

2 CrossTalk—January/February 2017

TABLE OF CONTENTS CrossTalk

Ada: A Failure That Never Happened
Ada’s death and failure never occurred. It was — and is — one of the
better successes the DoD has produced.
By David Cook and Eugene Bingue

A Comparison of Medical Diagnoses and
Software Problem Diagnoses
Medical diagnoses are based on a number of quantitative measures and
known values. Diagnosing software problems should also use quantita-
tive data. However, software engineering has close to zero knowledge
about the ranges and boundaries of quantitative results that differentiate
healthy projects from unhealthy projects.
By Capers Jones

Ada - 20 Years After the Mandate
If the interoperability and, particularly, the cybersecurity challenges of the
21st century had been foreseen in the mid-‘90s, perhaps DoD policymak-
ers would have looked at Ada in a different light. Ada changed the conver-
sation about defense software engineering and promoted correctness, reli-
ability, security, interoperability and architecture, among other contributions.
by Drew Hamilton and Patrick Pape

A Retrospective View of the Laws of Software Engineering
Software development is now more than 60 years of age. A number of
interesting laws and observations have been created by software engineer-
ing researchers and by some academics. This short paper summarizes these
laws and makes observations about the data and facts that underlie them.
by Capers Jones

Open Forum: Why Agile Projects Sometimes Fail
If you want to succeed with an Agile approach, you need more than
magic rituals. Not only that, you need to avoid several rather common
mistakes that lead to failure.
by Gerald Weinberg

Scrum is Simple
A brief historical background and includes the basic concepts of Scrum.
By Dick Carlson

Generating Actionable Information for Classifier Assessment
What constitutes actionable information regarding a classifier’s effect on
mission capability, maps some commonly seen measures to these needs,
and recommends a means of maximizing the actionable information gener-
ated in classifier evaluations.
By Earl Eiland and Lorie Leibrock

8
4

14

17

24

Software’s Greatest
Hits and Misses

Departments

Cover Design by
Kent Bingham

	 3	 From the Sponsor

	 36	 Upcoming Events

	38	 BackTalk

NAVAIR Jeff Schwalb
309 SMXG Kelly Capener
76 SMXG Mike Jennings

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Mary Harper
Copy Editor Breanna Olaveson
Senior Art Director Kevin Kiernan
Art Director Mary Harper

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); and U.S. Air Force (USAF).
USN co-sponsor: Naval Air Systems Command. USAF co-sponsors:
Ogden-ALC 309 SMXG and Tinker-ALC 76 SMXG.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public
affairs office approvals are the sole responsibility of the
authors and their organizations.

Reprints: Permission to reprint or post articles must be
requested from the author or the copyright holder and
coordinated with CrossTalk.

Trademarks and Endorsements: CrossTalk is an
authorized publication for members of the DoD. Contents
of CrossTalk are not necessarily the official views
of, or endorsed by, the U.S. government, the DoD, the
co-sponsors, or the STSC. All product names referenced in
this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

26
31

mailto:Crosstalk.Articles@us.af.mil
http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com

CrossTalk—January/February 2017 3

FROM THE SPONSOR

CrossTalk would like to thank 309 SMXG for sponsoring this issue.

How would you define suc-
cess? On a personal level, you
may state that success is the
attainment of happiness or the
completion of an effort you were
passionate about. In develop-
ment, success might be defined
by a set of criteria against stated
objectives. And yet, there is am-
biguity in exactly what success is
here as well. For example, from a

developer’s point of view, it may be the system’s technical capabil-
ity. From a user’s perspective, success is generally defined by key
performance and functional attributes. A customer’s considerations
may be focused toward budget, schedule, quality, and user satisfac-
tion. Are success criteria absolute in nature? Do we automatically
consider a program to have failed if it does not achieve all stated
objectives? Or, should success be measured in by increments,
depending on the observer’s point of view?

As we turn the page on another year and move steadfastly into
the next, we here at CrossTalk have chosen to dedicate this is-
sue to looking retrospectively on the evolution of the software engi-
neering field. The intent is not to simply reflect on the past and cast
black-and-white judgments on whether something was a ‘hit’ or a
‘miss,’ but rather to delve deeper into the nature of success and what
causes the perception of failure to begin with. Truly, some ideas we
once believed were revolutionary truly were. But in hindsight, others
missed the mark despite our best efforts. The question is, from what
point of view did they succeed, and for whom did they fail?

Our desire to simplify topics to black-and-white criteria speaks
to the limited perspective and fallibility of mankind, especially
in realms with ever-increasing complexity. We are quick to label
something a success or a failure, though the truth is most often
somewhere in between. One truism that we can count on is that
failure is inevitable; how we cope with that failure and progress
beyond it defines who we are. It was Robert F. Kennedy in his
1966 Day of Affirmation address who stated, “We also know that
only those who dare to fail greatly, can ever achieve greatly.”

Although the emphasis here is on the potential benefits weighed
against calculated risks, it is important to note that not all missteps
are necessarily failures — just fundamental steps in the nature of
progress. The culmination of our combined successes and failures,
along with our ability to learn from them, enhance possibilities and
drive technology forward. Remembering that success is relative to
your perspective, however, is imperative to knowing not just what
went wrong, but also what went right.

It is with that thought that we begin this issue of
CrossTalk with Dr. David Cook and Dr. Eugene Bingue’s
article entitled “Ada — A Failure That Never Happened.” In this

article, we explore the external factors, such as the exponential
proliferation of programming languages, that led to problems in
maintenance and continued support. Continuing with the topic of
Ada, we also have a fine article on the topic by Dr. Drew Hamilton
and Dr. Patrick Pape entitled “Ada — 20 Years After The Mandate”
that takes a retrospective look at the Ada mandate and is certain
to be enlightening from the perspective of an author who is
directly linked to the Ada Joint Program Office (AJPO).

We have two articles on the topic of Agile. Dick Carlson has
written an insightful piece entitled “Scrum is Simple” that dis-
cusses the cultural shift away from traditional project manage-
ment methods and tackles the difficulties of changing the ‘sta-
tus quo’ and implementing Agile for projects looking to transition
to Agile methodologies. The second piece on Agile is entitled
“Why Agile Projects Sometimes Fail” by Gerald Weinberg. This
is an open forum piece that discusses the effective leadership
styles and team skills necessary for a productive Agile project.

In this special issue, we also feature two articles by Capers
Jones. The first piece, entitled “A Comparison of Medical Diag-
noses and Software Problem Diagnoses,” illustrates the need
for a higher degree of rigor in empirical data by comparing and
contrasting software to the medical field. The second article, en-
titled “A Retrospective View of the Laws of Software Engineer-
ing,” takes laws and observations from other scientific fields and
shows the applications and truisms found within each and how
they apply to the software engineering realm as well.

For those of you who wish to have an increasingly techni-
cal read, we have chosen to include a special supporting article
entitled “Generating Actionable Information for Classifier Assess-
ment” by E. Earl Eiland and Dr. Lorie M. Liebrock. This article will
arm practitioners with the means to calculate actionable informa-
tion for their specific mission. Finally, do not forget to read our
ever-insightful “BackTalk” column, written by Dr. David Cook. In his
piece, entitled “Failure IS an Option,” he brings us full circle to the
nature of success and failure and what we can learn from both.

As we begin the new year, we are also beginning the
29th year of CrossTalk, would like to express my sincere
thanks to everyone for making such an accomplishment
possible. We thank our co-sponsors for your generous s
upport and active involvement in providing an informational
and educational resource to the software industry. To the
authors, we truly appreciate all of your time and effort in
sharing such valuable information with the software commu-
nity. To our readers, thank you for your continued support. We
hope that we continue to exceed expectations by publishing
the highest-quality articles.

From all of us at CrossTalk, we wish you the best for
the new year.

Tracy Stauder
Deputy Director, 309 Software Maintenance Group

4 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

Introduction and Context for Ada
By the 1970s, the “software crisis” was a well-known phe-

nomenon. Simply put, software usually:
—Was overpriced.
—Didn’t meet all requirements.
—Took too long to develop.
—Was difficult to maintain and update.

There were many reasons software had these failings. One was
that designing and developing software is inherently difficult [2].
Another cause was the proliferation of programming languages,
with each one differentiated from the others with perhaps one
unique feature. As pointed out in Schorsch and Cook [3], lan-
guages evolve to solve problems, but when too many languages
proliferate too quickly, problems in maintenance and continued
support occur. By some counts, by the 1980s, the Department of
Defense alone was supporting software in more than 1,000 lan-
guages. This made maintenance extremely difficult — finding an
expert in any one particular specialized language was difficult. In
addition, code that solved a problem in one language could not be
ported to other systems that were coded in different languages.

By the 1970s, approximately 50 percent of all DoD projects
involved embedded systems (systems in which the computer is
embedded in the device it controls). It was estimated that the
DoD supported over 400 different languages used for embed-
ded systems alone. [4] Embedded systems often share a com-
mon set of systems (command and control, targeting, navigation,
etc.) — and, as mentioned above, each solution had to be re-
developed in multiple languages since code reuse among lan-
guages was difficult. The DoD, in an effort to stop this language
proliferation, created the High Order Language Working Group
(HOLWG) to standardize and create a new high-order language
for embedded systems. The process to create the Ada lan-
guage was the result of the most extensive and most expensive
language design effort ever undertaken. It took over six years to
produce the standard, MIL-STD 1815 (and later 1815a) which
became the basis for the Ada programming language. [5]

In 1986, Ada became the mandated DoD language after the

A Failure That
Never Happened!Ada

David A. Cook, Ph.D. Stephen F. Austin State University
Eugene Bingue, Ph.D. NCTAMS-PAC

“The major cause of the software crisis is that the machines have become several
orders of magnitude more powerful! To put it quite bluntly: as long as there were
no machines, programming was no problem at all; when we had a few weak com-
puters, programming became a mild problem, and now we have gigantic comput-
ers, programming has become an equally gigantic problem.” — Edsger Dijkstra [1]

“Ada Mandate”: “Notwithstanding any other provisions of law, where
cost effective, all Department of Defense software shall be writ-
ten in the programming language Ada, in the absence of special
exemption by an official designated by the Secretary of Defense.”

While the Ada Mandate was a bold step, in retrospect, most
people believe it came too early — there were very few tools and
compilers in 1986 — and was unenforceable. The phrase “where
cost effective” was difficult to define, and the DoD-sponsored
AJPO (Ada Joint Program Office) had little authority to enforce the
mandate. Nevertheless, the DoD poured millions into the AJPO to
promote and support Ada throughout the U.S. and the DoD.

Ada Features and Update
Whether or not the Ada Mandate was ill-timed, Ada itself

was a visionary language. It had several features that, in the
early 1980s, were revolutionary (or at least evolutionary). In
addition, Ada has been updated multiple times to keep the
language current and vibrant.

“Ada has influenced the development of Java, C++, Visual
Basic, and even the Microsoft .NET Framework. Likewise, Ada
has been influenced by more than 30 other languages, including
Java, C, and C++.” — Richard Conn[6]

Features of Ada 83 (the original language):
—Packages. Data types, data objects, and procedure specifica-

tions that could be abstracted and encapsulated into a pack-
age. This supports the program design of data abstraction. This
promotes reuse “in the large.”

—Exception Handling. Ada has very good exception handling
capabilities that allow the program to handle its own runtime er-
rors. It is possible in Ada to prevent errors from propagating to the
operating system, making Ada very useful in embedded systems
when full OS support for error handling is minimal or nonexistent.

—Generic Program Units. It is possible in Ada to write a proce-
dure (for example, a sorting procedure) that does not require a data
type to be specified at compile time. This permits reuse “in the small.”

—Parallel/Concurrent Processing. Ada supports parallel and
concurrent execution of tasks (the “tasking” parallel processing
paradigm). For embedded systems developers, this permits the
coding of parallel processes at the language level rather than at
the operating system and underlying hardware level. This also al-
lows reuse “in the large.” Most parallel processing at the time was
accomplished via the operating system, not the language.

—Strong Typing. This feature allowed programmers to, for
example, declare two separate integer types (like “kilometers”
and “miles”), both of which look like integers but are treated
as two separate (and noncompatible) types. This was relatively
new at the time and made Ada programs more reliable. Many
developers are unaware of the
many errors caused by improper
mixing of incompatible types.
One example, reported at Hotz,
was the loss of the $125 million
NASA Mars Climate Orbiter
“because spacecraft engineers
failed to convert from [imperial]

CrossTalk—January/February 2017 5

SOFTWARE’S GREATEST HITS & MISSES

to metric measurements when exchanging vital data before the
craft was launched.” [7] Strong typing (and good design) would
have prevented this error. Ada was not the first programming
language to use “name” instead of “structural” type compat-
ibility, but it was one of the first to provide such a wide range of
options for effective design and implementation, thus providing
good abstraction of the “real world” and enhanced reliability. [8]

Enhanced features of Ada95 (the first major update of
the language, still within the Ada Mandate):

—Object-Oriented Programming. The original language
supported object-based programming, but C++ and other
languages later began supporting object-oriented design and
development. Ada was updated to include this powerful feature,
including polymorphism and multiple inheritance.

—Other.
—More flexible libraries (including child libraries) to en-

courage easier reuse and better design.
—Better control mechanisms for shared data, including

protected records (threads) and improved tasking.
In retrospect, the original language strongly encouraged good

design and the use of software engineering methods to produce
code that was reliable, understandable, modifiable/maintainable
and efficient. While the Ada Mandate might not have been appro-
priate, the use of a language that encouraged (and possibly re-
quired) good design was a major advance in the 1980s. Ada was
also strongly typed, which required more design and planning but
resulted in safer code that was more likely to execute correctly.

The emphasis of Ada is that code must be safely compiled
before it can run. All interfaces must be completely speci-
fied and all library references must be established before the
compiler can create executable code. In short, the Ada compiler
typically did the work that was done, in other languages, by the
debugger. Ada code required a lot of design and coding before
it would compile, whereas in other languages, library linkages
and even code dependencies could wait until link time or even
execution time. The authors, both of whom have taught Ada
since the mid-1980s, used to say, “In C and C++, the debugger
is your most used tool. In Ada, it’s the compiler.” [9]

Ada After the Mandate
The Ada Mandate was removed in 1997. For the last few years

of its existence, it was widely ignored. Ada had, in fact, left a “bad
taste” in the mouths of many developers and companies in the
U.S. and many international companies that interacted with the
U.S. The mandate had required Ada’s use when there were few
tools and compilers and may have actually prevented the spread
of Ada. Due to a lack of enforcement of the Ada Mandate, com-
panies that continued to use languages not particularly suitable
for high-integrity embedded systems faced little, if any, penalty for
ignoring the mandate. Those companies that had invested time
and effort in training and Ada code production saw few external
benefits in the short term. In fact, Ada was viewed as a failure,
and with the removal of the Ada Mandate in 1997, many thought
the language would die a quick death. But they were wrong. Ada
did not fail. In fact, it never faltered. In retrospect, it appears that

the Ada Mandate (and lack of compilers and tools once Ada was
mandated) enticed developers to switch to Ada prematurely. Ada
did not fail, but perhaps the mandate did.

