software serviceability, and it has
been pointed out that achieving durability may enhance software
serviceability. Service-oriented durable design of software is the
aim of this study. The remainder of the paper is organized as
follows: in section two, basic concepts of durability are defined.
In section three, emergence of software durability is defined. In
section four, successful strategies for developers are given. The
paper’s conclusions are contained in section five.

2. Basic Concepts of Durability
The evolving flexible environment of the early 21st century

creates new challenges for all, including software developers [3].
Many programmers collaborate on each software project, with
each programmer working on an individual software function or
architectural component [4]. These components are often devel-
oped separately within a fixed time frame. When the time comes
to bring it all together, a project manager integrates the different
components as a required unit to achieve the desired result. This
process makes software development a complex activity.

The complexity of software development leads to many prob-
lems, with design vulnerabilities being one of the most signifi-
cant [6]. Some of the fundamental principles of design and its
related systematic tools include availability, reliability, security
and usability. Service of a software product is durable if it works
efficiently and effectively to the user’s satisfaction and for the
expected duration. Many factors of software quality affect the
serviceability of software, among them these few: trustworthi-
ness, human trust, dependability, and usability. These factors
affect durability directly, while factors like auditability, scalability,
robustness, traceability, detectability, accessibility, efficiency, ex-
tensibility, physiological acceptability, user satisfaction, business
continuity, learnability, effectiveness, flexibility, and operational
controls affect durability indirectly [7] [8].

The meanings of these factors are different in a software
scenario. Specifically, trustworthiness is assurance that software
will perform as expected; human trust is a willingness to rely on the
software with confidence; dependability refers to the ability to deliv-
er service that can justifiably be trusted; and usability refers to how
well software can be used by particular users to reach quantified
results with effectiveness and satisfaction. The factors that affect
durability directly and indirectly have positive and negative impacts
on software service design as shown in Figure 1. A problem often

Durability
Challenges in
Software
Engineering
Rajeev Kumar
Suhel Ahmad Khan
Raees Ahmad Khan
Abstract: Practices show that software quality is not as high as it could be. De-
velopment organizations spend a relatively large amount of money and effort on
fixing quality issues during late-stage development of software. One of the soft-
ware qualities that has received significant attention in recent years is durable
serviceability. Software with poor durability is likely to fail in a highly competitive
market; therefore, software development organizations are paying more atten-
tion to ensuring the durability of their software. To be able to develop durable
software cost-effectively, developers must investigate the connection between
durability characteristics and software. In software engineering, durability is deter-
mined mainly by four characteristics; trustworthiness, human trust, dependability,
and usability. To address the relationships among these characteristics, software
designers analyze the durability requirements that may need to be implemented
to fulfill these specific requirements of software serviceability. The main objective
of this article is to gain an in-depth understanding of the relationship between
durability characteristics and software.

Figure 1: A structure of software durability factors [5]

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

30 CrossTalk—July/August 2016

comes while assuring durability by modifying the architecture of
software. Modification is very expensive and time-consuming.

3. Emergence of Software Durability
Usually software is delivered without considerable security.

This invites vulnerabilities. To mitigate these vulnerabilities,
patching is done, which further results in more vulnerabilities
in the future. It is normally expected that the design will remain
serviceable for the entire life of the software and that services
and qualities may come and go [9][10]. This leaves software
designers and users to consider the relationship of the durabil-
ity to the rest of the software architecture. Software durability is
a term used to describe the usefulness and service life of a soft-
ware product, which involves designing and construction with
optimal maintenance [11] [12].

The term may also be used to describe the whole software
development life cycle by comparing the service life of the
design and its functional undesirability. A review of international
research indicates that, except for operational components
of software, all elements require different levels of service
maintenance, repair, and replacement during the life cycle of
the software development [13] [14]. The extent and strength of
these services demands vary considerably, depending on how
appropriately the durability of software and systems are syn-
chronized and how accessible they are for regular maintenance,
repair and replacement.