The real benefit to the companies investing time and effort
into converting to Ada was perhaps the increased quality of their
software. The software was more maintainable, easier to update,
and exhibited fewer errors. Studies showed that “Back in the
day when people were pushing for Ada there was a few studies
showing how better it is in terms of defect rates and produc-
tivity. Ada is an example of a language designed towards the
goal of eliminating defects.” [10]. The study also says that “Ada
is designed so that as much as possible is caught at compile-
time rather than run-time. What this means is that it often takes
about 10x longer to get a program in Ada to compile than the
equivalent would in Java say, but when it does compile you can
be much more confident that whole classes of bugs will not
manifest themselves when the program’s run.”

Seeing the potential for Ada, Lieutenant General (U.S. Army,
retired) Emmett Paige, who in 1997 was retired and serving as
Assistant Secretary of Defense (Command, Control, Communica-
tions, and Intelligence), was quoted as saying “Ada will compete
better without the mandate.” [11] And it has. In fact, Ada might be
viewed as one of the most successful failures in history.

As part of an ongoing effort to keep Ada viable as a lan-
guage, Ada underwent another significant update in 2005.
This update, which included adding support for state-of-the-art
programming paradigms and practices, kept Ada current as a
modern programming language. Conn and Taft [12] both explain
how and why Ada continues to evolve to meet current needs.

Ada 2005 updates improved features to support safety, high-
integrity and enhanced reliability, and included improved parallel
processing (both threads and tasks). [13] The latest language
update, Ada 2012, added to Ada’s ability to produce high-reli-
ability code by introducing contract-based programming. [14]

Ada is also known for being “backward compatible” so that
programs written in earlier versions will both compile and run
correctly on the latest compilers. [15]

Major Ada 2005 enhancements:
—Improvements to OO usage.
—Enhanced embedded support.
—Enhanced real-time support.
—Enhancements supporting safety, portability and interoperability.

Major Ada 2012 enhancements
—Formal methods.
—More powerful assertion mechanisms (pre- and post-conditions).
—Contract-based programming.
—Memory usage enhancements.
—Improvements to the container library.
—More powerful use clauses.
—Additional uses of incomplete types that simplify the

construction of nested containers.
In addition to the major changes listed above, both of the

recent language enhancements contain numerous minor
enhancements and additions that enhance readability, program

6 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

correctness, efficiency of code, and program expressiveness.
It is also important to note that Ada does not just evolve; it has
“planned evolution.” The language is an ISO standard and is
regularly updated by an international standardization committee.

To quote from WG9, “…the existence of an international
standard is vital to [Ada’s] usage. More than any other program-
ming language, the users of Ada employ the standard itself as
their basic reference to the language. The Ada marketplace has
placed great importance on the existence of an unusually detailed
validation suite that is driven by the specification of the standard.
Vendors and users of Ada maintain a continuing and frequent
dialogue with SC22/WG9 in order to ensure that interpretations
of the language standard are applied uniformly and that code is
highly portable. In fact, the highly rigorous standardization of the
language and the continuing maintenance of that standard is
often cited as one of the Ada language’s ‘selling points.’ The high
degree of collaboration between the marketplace and WG9 is
one of the great successes of JTC1 standardization efforts.” [16]

Ada is sometimes viewed by developers in the U.S. as a
“dead” language. However, companies and projects such as
Airbus, Boeing, TGV, the subway in New York City, the C130,
the European Space Agency, and 28 of the world’s Air Traffic
Control Systems continue to use Ada. Feldman has a list of the
many projects worldwide using Ada. [17]

Ada is alive and current in terms of programming features
with the 2012 update. In this update, the language has taken
another step in ensuring safe, reliable, and maintainable sys-
tems. Due to a lack of mandate outside of the U.S., Ada is not
viewed with a “bad taste” overseas. SPARK, a subset of Ada, is
widely used outside of the U.S., and even in the U.S. for such
projects as CubeSat. SPARK is designed to produce code for
use where high reliability is absolutely essential and, with sup-
porting tools, can produce formal verifiable software. [18]

There are several current projects (mostly requiring real-time
or embedded support) that use Ada. Ada has launched vehicles
into space, is being used for drones, and is used in the AdaPi-

lot “Digital Flight Control System” — a new project to create a
highly reliable open source autopilot using the Ada and SPARK
languages. [19] A quote from the project says, “Ada has a set of
unique technical features that make it highly effective for use in
large, complex, and safety-critical projects and is well-known for
its typing features, which allow the programmer to define ranges
over discrete or floating-point types. This specificity of Ada is
very useful when it comes to proving the absence of overflow
and constraint errors using SPARK.”

Conclusion
At this point in time, the Ada language is over 30 years old. It

has accomplished exactly what it was designed to accomplish.
[20] It was innovative (for its time) and helped developers become
familiar with abstraction and encapsulation. Ada focused on reli-
ability and correctness and shifted the focus of development from
“code and fix” to “engineer and design before coding.” The goal
switched from “code that would run” to “code that was reliable,
understandable, modifiable and maintainable, and efficient.” Years
after the Ada Mandate expired, Ada is being successfully used in
industry fields such as manufacturing, flight, transportation, simu-
lation and modeling, and medicine. It is regularly updated, is an
international standard, and is literally used worldwide. [21] In fact,
Ada’s use on the CubeSat and the Cassini-Huygens project actu-
ally show that it is used solar system-wide! In particular, CubeSat
says, “As compared to the more commonly used C language, Ada
makes it much easier to write correct, robust software. SPARK
adds the ability to create mathematical proofs (with the aid of
tools), showing freedom from certain classes of runtime errors
and other correctness properties.” [22]

CrossTalk—January/February 2017 7

SOFTWARE’S GREATEST HITS & MISSES

Ada is still ranked in the “Top 30” languages in The TIOBE
Programming Community index, which is an indicator of the
popularity of programming languages. The index is updated
once a month. The ratings are based on the number of skilled
engineers worldwide, courses, and third-party vendors. [23]

Ada’s niche for developing high-integrity, reliable embedded
software is secure, and there exists many high-quality tools and
compilers to support its successful use in the future. Ada has
recently been used for projects such as:

—Rosetta “Comet Chaser.”
—CubeSat.
—Paris-London Eurostar.
—Paris Metro Line 14 (Driverless Subway line).
—U.S. and U.K. Air Traffic Control.
—Cassini-Huygens Mission to Saturn.
—Boeing 777 and 787.
—London Victoria underground.
—New York City subway.

These are just a few of the “Powered by Ada” success stories
listed at http://www.sigada.org/awareness/ada-posters-gallery/
index.html. For a language that was once viewed as a failure,
Ada is very active in the embedded community, where high reli-
ability is required.

Ada’s death and failure never occurred. It was — and is — one
of the better successes the DoD has produced.

1. Dijkstra, E. (1979.) Turing Award Lecture: “The Humble Programmer. Classics in
Software Engineering Yourdon Press. ISBN 0917072146. Original paper, shown in CACM
1972 V15 #10. Available online at http://www.cs.utexas.edu/users/EWD/transcrip-
tions/EWD03xx/EWD340.html.

2. Brooks, Frederick. (1975.) “No Silver Bullet: Essence and Accident in Software Engi-
neering.” Reprinted in The Mythical Man Month, Addison-Wesley.

3. Schorsch, Thomas & Cook, David. (February 2003.) “Evolutionary trends in program-
ming languages.” Crosstalk: the Journal of Defense Software Engineering.

4. Language Guide. “Ada: The Ada Programming Language.” Available online at http://
groups.engin.umd.umich.edu/CIS/course.des/cis400/ada/ada.html

5. D’Andrea, Luigi. Available online at https://www.linkedin.com/pulse/kingdom-ada-luigi-
d-andrea?forceNoSplash=true

6. Conn, Richard. (August 2006.)“Ada 2005.”Crosstalk: the Journal of Defense Software Engineering.
7. Hotz, Robert L. (Oct. 1, 1999.) “Mars Probe Lost Due to Simple Math Error.” Los Angeles

Times. Available online at http://articles.latimes.com/1999/oct/01/news/mn-17288
8. Gicca, Greg. “Ada Watch: Choosing a programming language that supports reliability.”

Military Embedded Systems.Available online at http://mil-embedded.com/guest-blogs/
ada-watch-choosing-a-programming-language-that-supports-reliability/

9. Bingue, Cook, Dupaix. (1996.) “Introduction to Ada 95.” Proceedings of TriAda ’96 (slide
notes). Philadelphia, Penn. Dec. 3–7.

10. Programmers Stack Exchange (PSE), Available online at http://programmers.stackex-
change.com/questions/131137/research-on-software-defects

11. Paige, Emmett. Quotation available online at http://www.adahome.com/ar-
ticles/1997-03/end_mandate.html

12. Taft, Tucker. (August 2006.) “The Ada 2005 Language Design Process.” Crosstalk: the
Journal of Defense Software Engineering.

13. Brosgol, Benjamin. (August 2006.) “Ada 2005: A Language for High-Integrity Applica-
tions.” Crosstalk: the Journal of Defense Software Engineering.

14. Dewar, Robert. “Ada 2012: Ada With Contracts.” Dr. Dobbs’ Journal. Available
online at http://www.drdobbs.com/architecture-and-design/ada-2012-ada-with-
contracts/240150569

15. Radford University. “Whirlwind tour of Ada.” Available online at http://www.radford.
edu/~nokie/classes/320/Tour/intro1.html

16. See http://www.open-std.org/JTC1/SC22/WG9/overview.htm
17. Feldman, Michael. See https://www.seas.gwu.edu/~mfeldman/ada-project-summary.

html
18. See http://www.spark-2014.org/about
19. See http://adapilot.likeabird.eu/
20. Cook, David. (August 2006.) “Ada: The Maginot Line of Languages.” Crosstalk: the

Journal of Defense Software Engineering.
21. SIGAda. The ACM SIGAda homepage. See http://www.sigada.org/logos/ada_world_

black.gif
22. See http://www.cubesatlab.org/
23. See http://www.tiobe.com/tiobe-index/

ABOUT THE AUTHORS
David A. Cook, Ph.D.
Stephen F. Austin State University
cookda@sfasu.edu

Eugene Bingue, Ph.D.
NCTAMS-PAC
eugene.bingue@navy.mil

REFERENCES

mailto:cookda@sfasu.edu
http://www.sigada.org/awareness/ada-posters-gallery/index.html
http://www.cs.utexas.edu/users/EWD/transcrip-tions/EWD03xx/EWD340.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html
http://www.cs.utexas.edu/users/EWD/transcrip-tions/EWD03xx/EWD340.html
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/ada/ada.html
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/ada/ada.html
https://www.linkedin.com/pulse/kingdom-ada-luigi-d-andrea?forceNoSplash=true
https://www.linkedin.com/pulse/kingdom-ada-luigi-d-andrea?forceNoSplash=true
https://www.linkedin.com/pulse/kingdom-ada-luigi-d-andrea?forceNoSplash=true
http://articles.latimes.com/1999/oct/01/news/mn-17288
http://mil-embedded.com/guest-blogs/ada-watch-choosing-a-programming-language-that-supports-reliability/
http://programmers.stackex-change.com/questions/131137/research-on-software-defects
http://programmers.stackexchange.com/questions/131137/research-on-software-defects
http://programmers.stackex-change.com/questions/131137/research-on-software-defects
mailto:eugene.bingue@navy.mil
http://www.adahome.com/ar-ticles/1997-03/end_mandate.html
http://www.adahome.com/articles/1997-03/end_mandate.html
http://www.adahome.com/ar-ticles/1997-03/end_mandate.html
http://www.drdobbs.com/architecture-and-design/ada-2012-ada-with-contracts/240150569
http://www.drdobbs.com/architecture-and-design/ada-2012-ada-with-contracts/240150569
http://www.drdobbs.com/architecture-and-design/ada-2012-ada-with-contracts/240150569
http://www.radford
http://www.open-std.org/JTC1/SC22/WG9/overview.htm
https://www.seas.gwu.edu/~mfeldman/ada-project-summary
http://www.spark-2014.org/about
http://adapilot.likeabird.eu/
http://www.sigada.org
http://www.cubesatlab.org/
http://www.tiobe.com/tiobe-index/

8 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

Introduction
In the past the author of this paper has worked as both the

editor of a medical journal and of medical research papers and
also as the editor and technical reviewer of a number of soft-
ware journal articles and books.

Medical papers devote about a third of the text to discussions
of measures and metrics and include accurate quantified data.
Software papers, on the other hand, devote hardly a paragraph to
measures and metrics and seldom contain accurate quantified data.

As readers know medical practice has been the top learned
profession for over 100 years. By contrast software is not even
recognized as a true profession and is still classified as a craft. One
reason for the low status of software is that software has failed to
use effective metrics and measures. As a result software has close
to zero accurate data on software quality and productivity.

Medical diagnoses are based on a number of quantitative
measures and known values. The patient’s measures are taken
during diagnostic workups and then compared against known
criteria to identify abnormal conditions that might be symptoms
of infections or other diseases.

If the patient has a temperature above 102 something is
seriously wrong. If the patient has blood pressure is above 190
something is seriously wrong.

Many other key metrics are also involved in medical diagnos-
tic procedures: blood sugar, respiratory volumes, heart rate and
regularity, and many more.

Diagnosing software problems should also use quantitative
data. If a company’s defect potential is above 4.5 per function
point something is seriously wrong. If defect removal efficiency
is below 95% something is seriously wrong. If past schedule
slips are > 5% something is seriously wrong.

A key difference between medical diagnostic studies and soft-
ware diagnostic studies is that software engineering has close to

zero knowledge about the ranges and boundaries of quantitative
results that differentiate healthy projects from unhealthy projects.

Hardly anybody in software in 2016 knows that safe defect
potentials are below 3.5 per function point and dangerous de-
fect potentials are above 4.5 per function point. Hardly anybody
in software knows that safe defect removal efficiency is above
98% and hazardous defect removal efficiency is below 90%.

Universities know as little about software quantitative data as
do journeymen software professionals. Even quality companies
selling test tools and static analysis tools know almost nothing
about quantitative data on key topics such as defect potentials
and defect removal efficiency (DRE).

Hardly any of the software education companies know enough
about effective software metrics and measures to include any
quantitative data. The software industry has been running blind
for over 50 years. This is a professional embarrassment for one
of the largest and wealthiest industries in human history.

Major software consulting companies are also in the dark
about actual quantitative software quality and productivity
results. They are pretty good at large-scale studies such as
corporate spending on information systems or corporate re-
search budgets, but not at all good about the measured results
of software quality and productivity based on samples of several
thousand measured software projects.

Software productivity data is just as bad as software quality
data. Hardly anybody in software in 2016 knows that work
hours per function point above 16.00 indicate significant
problems while those below 12.00 work hours per function
point indicate smooth sailing.

Software has a 50 year history of bad metrics and bad
measures. Cost per defect penalizes quality; lines of code
penalize modern programming languages. Technical debt only
covers 17% of the total costs of poor quality. Story points and
use-case points are not standardized and have no certification
exams. These two non-standard metrics vary by over 400%
from company to company and project to project.

Only function point metrics are accurate enough for software
diagnostic analysis. Unlike other software metrics function points
have ISO standards for consistency and also certification exams
to ensure accurate function point sizing. This is true for all of the
major forms off function point metrics: COSMIC, FISMA, IFPUG,
and NESMA. (This report uses IFPUG function points version 4.3)

The new SNAP metric for non-functional requirements may
add value in the future but as of 2016 it is a new metric that
lacks empirical data on defect potentials, costs, schedules, pro-
ductivity and other useful indicators.

The basic metrics used in this report are function point
metrics defined by the International Function Point User’s Group
(IFPUG) counting rule version 4.3.

Defect potential metrics were developed by IBM circa 1970
and first used to validate the effectiveness of formal inspections.
Defect potentials are the sum total of bugs found in requirements,
architecture, design, source code, user documents, and bad fixes, or
new bugs accidentally included in bug repairs themselves. The cur-
rent U.S. average for defect potentials are about 4.25 defects per
function point. Table 1 shows the distribution of defect potentials
by defect origins. Defect potentials are predicted before projects
start, measured during development, and totaled after release.

A Comparison of Medical
Diagnoses and Software
Problem Diagnoses
Capers Jones, Vice President and CTO,
Namcook Analytics LLC

Abstract. From working as an editor of both medical papers and software
papers, there are important differences between the two fields. For medical
papers about a third of the text is devoted to discussions of the metrics and
measures used to reach the author’s conclusions.

In software papers there are little and sometimes no discussions of the metrics
and measures used to reach the author’s conclusions. Worse some software
papers use metrics such as “cost per defect” and “lines of code” with proven er-
rors. Function point metrics are the best choice in 2016 for software diagnostic
studies of both quality and productivity.

Unlike medical practice, the software industry has been running blind for
over 50 years with little or no accurate quantitative data on productivity or
quality and no empirical data that proves the value of software tools, method-
ologies, or programming languages.

CrossTalk—January/February 2017 9

SOFTWARE’S GREATEST HITS & MISSES

Defect removal efficiency (DRE) metrics were developed
by IBM at the same time as defect potential metrics circa
1970. All bugs are measured and counted during develop-
ment (including bugs often not reported such as those identi-
fied by static analysis and unit testing). User-reported bugs
are also measured and counted. After the software application
has been in use for 90 days DRE is calculated. If developers
found 950 bugs and users reported 50 bugs in the first three
months then DRE is 95.00%. Of course bugs continue to be
reported after 90 days but the 90-day interval provides a fixed
point for statistical analysis.

Although both cost per defect and lines of code are
flawed metrics that distort reality, the author’s estimation
tools and benchmarks include both metrics primarily to show
clients what their problems are.

Both metrics ignore fixed costs. A basic law of manufacturing
economics is this: If a manufacturing cycle has a high percent-
age of fixed costs and the number of units produced declines,
the cost per unit goes up. Other industries have understood
this law for more than 200 years but not the software industry
which still ignores fixed costs today in 2016.

For the cost per defect metric the costs of writing and run-
ning test cases are fixed costs so cost per defect goes up later
in development when fewer defects are found. Defect removal
cost per function point shows the true economic value of high
quality. Cost per defect penalizes high quality. For zero-defect
software the cost per defect would reach infinity, but cost per
function point would still be accurate.

For the lines of code metric the costs of requirements and
design are fixed costs so when high-level languages are ad-
opted the number of “units” declines and cost per line of code
goes up. Thus the low-level assembly language looks better
than the high-level Objective C, the language used by Apple for
all software. Cost per function point shows the true economic
value of high-level programming languages such as Objective C.

The author’s estimates and benchmarks are based on func-
tion points but also include counts of logical code statements
and counts of physical lines of code in order to show clients
the huge differences in LOC size based on which metric is used
as well as the economic distortion caused by these metrics.

Logical code consists only of executable statements and
data definitions. Physical lines of code also include blank
lines, comments, headers, and other non-executable materi-
als that don’t have any relationship to the actual operating
features of the software application.

There can be a 500% difference between logical code
size and physical code size. There are no ISO standards or
certification exams for counting lines of code and so software
articles based on lines of code are highly inconsistent due to
using many counting variations.

It is technically possible to predict the key indicators of a soft-
ware project such as defect potentials early before full require-
ments are known and then also predict the probable outcome
for the project in terms of quality, costs, schedules, and risks.

This is not any harder than carrying out a medical exami-
nation on a human patient. But very few people in software
know the quantitative values that differentiate software suc-
cess from software failure.

What the author’s colleagues try to do with is take software
project vital measures early; feed the data into a parametric
estimation tool; and then predict the results of specific projects
in terms of schedules, costs, defect potentials, defect removal
efficiency (DRE) and other key metrics.

If the project is healthy the clients are happy. If the project
has possible problems such as high defect potentials above
4.50 per function point or low defect removal efficiency below
90%, the clients can be alerted early enough to take remedial
action before too much money is spent (and possibly wasted).

Although collecting the necessary quantitative and qualitative
data about software projects takes about half a day and doing
the diagnostic workup takes several days, the actual costs of
this kind of software diagnostic study are about the same as
the costs of a full annual medical examination that includes lab
tests, EKG examination, and possibly MRI or CAT scans.

For one thing software does not have expensive diagnostic
machines such as MRI or CAT scan equipment. In fact soft-
ware has hardly any automated metrics tools at all other than
cyclomatic complexity and test coverage and the new auto-
mated function point tools.

Today in 2016 almost every thinking person has an annual
physical exam and does not believe that the costs are out of line
although medical costs are certainly higher than they could be.

Software needs the same concept about diagnostic studies:
companies and key projects should have annual examinations
that collect accurate data on the quantitative and qualitative indi-
cators and the consultants should use those indicators to create
an accurate diagnosis of software health or possible illness.

This could be done on a retainer basis for companies where
all projects in progress and recently completed are examined
and results are provided to the clients several times a year.

It could also be done for critical individual projects that are likely
to be larger than 1,000 function points or which have some urgent
business requirements that are vital to corporate plans for success.

One interesting difference between medical diagnoses
and software diagnoses is that insurance companies pay for
the medical diagnoses. There is no software insurance as of
2016 that covers diagnostic studies, although software does
have cyber-attack insurance.

Software’s lack of a knowledge base of leading indica-
tors for quality and costs is a professional embarrassment.
Diagnosing software problems in 2016 is closer to medical
diagnoses from 1816 before medicine adopted careful mea-
sures and accurate metrics.

In the software industry only the benchmark consult-
ing companies that have current data on quality and costs
expressed in terms of function points are reasonably close to
2016 medical diagnostic procedures.

Some of these benchmark groups with accurate data include
Davids’ Consulting, the International Software Benchmark Stan-
dards Group (ISBSG), Namcook Analytics, Quality/Productivity
Management Group (QPM), Quantitative Software Management
(QSM), and TIMetricas from Brazil. Some of the parametric es-
timation companies also have current quantitative data such as
Galorath (SEER), Namcook Analytics (SRM), and QSM (SLIM).

However the software quality companies that sell test tools
and static analysis tools are almost totally lacking in quantita-

10 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

tive data with the exception of a few such as CAST software
the use function point metrics. Most of the quality companies
make advertising claims of huge improvements in quality but
don’t back up those claims with any quantitative data. This is a
professional embarrassment.

The same is true of software project management tool com-
panies. Unless project management tools use function point
metrics the data that they gather will have only transient value at
best, but no persistent value for future benchmarks.

Knowing a project’s schedules and costs without knowing its size
in function points is like trying to diagnose a human patient without

recording the patient’s weight or height. (Some 35 of the 37 major
benchmark organizations only use function point metrics.)

It is also of interest that a number of national governments
now require function point metrics for all government soft-
ware contracts: Brazil, Italy, Japan, Malaysia, South Korea now
mandate function point metrics. Eventually all governments will
probably do the same thing.

Because poor quality is a software industry weakness,
following are two tables that show the patterns of high qual-
ity that will lead to success and low quality that might lead
to failure and will certainly lead to lengthy schedule delays
and to large cost overruns. There will probably be deferred
features as well.

As can be seen from Table 1 healthy projects that are qual-
ity strong are much more sophisticated in defect measures,
defect prevention, and defect removal than unhealthy proj-
ects that are quality weak.

Table 2 shows the actual quantitative results between the two
polar opposites of quality strong and quality weak technical factors:

As can be seen from Table 2 quality-strong approaches have
lower defect potentials and higher defect removal efficiency

Table 1: Quality Strong and Quality Weak Technology Stacks

Quality Quality Quality Quality
Strong Weak Strong Weak

Quality Measures Test Stages
Defect potentials in function points Yes No Unit test Yes Yes
Defect removal efficiency (DRE) Yes No Function test Yes Yes
Delivered defects - all severity levels Yes Yes Regression test Yes Yes
Delivered defects - high severity defects Yes Yes Performance test Yes Yes
Delivered defects - security flaws Yes No Security test Yes No
Defect removal $ per function point Yes No Nationalization test Yes No
Cost of quality (COQ) per function point Yes No Usability test Yes No
Technical debt per function point Yes No Stress and limits test Yes No
Defect density - KLOC No Yes Component test Yes No
Cost per defect No Yes System test Yes Yes

Beta Test Yes No
Defect Prevention Acceptance test Yes Yes

Joint application design (JAD) Yes No
Quality function deployment (QFD) Yes No Post Release Quality
Requirements models Yes No Complete defect tracking Yes No
Early risk estimates Yes No Root-cause analysis - high severity bugs Yes No
Early quality estimates Yes No Root-cause analysis - security flaws Yes No
Defect potential estimates - function points Yes No DRE analysis Yes No
Defect removal efficiency (DRE) estimates Yes No Delivered defects per function point Yes No
SEMAT essence Yes No Delivered defects per KLOC (to show problems) Yes No

Cost per defect (to show problems with metric) Yes No
Pre-Test Defect Removal Defect origin analysis Yes No

Quality Inspections Yes No Defect severity analysis Yes No
Security inspections Yes No Defect consequence analysis Yes No
Static analysis of all code Yes No Security flaw analysis Yes No
Text static analysis (requirements, design) Yes No Ethical hackers Yes No
FOG index of requirements, design Yes No Bad test case analysis Yes No
Desk check Yes Yes Bad-fix analysis Yes No
Automated correctness proofs Yes No Error-Prone Module (EPM) analysis Yes No
Pair programming No Yes Cost of quality (COQ) analysis Yes No
Race condition analysis Yes No Technical debt analysis Yes No
Refactoring Yes No

Test Technologies
Certified testers Yes No
Design of experiments test case design Yes No
Cause-effect graph test case design Yes No
Test coverage analysis tools Yes No
Cyclomatic complexity tools Yes No
Automated test tools Yes No
Reusable test cases Yes No
Test library control tools Yes No

Software Quality Technology Stacks

CrossTalk—January/February 2017 11

SOFTWARE’S GREATEST HITS & MISSES

(DRE) levels than quality-weak approaches. Of course averages
are misleading and there are wide ranges in actual results based
on application size, team skills, and other technical factors.

Table 3 shows 10 software methodologies that have strong
quality technology stacks:

By contrast Table 4 shows 10 software development meth-
odologies with poor technology stacks and also high defect
potentials and low levels of defect removal efficiency.

It is obvious from tables 3 and 4 that any methodology that
starts with custom designs and manual coding will be intrinsi-
cally expensive and intrinsically error prone. Only methodolo-
gies that use significant volumes of certified reusable compo-
nents will achieve high quality levels, short schedules, and low
costs at the same time.

Quality Quality
Strong Weak

Requirements defects per function point 0.35 0.7
Architecture defects per function point 0.05 0.2
Design defects per function point 0.6 1
Code defects per function point 0.8 1.5
Document defects per function point 0.2 0.3
Bad-fix defects per function point 0.3 0.8
Total Defect Potential per Function Point 2.5 4.5
Pre-Test defect removal efficiency DRE % > 90.00% < 35.00%
Test defect removal efficiency DRE % > 90.00% < 80.00%
Total defect removal efficiency DRE % > 99.50% < 85.00%
Delivered defects per Function Point 0.0125 0.675

High-severity delivered defect % < 7.50% > 18.00%
Security flaw delivered defect % < 0.01% > 1.5%
Bad-fix injection % < 1.00% > 9.00%
Bad test cases in test library % < 1.00% > 15.00%
Error-prone module % < 0.01% > 5.00%
Reliability (MTTF) > 125 days < 2.00 days
Reliability (MTBF) > 100 days < 1.00 days
Stabilization months to reach zero defects < 1.5 > 18.0

Pre-test defect removal $ per function point $150.00 $25.00
Test defect removal $ per function point $250.00 $650.00
Post-release defect removal $ per function point $100.00 $825.00
Cost of Quality (COQ) $ per function point $500.00 $1,500.00

Technical debt $ per function point $75.00 $550.00

Test coverage % - risks > 97.00% < 70.00%
Test coverage % code and branches > 99.00% < 70.00%
Average cyclomatic complexity < 10.00 > 20.00
Customer satisfaction High Low

Risk of project cancellation < 5.00% > 35.00%
Risk of deferred features due to poor quality < 6.5% > 65.00%
Risk of schedule delays < 10.00% > 70.00%
Risk of cost overruns < 10.00% > 50.00%
Risk of litigation for poor quality < 1.00% > 15.00%
Risk of successful cyber-attacks < 2.50% > 35.00%

Table 2: Differences between Quality Strong and Quality
Weak Technology Stacks

Methodologies such as Agile (92.5% DRE) and test-driven
development (93.0% DRE) are better than waterfall (87.0%
DRE) but they don’t top 98.0% in DRE like the quality-strong
methodologies. Since they also assume custom designs and
manual coding they cannot be truly cost effective compared to
building software with over 50% reusable components.

Once again, reuse of certified materials such as reusable de-
signs, reusable code, and reusable test cases are the
only known approaches that leads to high quality, low costs, and
short schedules at the same time. One of the values of
accurate software measures and metrics is that the economic im-
pact of technology factors such as reuse can actually be measured.

Using Medical History to Improve Future Software
Readers of this article are urged to read an interesting history

of medical practice. This is Paul Starr’s book The Social Trans-
formation of American Medicine. This book won a Pulitzer Prize
and a Booker Prize in 1982.

Defect Delivered
Methodologies Removal Defects

Efficiency per FP
1 Robotic development with 99% standard parts 99.65% 0.003
2 Reuse-oriented (99% reusable materials) 99.45% 0.005
3 Reuse-oriented (85% reusable materials) 99.50% 0.007
4 Reuse-oriented (50% reusable materials) 99.50% 0.008
5 Pattern-based development 99.50% 0.009
6 Animated, 3D, full color design development 99.20% 0.016
7 Zero-defect development 99.00% 0.02
8 IntegraNova development 98.50% 0.032
9 SEMAT+Agile 98.50% 0.034

10 Team software process (TSP) + PSP 98.50% 0.035
Averages 99.13% 0.017

Table 3: Ten Quality Strong Methodologies Circa 2016

Defect Delivered
Methodologies Removal Defects

Efficiency per FP

1 Iterative development 90.25% 0.341
2 Computer-aided software engineering (CASE) 91.00% 0.342
3 Hybrid: (CMMI1 + waterfall) 91.00% 0.360
4 Spiral development 90.75% 0.407
5 ERP modification development 90.50% 0.447
6 Legacy repair development 90.00% 0.450
7 V-Model development 90.50% 0.456
8 Waterfall development 87.00% 0.598
9 Cowboy development 85.00% 0.930

10 Anti patterns 80.00% 1.400

Averages 88.60% 0.573

Table 4: Ten Quality Weak Methodologies Circa 2016

12 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

(Note: the author of this paper started work as the editor
of a medical journal published by the Office of the Surgeon
General of the U.S. Public Health Service. He then switched
to programming and worked on medical software applica-
tions, also for the Office of the Surgeon General and for the
National Institutes of Health.