The durability of software may be expressed as a function
of service quality and service life during the development cycle.
There are three important service quality thresholds associated
with durability: first, the quantified quality, recognized by the soft-
ware developer or defined by minimum codes; second, the mini-
mum acceptable quality, indicating the need for replacement;
and third, failure. As shown in Figure 2, risk should be minimized
to achieve durability of software. Two types of risk — active
and passive — affect software during the development stage.
Durability of software increases if risks are properly managed by
means of detection, prevention and recovery.

4. Successful Strategies for Software Developers
Quality is a significant feature of software to be addressed,

and durability is an important factor in evaluating software
quality. Development of software design is not a one-time,
built-in process; it is based on reuse of existing specifications in
the market. The key point of this research work is the analy-
sis of software’s service-life relating to quality. This research
is focused on increasing service life with secure and durable
serviceability of software. Following are the steps which form a
process that is effective in achieving durability when performed
iteratively, incrementally and in parallel with the other activities,
tasks and primary objectives:

—Establish durability as a powerful factor in software quality.
—Identify threat models of durability for degradation mechanisms.
—Develop a durability program plan that includes trustworthi-

ness, human trust, usability and dependability.
—Identify and investigate their potential sources.
—Estimate the risks associated with durability for these

respected assets.
—Arrange the risks according to the severity of the

negative impacts.
—Identify and investigate the durable necessities of service-

ability an arrangement as a benchmark for quality.
—Identify new attributes to provide a secure service-life of

software for a specific duration.
—Identify durability subfactors, and determine their impact on

overall software.
—Analyze software risks relating to durability.
—Make an objective to lessen the complexity of software de-

sign by establishing durability, which optimizes maintainability.
—Enhance the quality of software by improving service-

oriented design.
—Calculate durability parameters using available or developed

calculation models.
—If possible, update the ordinary architectural design

tools for durability.

Figure 2: General activities for durability of software

CrossTalk—September/October 2016 31

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

5. Conclusion
It is evident that generating a fully secure system is not pos-

sible; therefore, the creation of perfect and secure software
cannot be considered the objective of evaluating software dura-
bility. Thus, the objective is to decrease the maintenance issue
for longtime serviceable software. It could be concluded from
the above discussion that the achievement of durable software
is going to be a new challenge in the software industry. It is also
as important as achieving any other attributes of quality, i.e., de-
pendability, usability and supportability. One significant result has
also been observed — that achieving durability early in develop-
ment will raise the level of quality in the software. In this article,
a general structure for assuring durable software is designed,
and its processes are defined briefly.

Acknowledgment
This work is sponsored by UGC-MRP, New Delhi, India, under

F. No. 43-391/2014 (SR).

1. Kelty, C. & Erickson, S. (2015). The Durability of Software. Germany: Meson Press, 1-13.
2. Ensmenger, N. (2014). When Good Software Goes Bad: The Surprising Durability

of an Ephemeral Technology. MICE (Mistakes, Ignorance, Contingency, and Error)
Conference. Munich, 1-16.

3. Firesmith, D. G. (2003). Common Concepts Underlying Safety. Security and Surviv-
ability Engineering, Technical Note CMU/SEI- 2003-TN033. Software Engineering
Institute. Pittsburgh, Pennsylvania. 1-75.

4. Becker, S., Boskovic, M. & Dhama A. (2006, September). Trustworthy Software Systems: A
Discussion of Basic Concepts and Terminology. Graduate School Trustsoft, Carl-von-Ossietzky
University of Oldenburg, Germany.

5. Continuous Integration Strategies. Retrieved from http://developerblog.redhat.
com/2013/11/08/ci-strategies-1of3/. Last visit 2016, March 3.

6. Becker, S., Boskovic, M. & Dhama A. (2006, September). Trustworthy Software Systems: A
Discussion of Basic Concepts and Terminology. Graduate School Trustsoft, Carl-von-Ossietzky
University of Oldenburg, Germany.