From editing both medical papers and software papers the
differences are striking. Medical papers devote about a third
of the text to explaining the measures and metrics used to
develop the author’s conclusions.

Software papers, by contrast, often omit metric and mea-
surement discussions completely, or use bad metrics such as
cost per defect and lines of code with proven flaws. Soft-
ware papers seldom devote more than a short paragraph to
measures and metrics.

A survey by the author of major software journals such as
the IBM Systems Journal and various IEEE software journals
found about one third of the papers using LOC counted physi-
cal lines; one third counted logical statements; and one third
did not even say which kind of counts were used!

There is over a 500% difference between logical and physi-
cal code size so failure to even mention which counts were
used would be professional malpractice for a medical paper
but business as usual for software papers.)

From reading Paul Starr’s book on the transformation of
American medical practice it was interesting to see that medi-
cine was as chaotic and inept 200 years ago as software is in
2016.

—Medical schools had only 2-year curricula. There was no
requirement to have a college degree before entering medical
school or even a high-school diploma.

—There were no medical licenses and no board certification.
Harmful drugs such as opium could be prescribed freely and
there was no FDA to require proof of efficacy and analysis of
possible harmful side effects. (Software in 2016 releases new
methodologies without proof of efficacy and without studies of
possible harmful side effects such as the expensive pair-pro-
gramming technique that is not as effective as one programmer
using static analysis.)

—Medical students never even went into hospitals during
training since hospitals had their own medical staff and would
not admit other physicians or medical students.

—Medical quackery was common and there were no regula-
tions or laws that prohibited it. In fact even attending a medical
school was not mandatory and some physicians merely worked
as apprentices to older physicians.

Medical practices circa 1816 were alarmingly similar to soft-
ware practices circa 2016. Both were unlicensed, unregulated,
unmeasured, and both mixed quackery and harmful practices
with beneficial practices without patients or clients having any
way of knowing which was which.

Summary and Conclusions
Based on reading Paul Starr’s book improving and profession-

alizing medical education and medical practices took about 50
years. Using the points Starr’s useful book guidelines software
might accomplish this in 20 years.

One interesting factor used by the American Medical As-
sociation (AMA) was to arrange reciprocal memberships with
all state medical societies. This raised overall AMA member-
ship from about 800 up to about 80,000 and started to give
the AMA political cloud to lobby for medical licenses with state
governments.

If the various software professional associations such as the
IEEE, SIM, ACM, PMI, the function point associations, etc. were
to cooperate and offer reciprocal memberships that would prob-
ably give software political clout too.

However as of 2016 the software professional groups and
also the function point associations tend to compete more than
they cooperate, although there is some cooperation among the
function point organizations.

ABOUT THE AUTHOR

Capers Jones is currently vice presi-
dent and chief technology officer of
Namcook Analytics LLC. Prior to the
formation of Namcook Analytics in
2012, he was the president of Ca-
pers Jones & Associates LLC. He is
the founder and former chairman of
Software Productivity Research LLC
(SPR). Capers Jones founded SPR

in 1984 and sold the company to Artemis Management Systems
in 1998. He was the chief scientist at Artemis until retiring from
SPR in 2000.

Before founding SPR, Capers was Assistant Director of Pro-
gramming Technology for the ITT Corporation at the Program-
ming Technology Center. During his tenure, he designed three
proprietary software cost and quality estimation tools for ITT
between 1979 and 1983. He was also a manager and software
researcher at IBM in California where he designed IBM’s first
two software cost estimating tools in 1973 and 1974 in col-
laboration with Dr. Charles Turk. Capers Jones is a well-known
author and international public speaker. Some of his books have
been translated into five languages. His most recent book is The
Technical and Social History of Software Engineering, Addison
Wesley 2014.

Capers Jones has also worked as an expert witness in 15
lawsuits involving breach of contract and software taxation is-
sues and provided background data to approximately 50 other
cases for other testifying experts.
Capers.Jones3@gmail.com
www.Namcook.com

mailto:Capers.Jones3@gmail.com
http://www.Namcook.com

CrossTalk—January/February 2017 13

SOFTWARE’S GREATEST HITS & MISSES

Beck, Kent; Test-Driven Development; Addison Wesley, Boston, MA; 2002; ISBN 10:
0321146530; 240 pages.

Black, Rex; Managing the Testing Process: Practical Tools and Techniques for Managing
Hardware and Software Testing; Wiley; 2009; ISBN-10 0470404159; 672 pages.

Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You; Prentice
Hall, Upper Saddle River, NJ; 1995; ISBN 10: 0201633302; 368 pages.

Control of Communicable Diseases in Man; U.S. Public Health Service, published annually.
This book provided the format for the author’s first book on software risks, Assessment
and Control of Software Risks. The format worked well for both medical diseases
and software risks. The format included frequency of the conditions, severity of the
conditions, methods of prevention, and methods of treatment. A few topics such as
quarantine were not used for software risks, although with cyber-attacks increasing
in frequency and severity quarantine should be considered for software that has been
attacked by viruses or worms both of which are highly contagious.

Everett, Gerald D. And McLeod, Raymond; Software Testing; John Wiley & Sons,
Hoboken, NJ; 2007; ISBN 978-0-471-79371-7; 261 pages.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software Project Risk;
Business Expert Publishing, Thomson, GA; 2010; ISBN10: 1-935602-01-9.

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading, MA;
1993; ISBN 10: 0201631814.

Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston, MA; 2011; ISBN 978-0-13-258220-9; 587 pages.
Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York; 2010;

ISBN 978-0-07-162161-8;660 pages.
Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN

978=0-07-150244-3; 662 pages.
Jones, Capers; Estimating Software Costs; 2nd edition; McGraw Hill, New York; 2007;

700 pages.

Jones, Capers; Critical Problems in Software Measurement; Information Systems
Management Group, 1993; ISBN 1-56909-000-9; 195 pages.

Jones, Capers; Software Productivity and Quality Today -- The Worldwide Perspective;
Information Systems Management Group, 1993; ISBN -156909-001-7; 200 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994; ISBN
0-13-741406-4; 711 pages.

Jones, Capers; New Directions in Software Management; Information Systems Manage-
ment Group; ISBN 1-56909-009-2; 150 pages.

Jones, Capers; Patterns of Software System Failure and Success; International
Thomson Computer Press, Boston, MA; December 1995; 250 pages; ISBN 1-850-
32804-8; 292 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success; International
Thomson Computer Press, Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition; Ad-
dison Wesley Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

Nandyal; Raghav; Making Sense of Software Quality Assurance; Tata McGraw Hill
Publishing, New Delhi, India; 2007; ISBN 0-07-063378-9; 350 pages.

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections; Paradoxicon Publish-
ingl Andover, MA; ISBN 0-9645913-1-6; 2002; 479 pages.

Starr, Paul; The Social Transformation of American Medicine; (Pulitzer Prize and Booker
in 1982); Basic Books, 1982. This interesting book summarizes the steps used by
the American Medical Association (AMA) to improve medical education and raise
the professional status of physicians. The same sequence of steps would benefit
software engineering.

Strassman, Paul; The Squandered Computer; The Information Economics Press, New
Canaan, CT; 1997; 426 pages.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley Long-
man, Boston, MA; ISBN 0-201-73485-0; 2002; 232 pages.

REFERENCES AND READINGS ON SOFTWARE QUALITY

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

mailto:309SMXG.Recruiting@us.af.mil
http://www.facebook.com/
https://www.facebook.com/309softwaremaintenancegroup/?fref=ts

14 CrossTalk—January/February 2017

The history of the design of Ada and the selection of the “green”
language in 1979 is well-documented elsewhere. Prior to the Ada
Mandate it was estimated that there were more than 450 program-
ming languages in use in the DoD. [1] It was common to develop a
unique operating system and programming language for a specific
system. A reasonable estimate of programming languages in use
by the DoD in 1997 was less than 50. [1][2] So, on a simplistic
level, it was argued that the original mission of the AJPO had been
accomplished. The closure of the AJPO then proceeded rapidly.

From the AJPO perspective, this all happened quite quickly,
and there were some harsh lessons to be learned.

1. The usefulness of a policy varies inversely with the size of
the policy domain.

2. Money is always a factor.
3. Attempts to make software a commodity were and

still are premature.

In 1997 it was projected in “CrossTalk” that Ada would still be
around 20 years later, even if no new programs were written in Ada
because of the critical mass achieved. [2] (Although the paper “Why
Programming Languages Matter” is too old to be in the current
CrossTalk online archives, it can be downloaded from http://www.
drew-hamilton.com/pub/Why_Programming_Languages_Matter.pdf)

Almost 20 years later, the trends forecast in that paper have
proved correct. Rather than rehash what was already written,
this paper will focus on what was not foreseen in 1997.

It is very difficult to prescribe technical policies for an organi-
zation as large as the Defense Department. As noted in the Ada
Information Clearing House Archives, the Ada Mandate went
into effect on June 1, 1991, and read as follows: “Notwithstand-
ing any other provisions of law, where cost effective, all Depart-
ment of Defense software shall be written in the programming
language Ada, in the absence of special exemption by an official
designated by the Secretary of Defense.” [3]

The mandate was sound as written, but its implementation
varied greatly across the DoD. There were certainly cases where
Ada was not the most effective choice from an engineering
design perspective as well as from a cost perspective. Early Ada
compilers could be extremely expensive, particularly compared to
compilers written for C, Pascal, FORTRAN, etc. Further muddying
the waters were development environments that, early on, were
more advanced for other languages. (Hamilton recalls dealing
with an Army organization seeking an Ada waiver to use Lisp
simply because they wanted to use Symbolics Lisp machines for
development.) Ada waiver requests were typically handled at very
senior levels in the services, creating some unintended conse-
quences. A legitimate way to obtain a waiver was to demonstrate
that Ada usage was not cost effective. By focusing on upfront
costs rather than downstream savings, this was often easy to do.

AdaCore (http://www.adacore.com) revolutionized the cost of Ada
compilers in the ‘90s as their GNAT Ada compiler matured. GNAT
(Gnu NYU Ada Translator) is still freely available for download.

DoD policies preferring commercial off-the-shelf (COTS)
systems and components essentially eliminated the rationale for
a DoD-procured compiler. In 1998, the Software Engineering
Institute published a monograph on DoD COTS policies. [4]

There were certainly examples of failing DoD information
systems that appeared to have successful and cheap commer-

20 Years After the Mandate
By Drew Hamilton and Patrick Pape

In January 1997, the first author was seconded from the U.S. Military Faculty to
serve as the chief of the Ada Joint Program Office (AJPO). The spring of 1997
was very eventful for the AJPO and DoD support of Ada. By May 1996, there
were well-founded rumors that the Defense Information Systems Agency (DISA)
intended to discontinue supporting the Ada support activities of the AJPO. The
Computer Science and Telecommunications Board of the National Research
Council made a compelling case for continued support of Ada and the AJPO
in their significant work entitled “Ada and Beyond.” (“Ada and Beyond” may be
downloaded for free from the National Academies Press at http://www.nap.edu/
download/5463#.) On April 29, 1997, Lieutenant General Emmett Paige, Jr.,
ended the policy mandate requiring use of the Ada programming language.

http://www.drew-hamilton.com/pub/Why_Programming_Languages_Matter.pdf
http://www.adacore.com
http://www.nap.edu/download/5463#

CrossTalk—January/February 2017 15

SOFTWARE’S GREATEST HITS & MISSES

cial alternatives. Applying COTS to weapons systems always
seemed absurd, since you cannot simply go to Wal-Mart and buy
a guided missile. But 20 years later, we see networked informa-
tion systems carrying more and more sensitive information, and
the reality is that few commercial software products — then or
now — have military-appropriate security.

One unique aspect of the Ada effort was compiler validation.
DoD usage required a validated compiler, so there was little
market for non-validated compilers. There were many calls for
subsets and supersets, but compiler validation ensured that Ada
code was always very portable and that compiling for another
target architecture was generally not a problem as long as you
were using validated compilers on both systems. This portability
had profound implications for technical interoperability, but was
generally ignored after the end of the mandate.

Computer security concerns were already surfacing in 1990s,
but one thing the AJPO did not consider was the problem of rigged
compilers — that is, compilers that surreptitiously create back doors
in any code they generate, such as Ken Thompson demonstrated in
1984. This attack is described on stack exchange as follows:

“Re-write compiler code to contain two flaws:
“—When compiling its own binary, the compiler must compile
these flaws.
“—When compiling some other preselected code (login func-
tion), it must compile some arbitrary back door.
“Thus, the compiler works normally — when it compiles a

login script or similar, it can create a security backdoor, and
when it compiles newer versions of itself in the future, it retains
the previous flaws — and the flaws will only exist in the compiler
binary so are extremely difficult to detect.” [5]

Had Ada compiler validation continued, ensuring compil-
ers did not have back doors would have been something else
to consider. For more information on the DoD Ada Compiler
Validation Procedures, see the 1997 ACVP posted on the Ada
Information Clearinghouse. [6]

As noted in “Why Programming Languages Matter,” entire class-
es of security vulnerabilities are eliminated when code is compiled
with a validated Ada compiler. Buffer overflows, for example, are im-
possible in Ada. One general officer at the time remarked that this
did not matter since “good programmers write good code and bad
programmers write bad code.” Regardless, 20 years later, the prob-
lems with unbounded buffers are well known, but buffer overflows
are still at the top of most computer security vulnerability lists.

Dr. John W. McCormack’s analysis of a 1997 Communications
of the ACM article entitled “My Hairiest Bug War Stories” points
out that of the 17 software bugs enumerated, an Ada compiler
would have detected 15. [7] The software engineering literature
is full of papers that suggest ways to manage security flaws that
simply do not exist in Ada.

Much has been written about the technical merits of Ada.
But it is important to remember why the Ada Mandate came
about. “Why Programming Languages Matter” stated that Ada
had achieved critical mass in DoD with an approximately 33.5
percent share of DoD weapons systems and an approximately
22 percent share of DoD automated information systems. [1]
The percentage of DoD software that is still in Ada is unknown
but likely in decline, particularly in information systems.

A survey of programming languages in current use is beyond

the scope of this retrospective paper. The Tiobe index (http://
www.tiobe.com/tiobe-index/) is another measurement of
programming language use not confined to just DoD systems.
The index shows Ada usage declining, currently ranking thirtieth
with a usage rate of 0.655 percent. It is important to recognize
that the Tiobe index measures much more than just DoD usage,
but the trend seems clear. A rolling five-year history of the Tiobe
index is shown in Figure 1. [8]

Ada is still here almost 20 years after the DoD ended support
for the Ada Programming Language. The August 2006 issue of
“Crosstalk” was entirely devoted to Ada2005. [9] Ada 2012 is an
International Organization for Standardization and an International
Electrotechnical Commission Standard (ISO/IEC 8652:2012).
The Ada 2012 ISO/IEC standard was approved on Feb. 1, 2016.
Reports of Ada’s demise would seem to be premature.

The latest Ada Language Reference Manual is available for
download from many sources, including http://www.ada-auth.
org/standards/12rm/RM-Final.pdf. The Association for Comput-
ing Machinery has a special interest group dedicated to the Ada
language (SIGAda, http://www.sigada.org/index.html). SIGAda
through ACM publishes Ada Letters and conducts an annual
conference entitled “High Integrity Language Technology” (HILT,
http://www.sigada.org/conf/hilt2016/). Ada still commands
greater interest internationally than domestically. Ada-Europe is
one particularly active Ada group (http://www.ada-europe.org).

The SIGAda focus seems to be the current direction of Ada
usage — employment in high integrity applications. It is hard
to imagine a DoD weapons system that does not require high
integrity software, but it is unlikely that the DoD will mandate a
programming language anytime soon. In addition to AdaCore,
commercial Ada compilers are available from several companies,
including: DDC-I, Green Hill Software, Irvine Computer, Corp.,
OC Systems, Atego, RR Software, and PTC. While some compa-
nies are only offering legacy support, several companies are of-
fering current compilers targeting to high-integrity applications.
Dr. Martin Carlisle and the Department of Computer Science at
the United States Air Force Academy developed A# as a port of
Ada to Microsoft.NET (http://asharp.martincarlisle.com). [9]

Java 1 1 1 3 17 - -

C 2 2 2 1 1 1 1

C++ 3 3 3 2 2 2 5

C# 4 5 6 11 - - -

Python 5 6 7 25 23 - -

PHP 6 4 4 8 - - -

JavaScript 7 9 8 7 21 - -

Visual Basic .NET 8 29 - - - - -

Perl 9 8 5 4 3 - -

Ruby 10 10 21 32 - - -

Ada 27 16 16 17 7 4 2

Lisp 28 12 12 14 6 7 3

Pascal 62 13 17 15 4 3 7

2016
Programming
Language

TIOBE Index Very Long Term History
Programming Languages Ranked by Usage

198619911996200120062011

http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.ada-auth.org/standards/12rm/RM-Final.pdf
http://www.sigada.org/index.html
http://www.sigada.org/conf/hilt2016/
http://www.ada-europe.org
http://asharp.martincarlisle.com

16 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

Software engineering has changed a lot in the past 20 years.
Where previously there were many calls, especially from govern-
ment, for software reuse, now reusable components are common-
place. This reuse resulted in different problems, like determining
who originally wrote which component. The DoD still has problems
fielding secure, software-intensive systems, and a new program-
ming language mandate is unlikely to resolve those challenges.

So looking into 2017, do programming languages matter?
We believe the answer to this question is “yes,” programming
languages do still matter. While there are common and wide-
spread security issues with current languages, each language
finds a niche where it performs better than other languages for
a specific application. Different projects have different require-
ments, and performance is almost always an issue with real-time
system development. An engineering design team must con-
sider both the speed of a system and its robustness. This is a
classic trade-off in the world of programming languages that is
not likely to be overcome anytime soon.

We live in a world that has multiple programming languages
currently being used. Some languages are more conducive
to portability, like Java, which might explain why it is the most
popular in the current landscape. For rapid prototyping and a
wealth of existing and easily integrated libraries, Python is a
good choice. For compiled languages, C gives a strong middle
ground where you have object-oriented programming, with
enough control at the lower levels to get the behavior you want
from the system without having to manually configure all as-
pects of the code. In many cases, such as the work discussed in
[10], efforts are being made to create processes for quickly and
efficiently increasing the reliability and robustness of software
developed in particular languages. Post-development checking
and enhancement is a practice often seen when developers try
to minimize the shortcomings of using a particular language.

The referenced article focuses on creating more scenarios
where open-source software can be used to complement
an existing body of work. For languages that are not par-
ticularly portable or that do not have a great selection of
existing open-source libraries, a focus on enhancing what

REFERENCES
1. Computer Science and Telecommunications Board, National Research Council. (1997.)

“Ada and Beyond, Software Policies for the Department of Defense.” National Academy
Press, Washington, D.C. Available online at http://www.nap.edu/download/5463#.

2. Hamilton, J.A., Jr. (December 1997.) “Why Programming Languages Matter.” Crosstalk:
The Journal of Defense Software Engineering. Vol. 10, No. 12, p 4–6. Available online at
http://www.drew-hamilton.com/pub/Why_Programming_Languages_Matter.pdf

3. Ada Information Clearinghouse, “The Congressional Ada Mandate.” Downloaded from
http://archive.adaic.com/pol-hist/policy/mandate.txt Accessed Sept. 7, 2016.

4. Oberndorf, P. & Carney, D. (September 1998.) “A Summary of DoD COTS-Related Po-
lices.” SEI Monographs on the Use of Commercial Software in Government Systems.
Available online at http://www.sei.cmu.edu/library/assets/dodcotspolicies.pdf

5. “Ken Thompson Hack,” Downloaded from http://programmers.stackexchange.com/ques-
tions/184874/is-ken-thompsons-compiler-hack-still-a-threat Accessed Sept. 6, 2016.

6. (18 Nov. 1997.) “Ada Compiler Validation Procedures.” Ada Joint Program Office, Ver-
sion 5.0. Downloaded from the Ada Information Clearinghouse, http://archive.adaic.
com/compilers/val-proc/1222val.html.

7. McCormack, J. W. (29 March 1997.) “Ada Kills Hairy Bugs.” Ada Home, The Home
of the Brave Ada Programmers. Downloaded from http://www.adahome.com/
articles/1997-05/am_bugs.html Accessed Sept. 6 2016.

8. Tiobe Index, “Very Long Term History.” Downloaded from http://www.tiobe.com/
tiobe-index/ Accessed Sept. 6 2016.

9. Crosstalk: The Journal of Defense Software Engineering. Vol. 19, No. 8. Available online at
http://static1.1.sqspcdn.com/static/f/702523/9277154/1288925958213/200608-0-Issue.
pdf?token=55AQAO6AKygfHRhdhMKYpAU8HI8%3D

10. Pape, P. A., & Hamilton, J. A., Jr. (Jan./Feb. 2016.) “Better Reliability Verification in
Open-Source Software Using Efficient Test Cases.” Crosstalk: The Journal of Defense
Software Engineering. Vol. 29, No. 1. Available online at http://static1.1.sqspcdn.
com/static/f/702523/26767145/1451886697337/201601-0-Issue.pdf?token=B1bglc
NUe0fOf1G4RtR87ltierI%3D

11. Whitaker, W. A. (1996.) “Ada—the Project: the DoD High Order Language Working
Group.” History of programming languages—II. (Bergin, T.J., Jr. and Gibson, R.G., Jr.
ed.) ACM, New York. p. 172–232.

open-source content is available can give developers more
freedom to choose a language for the benefits that it has,
while still attempting to minimize its shortcomings. The ability
of an engineering design team to select a language that best
fits their project while utilizing techniques for mitigating its
shortcomings is an indication that even in the current soft-
ware landscape, programming languages still matter.

Conclusion
If you consider the 1975 formation of the DoD High Order

Language Working Group to be the beginning of the DoD’s Ada
effort, then the effort spanned 22 years. [11] By the program’s
end in 1997, Ada 95 had been fielded and the number of pro-
gramming languages in use was estimated to be less than 50. It
is not clear if anyone is counting anymore. During a seven-year
project (2003–2010), the first author conducted software vul-
nerability analysis for the Missile Defense Agency. We encoun-
tered software written in mainstream, supported languages: Ada,
C, C++, C#, FORTRAN, and Java.

The DoD Ada effort, Ada 95 in particular, certainly solved a lot
of technical interoperability problems between programs adhering
to the Ada Mandate. Unfortunately, no programming language
could solve the proprietary and acquisition challenges that bedevil
interoperability in addition to very technical challenges.

The era of building software-intensive systems with proprietary
operating systems and propriety programming languages ended
many years ago. The DoD Ada effort helped to end it, but even
without it, other trends would have ended the practice eventually.

If the interoperability and, particularly, the cybersecurity chal-
lenges of the 21st century had been foreseen in the mid-‘90s,
perhaps DoD policymakers would have looked at Ada in a differ-
ent light. Ada changed the conversation about defense software
engineering and promoted correctness, reliability, security,
interoperability and architecture, among other contributions.
The DoD investment in Ada advanced compiler technology and
programming language design. In retrospect, it is hard to dispute
that DoD made a sound investment.

http://www.nap.edu/download/5463#
http://www.drew-hamilton.com/pub/Why_Programming_Languages_Matter.pdf
http://archive.adaic.com/pol-hist/policy/mandate.txt
http://www.sei.cmu.edu/library/assets/dodcotspolicies.pdf
http://programmers.stackexchange.com/ques-tions/184874/is-ken-thompsons-compiler-hack-still-a-threat
http://programmers.stackexchange.com/ques-tions/184874/is-ken-thompsons-compiler-hack-still-a-threat
http://programmers.stackexchange.com/questions/184874/is-ken-thompsons-compiler-hack-still-a-threat
http://archive.adaic
http://www.adahome.com/
http://www.tiobe.com/
http://static1.1.sqspcdn.com/static/f/702523/9277154/1288925958213/200608-0-Issue.pdf?token=55AQAO6AKygfHRhdhMKYpAU8HI8%3D
http://static1.1.sqspcdn.com/static/f/702523/26767145/1451886697337/201601-0-Issue.pdf?token=B1bglcNUe0fOf1G4RtR87ltierI%3D

CrossTalk—January/February 2017 17

SOFTWARE’S GREATEST HITS & MISSES

Introduction
In 2017, software engineering is still based on custom de-

signs and manual coding. That puts software on about the same
level of manufacturing sophistication as firearms in 1784, before
Eli Whitney introduced standard reusable parts and changed
manufacturing forever.

It is obvious that custom designs and manual coding are
intrinsically expensive and error prone, no matter what method-
ologies or programming languages are used.

This short paper attempts to consolidate the known fac-
tors of software engineering circa 2016. The factors are in
alphabetical order. Because of the labor-intensive manual
methods used to build software, many of the laws are related
to problems and software failures.

Some of the laws did not originate in software but are much
older and are derived from physics, chemistry, and other disciplines.

A Retrospective
View of the Laws of
Software Engineering
Capers Jones, VP and CTO, Namcook Analytics LLC
Abstract. Software development is now more than 60 years of age. A number
of interesting laws and observations have been created by software engineering
researchers and by some academics. This short paper summarizes these laws
and makes observations about the data and facts that underlie them. The laws
discussed in this paper are in alphabetical order.
Many of these laws did not originate with software but are taken from phys-
ics and other scientific fields. However, they are included because they seem
relevant to software development.

Bernoulli’s Principle
• Velocity is greatest where density is least.
This is actually a law of fluid dynamics that refers to the flow

of viscous liquids. However, it also applies to traffic patterns and
has been used to optimize traffic flow through tunnels. It seems
to apply to software as well because the work of smaller teams
proceeds faster than the work of larger teams. This tends to add
credence to the Agile concept of small teams.

Boehm’s First Law
• Errors are more frequent during requirements and design
activities and are more expensive the later they are removed.
Requirements and design errors do outnumber code errors.

However, cost per defect stays flat from testing through mainte-
nance. The cost per defect metric penalizes quality and achieves
lowest values for the buggiest software. For zero defect software,
the cost per defect is infinity since testing is still necessary.
Defect removal cost per function point is the best choice for
quality economic analysis. The reason cost per defect seems to
rise is because of fixed costs. If it costs $10,000 to write and run
100 test cases and 50 bugs are fixed for another $10,000, the
cost per defect is $200. If it costs $10,000 to write and run 100
test cases and only 1 bug is fixed for another $200, the cost per
defect is $10,200. Writing and running test cases are fixed costs.

Boehm’s Second Law
• Prototyping significantly reduces requirements and design
errors, especially for user errors.
Empirical data supports this law. However, inspections and

static analysis also reduce defects. A caveat is that prototypes
are about 10 percent of the size of the planned system. For an
application of 1,000 function points, the prototype would be
about 100 function points and easily built. For a massive ap-
plication of 100,000 function points, the prototype itself would
be a large system of 10,000 function points. This leads to the
conclusion that large systems are best done using incremental
development if possible.

Brooks’ Law
• Adding people to a late software project makes it later.
Empirical data supports this law to a certain degree. The com-

plexity of communication channels increases with application
size and team size. The larger the application, the more difficult
it is to recover from schedule delays. For small projects with
fewer than five team members, adding one more experienced
person will not stretch the schedule, but adding a novice will.
Projects that build large applications with more than 100 team
members almost always run late due to poor quality control and
poor change control. Adding people tends to slow things down
due to complex communication channels and delays for training.

Buddha’s Third Law
• All objects composed of component parts are fated to decay.
The historical Buddha, Sakyamuni, was born in Northern India

in 525 B.C. He, of course, founded a major religion. Some of the
underlying principles of Buddhism are surprisingly relevant to
the modern world. One of these is that the void, or nothingness,

18 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

is the source of all things. A second principle is that the universe
and everything in it are composed of millions of small particles.
The third law, included here, is that all things composed of
particles or component parts are fated to encounter entropy
and decay over time. Although this law was stated thousands of
years before computers, it is certainly true of computer software:
software decays and loses value over time. Constant mainte-
nance over time can delay software entropy, as we see with ag-
ing legacy applications. But eventually all software systems will
decay to the point of being withdrawn. See also the Lehman/
Belady laws later in this paper, which are similar to Buddha’s
laws. It is interesting that Steve Jobs, former CEO of Apple Inc.,
became a Buddhist, in part because of its relevance.

Conway’s Law
• Any piece of software reflects the organizational structure
that produced it.
Empirical data tends to support this law. An additional caveat

is that the size of each software component will be designed to
match the team size that is assigned to work on it. Since many
teams contain eight people, this means that even very large
systems might be decomposed into components assigned to
eight-person departments, which may not be optimal for the
overall architecture of the application.

Crosby’s Law
• Quality is free.
Empirical data supports Phil Crosby’s famous law for software

as well as for manufactured products. For software, high qual-
ity is associated with shorter schedules and lower costs than
similar projects with poor quality. Phil Crosby was an ITT vice
president who later became a global quality consultant. His book
“Quality is Free” is a best-seller.

Gack’s Law
• When executives or clients demand unrealistic and unobtain-
able project schedules, the probability of substantial cost
overruns and schedule delays will double; the actual project’s
schedule will probably be twice the optimistic schedule de-
manded by the stakeholder.
This law has been known for many years by software qual-

ity and process consultants. However, in spite of hundreds of
projects that end up in trouble, impossible schedules without
the benefit of either accurate parametric estimates or accurate
benchmarks from similar projects continue to be the most com-
mon way of developing medium to large applications between
1,000 and 10,000 function points in size. This size range is
characterized by amateurish manual estimates and failure to
bring in external benchmarks from similar projects. (Really large
projects in the 100,000-function point size range tend to use
professional estimating personnel, parametric estimating tools,
and historical benchmark data, although many of these massive
projects also get into trouble.)