7. R. A. Khan, “From Threat to Security Indexing: A Causal Chain”, Computer Fraud & Security,
pp. 9-12, Vol 2009, Issue 5, May 2009.

8. Sahu K., Rajshree, “Software Security: A Risk Taxonomy”, International Journal of Computer
Science & Engineering Technology, pp- 36-41, 2015.

9. Continuous Integration Strategies. Retrieved from http://developerblog.redhat.
com/2013/11/08/ci-strategies-1of3/. Last visit 2016, March 3.

10. Software for Dependable Systems: Sufficient Evidence. Retrieved from http://www.nap.edu/
read/11923/chapter/4. Last visit 2016, March 2.

11. Kumar, R., Khan, S. A. & Khan, R. A. (2015). Revisiting Software Security: Durability Perspec-
tive, International Journal of Hybrid Information Technology (SERSC). 8(2), 311-22.

12. Kluwer, W. (2015, May 21). Starting your Software Security Assurance Program.
ITARC. Stockholm, Sweden.

13. Kumar, R., Khan, S. A. & Khan, R. A. (2015, October). Durable Security in Software Develop-
ment: Needs and Importance. CSI Communications, 34-36.

14. Rogers R. L. (2004). Principles of Survivability and Information Assurance. Carnegie Mellon
University. Pittsburgh, Pennsylvania.

ABOUT THE AUTHORS
Mr. Rajeev Kumar is pursuing a Ph.D. in informa-
tion technology from Babasaheb Bhimrao Ambedkar
University (A Central University), Vidya Vihar, Raibareli
Road, Lucknow. He has completed his master’s
degree in information technology from the same
university. Kumar is a member of many national
and international bodies, including ACM-CSTA, IBM-
TechTarget, IAENG and BVICAM. His research inter-
ests are in the areas of software security, software
durability and software risk. He is currently working in
the area of software security durability.
Babasaheb Bhimrao Ambedkar Central University
Department of Information Technology
Lucknow-226025, UP, India
rs0414@gmail.com

Dr. Suhel Ahmad Khan has earned his doctoral
degrees from Babasaheb Bhimrao Ambedkar Uni-
versity, (A Central University), Vidya Vihar, Raibareli
Road, Lucknow. He is currently working as an
assistant professor in the Department of Computer
Application, Integral University, Lucknow, UP, India.

Dr. S. A. Khan is a young, energetic researcher
and has completed a full-time major project funded
by University Grants Commission, New Delhi,
India. He has more than five years of teaching and
research experience. He is currently working in the
area of software security and security testing. He
has also published and presented papers in refereed
journals and conferences. He is a member of IACIT,
UACEE and Internet Society.

Integral University
Department of Computer Application
Lucknow-226026, UP, India
ahmadsuhel28@gmail.com

Professor Raees Ahmad Khan has earned his
doctoral degrees from Jamia Millia Islamia, New
Delhi, India. He is currently working as a professor
and Head in the Department of Information Technol-
ogy, Babasaheb Bhimrao Ambedkar University,
(A Central University), Vidya Vihar, Raibareli Road,
Lucknow, India. Professor R. A. Khan has more than
13 years of teaching and research experience. His
areas of interest are software security, software
quality and software testing. He has published a
number of national and international books, research
papers, reviews and chapters on software security,
software quality and software testing.

Babasaheb Bhimrao Ambedkar Central University
Department of Information Technology
Lucknow-226025, UP, India
khanraees@yahoo.com

REFERENCES

http://developerblog.redhat.com/2013/11/08ci-strategies-1of3/
http://developerblog.redhat
http://www.nap.edu/read/11923/chapter/4
mailto:rs0414@gmail.com
mailto:ahmadsuhel28@gmail.com
mailto:khanraees@yahoo.com
http://developerblog.redhat.com/2013/11/08/ci-strategies-1of3/