Galorath’s Seventh Law
• Projects that get behind stay behind.
Dan Galorath has a number of other laws, but this one has

poignant truth that makes it among the most universal of all

software laws. While there are some consultants who are
turnaround specialists, by and large, projects that fall behind
are extremely difficult to recover. Deferring features is the most
common solution. Many attempts to recover lost time, such as
skipping inspections or truncating testing, backfire and cause
even more delays. This law is somewhat congruent with Brooks’
Law, cited earlier. See also Gack’s Law.

Gresham’s Law
• Bad drives out good.
This law predates software and is named after a Tudor-era fi-

nancier, Sir Thomas Gresham. The law was first stated for currency
and refers to the fact that if two currencies are of unequal intrinsic
value, such as gold and paper, people will hoard the valuable cur-
rency and drive it out of circulation. However, the law also has social
implications. Studies of software engineer exit interviews reveal that
software engineers with the highest appraisal scores leave jobs
more frequently than those with lower scores. Their most common
reason for leaving is “I don’t like working for bad management.” Re-
stated for software sociological purposes, this law becomes “Bad
managers drive out good software engineers.”

Hartree’s Law
• Once a software project starts, the schedule until it is com-
pleted is a constant.
Empirical data supports this law for average or inept projects that

are poorly planned. For projects that use early risk analysis and have
top teams combined with effective methods, this law is not valid. It
applies to about 90 percent of projects, but not the top 10 percent.
See also Brooks’ Law, Gack’s Law, and Galorath’s Seventh Law.

Hick’s Law
• The time needed to make a decision is a function of the
number of possible choices.
This law was not originally stated for software, but empirical

data supports this law for decisions regarding requirements
issues, design issues, coding issues, and quality control issues.
This law is related to complexity theory.

Humphrey’s Law
• Users do not know what they want a software system to do
until they see it working.
This law by the late Watts Humphrey is supported by empiri-

cal data for thousands of custom applications developed for
external clients. However, inventors who build applications for
their own use already have a vision of what the application is
supposed to do. This law supports the concept of increments,
each of which is usable in its own right. However, that is difficult
to accomplish for large and complex applications.

Jevons’ Law
• Increased efficiency in using a consumable product increases
the demand for the product.
This law originated in 1865 when William Stanley Jevons noted

that increased efficiency in burning coal had increased demand
for that product. Although the law applied to a physical product,
the same concept has been noted for computer memory chips
and thumb drives • the better they are, the more we use them.

CrossTalk—January/February 2017 19

SOFTWARE’S GREATEST HITS & MISSES

Jones’ Law of Software Failures
• The probability of a software project failing and not being
completed is proportional to the cube root of the size of the
software application using IFPUG function points with the
results expressed as a percentage. For 1,000 function points,
the odds are about 8 percent; for 10,000 function points the
odds are about 16 percent; for 100,000 function points the
odds are about 32 percent.
This law is supported by empirical data from approximately 26,000

projects. However, government projects and information systems fail
more frequently than systems software and embedded applications.

Jones’ Law of Defect Removal Efficiency (DRE)
• Every form of defect removal activity has a characteristic effi-
ciency level, or percentage of bugs actually detected. Most forms
of testing are about 35 percent efficient, or find one code bug
out of three. Inspections are about 85 percent efficient for all de-
fect sources. Static analysis is about 55 percent for code bugs.
The metric of defect removal efficiency (DRE) was first devel-

oped by IBM in the early 1970s while IBM was exploring formal
inspections as a method of improving overall software quality.
There are two common ways of measuring DRE as of 2014. The
original way used by IBM, Namcook Analytics, and many other
companies is to measure internal bugs and compare these against
bugs reported by users in the first 90 days of usage • if develop-
ers found 900 bugs and users reported 100 bugs in the first three
months, the DRE is 90 percent. Another way was adopted by the
International Software Benchmark Standards Group (ISBSG),
which compares development defects against user-reported bugs
found in the first 30 days of usage. The ISBSG results are usually
about 15 percent higher in DRE than the original IBM method.
The current U.S. average for DRE using the IBM and Namcook
method is below 90 percent, but the best projects top 99 percent.
The combination of function point metrics for defect density and
defect removal efficiency (DRE) provides a very good method for

quality analysis. By contrast, the “cost per defect” metric is harmful
because it penalizes quality and is cheapest for the buggiest soft-
ware. The software industry has very poor measurement practices
and continues to use metrics such as “lines of code” and “cost per
defect” that violate standard economic assumptions.

Jones’ Law of Software Test Case Volumes to
Achieve 98 Percent Test Coverage
• Raise application size in IFPUG function points to the 1.2 power
to predict the probable number of test cases needed to achieve
98 percent test coverage for code paths and explicit require-
ments. Thus, for 100 function points there may be 251 test
cases; for 1,000 function points there may be 3.981 test cases;
for 10,000 function points there may be 63.095 test cases.
There are about 25 different kinds of testing for software,

although the six most common forms of testing are 1) unit test,
2) new function test, 3) regression test, 4) component test, 5)
system test and 6) beta test. The law stated above applies to the
first five • beta tests are carried out by sometimes hundreds of
external customers who all may test in different fashions. This law
is based on empirical data from companies such as IBM and ITT,
which use certified test personnel. Companies and projects where
developers and amateurs perform testing would have a lower ex-
ponent and also lower test coverage. This law needs to be studied
at frequent intervals. It would be useful to expand the literature on
test case volumes and test coverage. Needless to say, cyclomatic
complexity can shift the exponent in either direction.

Jones’ Law of Software Development Schedules
• Raising application size in IFPUG function points to the 0.38
power provides a useful approximation of development sched-
ules in calendar months. For 100 function points, the sched-
ule would be about 5.8 months; for 1,000 function points the
schedule would be about 13.8 calendar months; for 10,000
function points the schedule would be about 33.2 months.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
the areas of emphasis we are looking for:

Model Based Testing
July/August 2017 Issue

Submission Deadline: Feb 10, 2017

Software Release Management
September/October 2017 Issue

Submission Deadline: Apr 10, 2017

The Profession
November/December 2017 Issue
Submission Deadline: Jun 10, 2016

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

20 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

This law is supported by empirical data from about 26,000
software projects. However, military and defense projects need a
different exponent of about 0.4. Smaller Agile projects need a dif-
ferent exponent of about 0.36. Projects constructed primarily from
reusable components need a different exponent of about 0.33.

Lehman/Belady Laws of Software Evolution
• Software must be continually updated or it becomes less and
less useful.

• Software entropy or complexity increases over time.
• Software applications grow larger over time.
• Software quality declines over time.
• All users and software personnel must keep up-to-date with
software changes.
These laws by Dr. Meir Lehman and Dr. Laszlo Belady of IBM

were derived from a long-range study of IBM’s OS/360 operat-
ing system. However, they have been independently confirmed
by the author of this report and by other studies. The first law is
obvious, but the second law is not. The continual modification
of software to fix bugs and make small enhancements tends to
increase cyclomatic complexity over time and thus increase the
entropy or disorder of the software. In turn, this slows mainte-
nance work and may require additional maintenance personnel
unless replacement or restructuring occurs. Software renovation
and restructuring can reverse entropy, or at least slow it down.
See also Buddha’s Third Law earlier in this document.

Love’s Law of Legacy Application
Architecture Changes
• If you want to modify the architecture of a legacy system,
reorganize and restructure the support organization first and
then wait a while.
This law is congruent with several other laws that observe that

software architecture tends to reflect human organization struc-
tures, whether or not this is the best architecture for the software
itself. This law is congruent with Conway’s Law discussed earlier.
There seems to be a fundamental truth in the observation that soft-
ware mirrors human organizations, for good or for ill; probably for ill.

Love/Putnam Law of Maximum
Schedule Compression
• Software project schedules have a fixed point of maximum
compressibility. Once that point is reached, schedules can no
longer be shortened, no matter how many or what kinds of
resources are applied.
This law by Tom Love and Larry Putnam is an abstract

version of the Jones law that shows IFPUG function points
raised to the 0.38 power predict average schedules in calen-
dar months. In general, the point of maximum compressibility
is no more than about 0.3 below the average value; that is, if
a 0.38 exponent yields an average schedule, a 0.35 exponent
would yield the point below which schedules are no longer
compressible. For 1,000 function points, a value of 0.38
yields 13.8 calendar months. A value of 0.35 yields 11.2 cal-
endar months, beyond which further compression is not pos-
sible. A caveat is that constructing applications from libraries

of certified reusable materials or using a requirements-
model-based generator have both been shown to go past
the point of incompressibility. Love’s Law works for custom
designs and hand coding, but not for mashups or applications
built from standard reusable materials where manual coding
is minimized or not used at all. The first version of this law
was noted by the author of this paper in 1973 while building
IBM’s first parametric estimation tool. This is probably a case
of independent discovery since Putnam, Love, and Jones
were all looking at similar kinds of data.

Metcalfe’s Law
• The value of a network system grows as the square of the
number of users of the system.
This law is outside of the author’s scope of research and the

author’s collection of data. It seems reasonable, but due to a lack
of data, the author cannot confirm or challenge it here. It seems
obvious that network value increases as more people use it, as-
suming high usage does not degrade performance and reliability.

Moore’s Laws
• The power of computers per unit of cost doubles every 24
months.

• The number of transistors that can be placed on an integrat-
ed circuit doubles every 18 months.
These laws have been a mainstay of computing economics

for many years. One by one, the law reaches the end point of
various technologies, such as silicon and gallium arsenide, only to
continue to work with newer technologies. Quantum computing is
probably the ultimate end point at which the law will no longer be
valid. However, Moore’s laws have had a long and successful run •
probably longer than most of the laws in this paper.

Murphy’s Law
• If something can go wrong or fail, it will.
This is not a software law, but it is one that applies to all human

constructions. Empirical data supports this law to a certain de-
gree. The law is hard to study because some failures do not occur
until years after software has been released and is in use. There
is an interesting website that lists dozens of variations of Murphy’s
Laws applied to computer software: murphys-laws.com.

Paul’s Principle
• Knowledge workers become less competent over time, since
knowledge changes faster than practitioners learn new skills.
This is a thought-provoking observation for software

specialists such as testers, business analysts, architects and
the like. The concept seems to be supported by observations
and evidence. It can be extended to corporations, since the
rates of initial innovations in companies such as Apple and
Microsoft slow down over time. Some kinds of knowledge
work, such as medicine and law, have managed to overcome
this principle by requiring continual education in order to
keep licenses valid. Since software has no licenses and little
required continuing education for professionals (as of 2016),
this seems to be a weakness for software engineering.

CrossTalk—January/February 2017 21

SOFTWARE’S GREATEST HITS & MISSES

Parkinson’s Law
• Work expands to fill the time available for completion.
Software is labor intensive, and there is no strong supporting evi-

dence of software engineers puffing up projects to fill vacant time
since most software projects have very little vacant time available.

Senge’s Law
• Faster is slower.
Peter Senge noted that, for business in general, attempts to

speed up delivery of a project often made it slower. This phenom-
enon is true for software. Common mistakes made when trying
to speed up projects include omitting inspections and truncat-
ing testing. These tend to stretch out software development, not
shorten it. Hasty collection and review of requirements, jumping
into coding prior to design, and ignoring serious problems are
all practices that backfire and make projects slower. To optimize
software development speed, quality control (including inspec-
tions and static analysis prior to testing) is valuable.

Pareto Principle
(Applied to Software Quality by Capers Jones)
• More than 80 percent of software bugs will be found in less
than 20 percent of software modules.
The discovery of error-prone modules (EPM), which receive

far more bug reports than normal, was first made in IBM in
the 1970s and confirmed by other companies including ITT,
AT&T and many others. In general, bugs are not randomly
distributed but clump in a small number of modules, often with
high cyclomatic complexity. This phenomenon is common on
large applications above 1,000 function points in size. For the
IBM IMS database project, about 57 percent of customer-
reported bugs were found in 32 modules out of a total of
425 modules in the application. More than 300 IMS modules
had zero-defect bug reports from customers. Inspections and
surgical removal of error-prone modules raised IMS reliability
and customer satisfaction at the same time that maintenance
costs were reduced by more than 45 percent and development
cycles were reduced by 15 percent. Such findings confirm
Crosby’s Law that software quality is indeed free. It often hap-
pens that less than five percent of software modules contain
more than 95 percent of software bugs. The Pareto Principle
has been explored by many software researchers, including
Gerald Weinberg and Walker Royce, and it seems relevant to a
wide range of software phenomena.

The Peter Principle
• In a hierarchy, every employee tends to rise to the level of his
or her incompetence.
This is not an exclusively software observation but is a general

business observation. It does not seem to hold for software tech-
nical work, since good software engineers may not have a level of
incompetence. The law seems more relevant to subjective tasks
than to engineering tasks. If the law is restricted to a manage-
ment population rather than a population of technical personnel, it
seems to have more relevance. Indeed, the most visible manifes-
tations of this law are often at the CEO and corporate chair levels.

Weinberg’s First Law
• If a program does not have to be correct, it can meet any
other requirement.
This law is intriguing. Most programs are not correct, yet

they are deployed and used daily. Only when serious bugs
occur does the lack of correctness have a major impact. The
essence of the idea is that correctness is difficult, but other
factors are not as difficult.

Weinberg’s Second Law
• If builders built buildings the way programmers write pro-
grams, a woodpecker could destroy civilization.
This law is the most thought-provoking law in this paper. It

deserves serious consideration. Empirical data supports this
law to a certain degree. Software applications with question-
able architecture and high levels of cyclomatic and essential
complexity are fragile. Small errors and even one line of bad
code can stop the application completely or create large and
expensive problems.

Weinberg/Okimoto Law of “TEMP” Hazards
• Any application that contains the string “TEMP” will be diffi-
cult to maintain because that string indicates temporary work
that probably was done carelessly.
This interesting law by Jerry Weinberg and Gary Okimoto is

derived from examining actual code strings in software. Those
highlighted by markers indicating temporary routines have a
tendency to become error prone.

Weinberg/Jones Law of Error-Prone Module
(EPM) Causation
• A majority of error-prone modules (EPM) bypass some or all
of proven effective quality steps such as inspections, static
analysis, and formal testing.
This law was derived independently by Jerry Weinberg and

the author from examination of error-prone modules (EPM) in
different applications and in different development labora-
tories in different parts of the country. We both noted that a
majority of error-prone modules had not followed proven and
effective quality control methods such as inspections, static
analysis, and formal testing. Root cause analysis also indi-
cated that some of the careless development was due to the
modules arriving late because of creeping user requirements.

Wirth’s Law
• Software performance gets slower faster than hardware
speed gets faster.
This law was stated during the days of mainframes and

seemed to work for them. However, for networked microproces-
sors and parallel computing, the law does not seem to hold.

Yannis’ Law
• Programming productivity doubles every six years.
The author’s own data shows that programming productiv-

ity resembles a drunkard’s walk, in part because application
sizes keep getting larger. However, if you strip out require-

22 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

ments and design and concentrate only on pure coding tasks,
then the law is probably close to being accurate. Certainly
modern languages such as Java, Ruby, Go, C# and the like
have better coding performance than older languages, such
as Assembly and C. There is a caveat, however. Actual coding
speed is not the main factor. The main factor is that modern
languages require less unique code for a given application,
due in part to more reusable features. Yannis’ Law would be
better if it specified separate results by application size and
by application type. For example, there is strong evidence of
productivity gains below 1,000 function points in size but little
or no evidence for productivity gains above 10,000 function
points. Productivity rates vary in response to team experience,
methodologies, programming languages, CMMI levels, and
volumes of certified reusable materials. For any given size and
type of software project, productivity rates vary by at least 200
percent in either direction from the nominal average.

Zipf’s Law
• In natural language, the frequency of a word is inversely
proportional to its rank in the frequency table (that is, the
most common word is used about twice as much as the
second most common word). Zipf’s Law appears to work with
programming keywords as well as natural language text.

This law by George Zipf was originally developed based on
linguistics patterns of natural languages long before software
even existed. However, it does seem relevant to software
artifacts, including requirements, design, and source code. A
useful extension to Zipf’s Law would be to produce a frequency
analysis of the vocabulary used to define programs and systems
as a step toward increasing the volume of reusable materials.

Summary and Conclusions
This list of software laws shows a number of underlying

concepts associated with software engineering. The laws by
the author were originally published over a 35-year period in 16
books and approximately 100 journal articles. This is the first
time the author’s laws have been listed in the same document.

These laws are derived from the author’s collection of quan-
titative data, which started at IBM in 1970 and has continued
to the current day. The author was fortunate to have access to
internal data at IBM, ITT, and many other major software com-
panies. The author has also had access to data while working as
an expert witness in a number of software lawsuits.

While many laws are included in this article, no doubt many
other laws are missing. This is a work in progress, and new laws
will be added from time to time.

Send resumes to:
76SMXG.Tinker.Careers@us.af.mil

US citizenship required

Tinker AFB is only 15 minutes away from
downtown OKC, home of the OKC Thunder,
and a wide array of dining, shopping,
historical, and cultural attractions.

WE ARE HIRING
ELECTRICAL ENGINEERS AND COMPUTER SCIENTISTS

As the largest engineering organization on Tinker Air Force Base, the
76th Software Maintenance Group provides software, hardware, and
engineering support solutions on a variety of Air Force platforms and
weapon systems. Join our growing team of engineers and scientists!

BENEFITS INCLUDE:

 Job security

 Potential for career growth

 Paid leave including federal holidays

 Competitive health care plans

 Matching retirement fund (401K)

 Life insurance plans

 Tuition assistance

 Paid time for fitness activities

Oklahoma City SkyDance Bridge, Photo © Will Hider

mailto:76SMXG.Tinker.Careers@us.af.mil
76SMXG.Tinker.Careers@us.af.mil

CrossTalk—January/February 2017 23

SOFTWARE’S GREATEST HITS & MISSES

Note: A Google search on phrases such as “software laws” and “software engineering
laws” will return a variety of interesting sources. The references included here are only
a small portion of the available literature.
Boehm, Barry. (1981.) “Software Engineering Economics.” Prentice Hall, Englewood Cliffs, N.J.
Brooks, Fred. (1974, rev. 1995.) “The Mythical Man-Month.” Addison-Wesley, Reading, Mass.
Campbell-Kelly, Martin. (2003.) “A History of the Software Industry: from Airline

Reservations to Sonic the Hedgehog.” The MIT Press, Cambridge, Mass. ISBN 0-262-
03303-8. 372 pages.

Crosby, Philip B. (1979.) “Quality is Free.” New American Library. Mentor Books. New
York, N.Y. 270 pages.

DeMarco, Tom (1999.) “Peopleware: Productive Projects and Teams.” Dorset House. New
York, N.Y. ISBN 10: 0932633439. 245 pages.

DeMarco, Tom & Lister, Tim. (2003.) “Waltzing with Bears: Managing Risks on Software
Projects.” Dorset House Press, N.Y.

Gack, Gary. (2010.) “Managing the Black Hole – The Executive’s Guide to Project Risk.”
The Business Expert Publisher. Thomson, Georgia. ISBSG10: 1-935602-01-2.

Humphrey, Watts. (1989.) “Managing the Software Process.” Addison Wesley. Reading, Mass.
Jones, Capers & Bonsignour, Olivier. (2011.) “The Economics of Software Quality.” Ad-

dison Wesley Longman. Boston, Mass. ISBN 10: 0-13-258220—1. 585 pages.
Jones, Capers. (2014.) “The Technical and Social History of Software Engineering.”

Addison Wesley.
Jones, Capers. (2010.) “Software Engineering Best Practices.” McGraw Hill. New York,

N.Y. ISBN 978-0-07-162161-8. 660 pages.
Jones, Capers. (2007.) “Estimating Software Costs.” McGraw Hill. New York, N.Y. ISBN

13-978-0-07-148300-1.
Jones, Capers. (1994.) “Assessment and Control of Software Risks.” Prentice Hall. ISBN

0-13-741406-4. 711 pages.
Jones, Capers. (December 1995.) “Patterns of Software System Failure and Success.”

International Thomson Computer Press. Boston, Mass. 250 pages. ISBN 1-850-
32804-8. 292 pages.

Jones, Capers. (2000.) “Software Assessments, Benchmarks, and Best Practices.” Ad-
dison Wesley Longman. Boston, Mass. ISBN 0-201-48542-7. 657 pages.

Jones, Capers. (January 1977.) “Program Quality and Programmer Productivity.” IBM
Technical Report TR 02.764, IBM. San Jose, Calif.

Kan, Stephen H. (2003.) “Metrics and Models in Software Quality Engineering, 2nd edi-
tion.” Addison Wesley Longman. Boston, Mass. ISBN 0-201-72915-6. 528 pages.

Kuhn, Thomas. (1996.) “The Structure of Scientific Revolutions.” University of Chicago
Press. Chicago, Ill. ISBN 0-22645807-5. 212 pages.

Love, Tom. (1993.) “Object Lessons: Lessons Learned in Object-Oriented Development
Projects.” SIGS books. ISBN 0-9627477-3-4. 266 pages.

McConnell, Steve. (1997.) “Software Project Survival Guide.” Microsoft Press.
Pressman, Roger. (2005.) “Software Engineering – A Practitioner’s Approach.” McGraw

Hill. N.Y. 6th edition. ISBN 0-07-285318-2.
Radice, Ronald A. (2002.) “High Quality Low Cost Software Inspections.” Paradoxicon

Publishing. Andover, Mass. ISBN 0-9645913-1-6. 479 pages.
Starr, Paul. (1982.) “The Social Transformation of American Medicine.” Basic Books.

Perseus Group. ISBN 0-465-07834-2. NOTE: This book won a Pulitzer Prize in 1982
and is highly recommended as a guide for improving both professional education
and professional status. There is much of value for the software community.

Strassmann, Paul. (1985.) “Information Payoff.” Information Economics Press. Stamford, Conn.
Strassmann, Paul. (2004.) “Governance of Information Management: The Concept of

an Information Constitution.” 2nd edition (eBook). Information Economics Press.
Stamford, Conn.

Strassmann, Paul. (1999.) “Information Productivity.” Information Economics Press.
Stamford, Conn.

Wiegers, Karl E. (2002.) “Peer Reviews in Software – A Practical Guide.” Addison
Wesley Longman. Boston, Mass. ISBN 0-201-73485-0. 232 pages.

Weinberg, Gerald M. (1971.) “The Psychology of Computer Programming.” Van Nostrand
Reinhold, New York. ISBN 0-442-29264-3. 288 pages.

Weinberg, Gerald M. (1986.) “Becoming a Technical Leader.” Dorset House. New York.
ISBN 0-932633-02-1. 284 pages.

Yourdon, Ed. (1997.) “Death March - The Complete Software Developer’s Guide to
Surviving “Mission Impossible” Projects.” Prentice Hall PTR. Upper Saddle River, N.J.
ISBN 0-13-748310-4. 218 pages.

ABOUT THE AUTHOR
Capers Jones is currently vice president and chief technology officer of Namcook Analytics LLC. Prior
to the formation of Namcook Analytics in 2012, he was the president of Capers Jones & Associates
LLC. He is the founder and former chairman of Software Productivity Research LLC (SPR). Capers
Jones founded SPR in 1984 and sold the company to Artemis Management Systems in 1998. He
was the chief scientist at Artemis until retiring from SPR in 2000.

Before founding SPR, Capers was Assistant Director of Programming Technology for the ITT
Corporation at the Programming Technology Center. During his tenure, he designed three proprietary
software cost and quality estimation tools for ITT between 1979 and 1983. He was also a manager
and software researcher at IBM in California where he designed IBM’s first two software cost esti-
mating tools in 1973 and 1974 in collaboration with Dr. Charles Turk. Capers Jones is a well-known

author and international public speaker. Some of his books have been translated into five languages. His most recent book is The Techni-
cal and Social History of Software Engineering, Addison Wesley 2014.

Capers Jones has also worked as an expert witness in 15 lawsuits involving breach of contract and software taxation issues and
provided background data to approximately 50 other cases for other testifying experts.
Capers.Jones3@gmail.com
www.Namcook.com

REFERENCES

mailto:Capers.Jones3@gmail.com
http://www.Namcook.com

OPEN FORUM

The gang was enjoying a barbecue pig out at Rudy’s. It was
a magical moment until Rusty and Millie started to argue about
Agile software development.

Rusty started it by saying, “Agile is magical.”
Millie banged on the table with a half-chewed pork rib. “That’s

ridiculous. There’s nothing magical about it.”
“Sure there is.” Rusty pulled a Sharpie out of his pocket pro-

tector and printed “AGILE” on a paper towel (which passes for a
napkin at Rudy’s). “There are just a few things management has
to provide— like MONEY.” He sketched a capital M on the towel,
making MAGILE.

“Money’s not enough,” said Millie.
“Of course not. Management has to eliminate environmental

interference.” With one smooth stroke, he crossed out the “E.”
Millie frowned and shook her head, but Rusty took no notice.

“And they need to Cooperate, and not just occasionally, but All
the time.” He added the C and A, finally producing “MAGICAL.”

“Cute,” said Millie, her tone sarcastic, but she was clearly
struggling not to smile. “But successful projects require more
than waving a Sharpie wand and pronouncing ‘AgileCadabra.’”

We all knew that Rusty was pulling our legs. Millie, of course,
was right. If you want to succeed with an Agile approach, you
need more than magic rituals. Not only that, you need to avoid
several rather common mistakes that lead to failure.

Common Mistakes in Building New Things
In my experience, these common mistakes are not unique to

Agile projects, but they will kill Agile projects just as easily as
they kill projects that use Waterfall or any other approach:

1. Committing to a schedule or cost without having any
relevant experience with this type of project.

2. Using experience on a similar but smaller project to
commit to an estimate on a larger project.

3. Extending requirements to “optimize” or beat
unknown competition.

4. Failing to recognize signs of impending failure and/or
act on them by extending schedules and/or reducing
costly requirements (like those that diminish velocity by
creating more frequent failed tests).

5. Failing to recognize limits of the environment or process, or
recognizing the limits but being unwilling to change them.

6. Simply undertaking too many simultaneous tasks and
perhaps failing to complete any of them.

7. Not recognizing both changes and opportunities pre-
sented by a new technology.

8. Not asking the customer questions, either out of fear or
due to a lack of customer surrogate contact.

9. Not asking anyone for help (perhaps because of fear).
10. [I invite my readers to contribute more failure dangers to

this list.]

The Underlying Failure
In the end, though, there’s one common failure that, in a way,

underlies all of these dangers: the inability to work well in a
team. I’m not saying that some team members are “not team
players.” (That ugly phrase is often used by managers as a syn-
onym for “doesn’t follow my orders.”)

What I mean is that some people are simply not skilled at
working in a team. That’s not surprising, though, because most
of us grew up in an environment that did not support teamwork.
In view of our upbringing, it’s actually surprising that we have so
many skilled team workers.

First of all, most of us have spent our formative years in
schools that discourage teamwork. They actually call it “cheat-
ing.” When teachers discover that you’ve shared a task with
another person, you’re usually punished severely. You’re flunked.
You’re suspended. You may even be kicked out of school.

Perhaps you say, “But our society values teamwork. Just look
at the way we love sports teams.” Yes, we do value teams, but
not teamwork. A team may win a game, but sports journalists

Why Agile Projects Sometimes Fail
Gerald M. Weinberg

24 CrossTalk—January/February 2017

OPEN FORUM

will write about one player as the hero who “won the game.” The
sports league itself goes to great lengths to identify the “most
valuable player” for each game and the entire season.

On the job, managers waste endless hours ranking and
rewarding individual employees instead of teams. At the same
time, they constantly preach about teamwork, but we all give ten
times the credence to what people do than to what they say.

How Teaming Skill Prevents Failure
In order for a problem-solving effort to be successful, the

environment must contain three elements:
M: Motivation. The trophies or the trouble, the push or the

pull that moves the people involved.
O: Organization. The existing structure that enables ideas

to be worked through into practice.
I: Ideas or Innovation. The “seeds;” the image of what will

become.

Once we see how teaming skill fosters all three elements of
the MOI model, we can turn things around. Leadership can also
mean preventing change. If you want to stop some change from
occurring, you must do one of three things to the environment:

M: Kill the Motivation. Make people feel that change will not
be appreciated; do everything for them so they won’t
feel the need to do things for themselves; discourage
anything that people might enjoy doing for its own sake.

O: Foster Chaos. Encourage such high competition that
cooperation will be unthinkable; keep resources slightly
below the necessary minimum in the name of “efficien-
cy”; suppress information of general value, or bury it in
an avalanche of meaningless words and paper.

I: Suppress the Flow of Ideas. Don’t listen when you can
criticize instead; give your own ideas first, and loudest;
punish those who offer suggestions; keep people from
working together; and above all, tolerate no laughter.

A Balance of Styles
In order for a leadership style to be effective, there has to

be some balance among motivation, organization, and innova-
tion. Whether used to foster or prevent change, the MOI model
gives us a gross model of leadership style. In French, “moi”
means “me.” We can characterize a particular person’s ap-
proach to leadership in a specific instance by classifying that
person’s actions as motivational, organizational, or innovational.
But, if an Agile team member can lead only one of the three
factors, things can fall apart.

For instance, a person whose actions are almost totally
motivational might be a sales superstar or a charismatic poli-
tician who could sell any idea — if only she had one to sell.
I’ve seen way too many such politicians who persuade a team
to accept sub-standard, inadequately tested work in order to
meet an arbitrary schedule.

Or, someone whose actions are almost entirely organiza-
tional might be an incredibly efficient office manager who
keeps things super-organized — for last year’s staff and last
year’s problems. In some cases, such an organizer can trans-
form an Agile effort into one of those rigid “methodologies”
that’s the very antithesis of agility.

Finally, a team member whose actions are all directed toward
innovation might be a genius — full of ideas but unable to work
with other people, or to organize work for others. Or, perhaps,
the genius can never resist tossing his current great idea in to
disrupt a sprint that’s just about to finish.

I like the MOI model because it emphasizes that we all
possess the elements of leadership — the kind of leadership
needed by all members if an Agile team is to be successful. In
each of us, some elements are better developed than others,
but any one of us can improve as an Agile team leader simply by
strengthening our weakest elements. Mr. Universe doesn’t have
more muscles than I do, just better developed ones.

Why Agile Projects Sometimes Fail

Article adapted from Agile Impressions, https://leanpub.com/jerrysblog
http://www.geraldmweinberg.com
http://secretsofconsulting.blogspot.com

CrossTalk—January/February 2017 25

https://leanpub.com/jerrysblog
http://www.geraldmweinberg.com
http://secretsofconsulting.blogspot.com

26 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

In 1991, Peter DeGrace and Leslie Hulet Stahl first referred
to this as the “Scrum approach.” In the early 1990s, Ken
Schwaber used such an approach at his company, Advanced
Development Methods, and Jeff Sutherland, with John Scum-
niotales and Jeff McKenna, developed a similar approach at
Easel Corporation. They were the first to refer to it using the
single word “Scrum.” In 2001, Ken Schwaber teamed up with
Mike Beedle to describe the method in their book “Agile Soft-
ware Development with Scrum.”

The Scrum Framework
Scrum is an Agile [5] approach for managing a project. Scrum

was formalized originally for software development projects, but
over the years, I have applied Scrum practices to a wide range
of project types that required an innovative scope of work. The
possibilities are endless. The Scrum model is deceptively simple,
as shown in Figure 1.

The following summary describes a Scrum team’s activities
during each sprint:
—A Product Owner creates a prioritized list called a

“product backlog.”
—The team has a certain amount of time, called a “sprint,” to

complete its work — usually two to four weeks. The team
meets each day to assess its progress during its “daily stand-
up” meeting or “stand-up.”

Scrum is Simple!

Dick Carlson
Earle Soukup

Abstract. Scrum implementation requires a significant cultural shift from traditional project management methods. Scrum roles are different from
traditional roles and frequently cause confusion in engineering and business communities. Scrum terms are alien to most, and a radical change from the
“status quo” is not only difficult but also initially resisted by most. Although Scrum was originally recommended for software development projects, it is
applied easily to any type of project. This article provides a brief historical background and includes the basic concepts of Scrum.

Introduction
What is Scrum? [1] Scrum employs an iterative and incre-

mental approach for managing projects. Scrum has no ties
with the Project Management Institute (PMI) [2], and it is not
part of the Project Management Body of Knowledge (PMBoK).
[3] Although Scrum was originally recommended for software
development projects, it is easily applied to just about any type
of project. This means that Scrum can be and has been used
as a framework to manage a wide range of project types within
the activities and industries involved in or supporting software
engineering, systems engineering, IT, finance, real estate, manu-
facturing, community service, fitness, health, science, defense,
aerospace, religion, and household management, among others.

Scrum’s History
In 1986, Hirotaka Takeuchi and Ikujiro Nonaka described a

new approach to commercial product development that would
increase speed and flexibility. The approach was based on case
studies from manufacturing firms in the automotive, computer,
photocopier, and printer industries. They called this the “holistic”
or “rugby” approach because the whole process was performed
by one cross-functional team across multiple overlapping phas-
es, where the “Scrum” (or whole team) “tries to go the distance
as a unit, passing the ball back and forth.” This was another way
of describing concurrent planning and execution. [4]

CrossTalk—January/February 2017 27

SOFTWARE’S GREATEST HITS & MISSES

—During sprint planning, the team selects a small chunk of the
highest priority items from the top of the product backlog,
adds the selected work to a sprint backlog, and then decides
how to implement that work.

—The assigned Scrum Master keeps the team focused on its
goal and protects the team from organizational influences.

—At the end of each sprint, completed work should be deliver-
able, meaning ready to hand to a customer, placed in a reposi-
tory for future additional functionality, deployed to a user, or
demonstrated to a stakeholder.

—The sprint ends with a sprint review, which demonstrates all com-
pleted work followed by a retrospective meeting where the team
identifies and implements potential process improvements.

—As the next sprint begins, the team chooses another chunk
of the highest priority items in the product backlog and
begins working again.

The cycle repeats until enough items in the product backlog
have been completed to the satisfaction of the Product Owner
and the customer, the budget is depleted, or a deadline ar-
rives, which marks the end of all project work. No matter which
impetus stops work, the implementation of Scrum assures all
stakeholders that the most valuable work has been completed
when the project ends.

Scrum Roles
Scrum’s simple framework consists of three roles (and a few

supplemental roles), three critical artifacts, and five low-over-
head work activities. The roles include the following:

—Product Owner: The Product Owner represents the voice
of the customer and is accountable for ensuring that the Team
delivers value to the business. The Product Owner writes cus-
tomer-centric items (typically in user story format), prioritizes the
user stories, and adds the stories to the product backlog. Scrum
teams should have one Product Owner, and while he or she may

also be a member of the development team, it is recommended
that this role not be combined with that of the Scrum Master.

—Scrum Master: A Scrum Master facilitates Scrum and is
accountable for removing impediments that could prevent the
team from delivering the iteration or the sprint’s goals/deliv-
erables. The Scrum Master is not a team leader but acts as a
buffer between the team and any distracting influences. The
Scrum Master ensures that the Scrum process is followed and
enforces the agreed-upon rules. A key part of the Scrum Mas-
ter’s role is to protect the team and keep them focused on the
tasks at hand. The role has also been referred to as “servant-
leader” to reinforce these dual perspectives.

—Team: The Team is responsible for delivering the product.
A Team is typically made up of five to nine people with cross-
functional skills who do the actual work (analyze, design, develop,
test, review, technical communication, document, etc.). Also, it is
recommended that the Team be self-organizing and self-manag-
ing. During every sprint, the Team works closely with the Product
Owner, grooming the product backlog to ensure it reflects current
customer needs and priorities and that duplicate and no longer
needed items in the backlog are removed. Other backlog activi-
ties often include decomposing user stories that are too large to
implement in a single sprint, improving user stories that are poorly
written, re-estimating user stories based on changes in scope,
design, and other factors, and adding to or revising acceptance
criteria.

Supplemental Scrum Roles
The ancillary roles in Scrum are filled by those with no formal

role and who have infrequent involvement in the Scrum process
but who nonetheless must be taken into account. These roles
include the following:

—Stakeholders: These are the people (customers, us-
ers, suppliers, support groups, and anyone else with a vested
interest in the project) who enable the project and for whom

Figure 1. Scrum Framework

28 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

Scrum Artifacts
Scrum has three critical artifacts and one important artifact.

They are:
—The Product Backlog (Critical): The product backlog is a

high-level list that is maintained throughout the entire project by
the Product Owner. It aggregates backlog items — that is, broad
descriptions of all potential features — prioritized as an absolute
ordering by business value. It is therefore the “what” that will be
built, sorted by importance. It is open and editable by anyone
and typically contains rough estimates of business value and/
or development complexity. These estimates help the Product
Owner gauge the timeline and, to a limited extent, priorities.
For example, if the “add spell-check” and “add table support”
features have the same business value, the one with the smaller
development complexity will probably have higher priority,
because the return on investment (ROI) is higher. The product
backlog and business value of each listed item is the property of
the Product Owner. However, the associated development com-
plexity is determined by the team. A common and very simple
tool used to create the product backlog is a spreadsheet.

During each sprint and throughout the project life cycle, the
product backlog is groomed through a coordinated effort of the
team and the Product Owner to:

—Remove backlog items (user stories) that no longer
provide value.

—Add or write new user stories as a result of customer-
defined needs.

—Re-prioritize backlog items as necessary.
—Estimate new items added and re-estimate existing items

that may have changed.

Figure 2: Task Board Sample

Figure 3: Sprint Burn-down

the project will produce the agreed-upon benefits that justify
its production. They are typically involved directly in the process
during sprint reviews.

—Management: People, including project managers, who are
responsible for the establishment of the product development
environment, personnel resources, budgets, and requisite techni-
cal support when needed.

—Technical Owner: A person who advises on technical is-
sues related to the product, the requirements, the environment,
the infrastructure, and the team’s capabilities.

CrossTalk—January/February 2017 29

SOFTWARE’S GREATEST HITS & MISSES

—Decompose stories that are too large to be completed in a
single sprint.

—The Sprint Backlog (Critical): The sprint backlog is
the list of work the team must address during the next
sprint. Features are decomposed into tasks, which, as a
best practice, normally should be between four and 16
hours of work. With this level of detail, the whole team
understands exactly what to do. Tasks on the sprint
backlog are never assigned; rather, tasks are selected by
knowledgable team members as needed, according to
the set priority and a team member’s skills. This promotes
self-organization of the team and developer buy-in.

The sprint backlog is the property of the team, and all
included estimates are provided by the team. However,
the Scrum Master may prefer to maintain this artifact to
ensure that it reflects a sprint’s status in real time. Often
an accompanying task board or work-in-progress (WIP)
board (Figure 2) is used to see and change the “state” of
each story related to the tasks of the current sprint to “To
do,” “WIP,” “Verify,” and “Done.” A common and very simple
tool used to create the sprint backlog is a spreadsheet.

—Sprint Burn-down Chart (Important): The sprint burn-
down chart (Figure 3) is displayed in plain view of the team
to show work completed and work remaining in the sprint’s
backlog. Updated every day, the chart provides an easy-to-
understand view of the sprint’s progress. It also provides
quick visualizations for reference. Note that the red line
represents the planned completion of work within the two-
week sprint. The blue line shows the actual daily burn-down
of story points (product backlog work selected for the sprint).

—Task Board (Critical): The task board is an informa-
tion radiator that supports the notion of transparency. It
shows tasks in work decomposed from their user stories
throughout the sprint. See Figure 2: Task Board Sample.
The task board is updated by team members as they
complete each task. Each item (story) selected from
the product backlog for the sprint is placed on the task
board for all to see the progress of work throughout the
sprint. Team members check out the tasks as they ac-
cept them, then work on tasks until they are completed.
When a task is completed, the team member moves it
from the “WIP” column to the “To Verify” column. Then
the Product Owner verifies its completion before initiat-
ing another task. The team maintains the task board
up to the “To Verify” column. So, if a team member
completes a task, he or she cannot take credit until the
Product Owner verifies that it is done. This is among the
best transparency tools used in Agile projects.

Scrum Activities
The Daily Scrum (or Stand-up): The Daily Stand-up is a

work session that should be facilitated by the Scrum Master
for new teams. Each sprint day, each member of the team tells
other team members what they have completed and what they
plan to do next. Experienced teams may become relatively
autonomous in the conduct of stand-ups, therefore allowing the
Scrum Master to spend time on other project-related activities.

Essentially, the team owns and runs the stand-up. The stand-up
has specific guidelines that include the following:

—Starts on time at the same location and same time every day.
—Time-boxed at 15 minutes or fewer.
—Side conversations are not allowed.
—One team member talks at a time until all have spoken.

All others listen.
—Problems are identified, but solutions are deferred to

specific persons after the stand-up.
—Others are welcomed, but only the core roles are allowed

to speak.

During the meeting, each team member responds to these
three questions:

—What have you done since the last stand-up meeting?
—What are you planning to do next?
—What impediments do you have that prevent you from ac-

complishing your work?
—Do you have any issues?

The Scrum Master facilitates resolution of all impediments,
although in order to keep the meeting to 15 minutes, the resolu-
tion occurs outside the meeting. The reason the stand-up is
kept short is to avoid long-winded conversations and to limit
member responses to one person at a time. I liked to conduct
stand-up meetings in a private and quiet area without chairs.
That’s the main reason it is referred to as a “stand-up.”

Sprint Planning: Sprint Planning is led by the Product Own-
er and is facilitated by the Scrum Master. At the beginning of
every sprint, a two-part, time-boxed “sprint planning” session is
conducted. Its purpose is to ensure that everyone understands
all of the functionality to be completed during the next sprint.

During the first half of this session, the Product Owner
explains to the team what needs to be completed or imple-
mented during the sprint, prioritizing backlog items and allow-
ing the team to estimate all work targeted for the sprint.

During the second half of Sprint Planning, the team does
the following:

—Calculates its “velocity,” or how much it feels it can complete
with a high probability of success.

—Selects backlog items from the product backlog based on
their velocity.

—Defines acceptance criteria that will eventually become
systems tests.

—Determines how it will build the selected items by decom-
posing each selected backlog item into tasks.

—Coordinates with the Product Owner on sprint goals and
helps define “Done.”

—Decides the location and time for the daily stand-ups.

The Scrum Master prepares the Sprint Backlog to illustrate the
time it will take to complete the work the team must complete.

Sprint Review: A sprint review is conducted at the end of
every sprint, and it is facilitated by the Scrum Master. Each team
member is required to demonstrate completed functionality and

30 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

Dick Carlson has a B.S. degree in business
management and is certified as a Scrum
Professional, Scrum Master, Scrum Product
Owner, and in Lean-Agile Project Manage-
ment. He has shared successful experiences
of Agile, Lean, and Scrum implementations
at conferences, workshops, and symposia.
Dick’s engineering career spans 50 years,
and he has taught courses in mathematics,
electronics, CMMI, configuration and data
management, Agile, Lean, and Scrum for
more than 30 years.

Mr. Soukup holds a Bachelor’s and
Master’s degree in Electrical Engineering, a
Juris Doctor in Law, certificates for software
development, project management, function-
al management, systems engineering, and
Agile and Lean including being a Certified
Scrum Master. He was a development and
test engineer, manager, and project manager
for both hardware and software. Also he
developed and taught courses in mathemat-
ics, electronics, ethics, Lean, and Agile. He
is an accomplished analyst.

ABOUT THE AUTHOR

REFERENCES
1. http://www.scrumalliance.org/
2. http://www.pmi.org/
3. http://www.pmi.org/PMBOK-Guide-and-Standards.aspx
4. http://hbr.org/1986/01/the-new-new-product-development-game/ar/1
5. http://www.agilealliance.org/
6. https://www.agilealliance.org/glossary/scrum-of-scrums/

Recommended Reading:
—“Lean Software Development: An Agile Toolkit for Software Development Managers.”
Mary and Tom Poppendieck, 2003.
—“Agile Project Management with Scrum.” Ken Schwaber, 2004.
—“Writing the Product Backlog Just Enough and Just in Time.” Mike Cohn, 2009.
—“Succeeding with Agile: Software Development Using Scrum.” Mike Cohn, 2009.

review all work products completed. Work not completed cannot
be demonstrated but should be mentioned. The review must
include all relevant stakeholders so that the team will receive
critically needed feedback. At the conclusion of the review,
the Product Owner decides whether to accept everything as
presented or to defer the completed work until the product’s
functionality becomes useful enough to be deployed or shipped.

Sprint Retrospective: The purpose of the retrospective is
to build the team’s commitment and transfer knowledge learned
to the next sprint and to other teams. The sprint’s retrospective
is a time-boxed meeting conducted by members of the team at
the conclusion of every sprint to accomplish the following:

—Discuss what was successful about the sprint or release.
—Determine what could or must be improved before proceeding.
—Learn from experiences and plan for the future.
—Identify successes and improvements for future projects.
—Discover, share, and pass along the learning experience.
—Make changes for the next sprint.

A retrospective is not a:
—Session to identify mistakes and place personal blame.
—Place for personal attacks.
—Meeting to resolve issues.
—Planning meeting.

Scrum of Scrums
According to the Scrum Alliance, a Scrum of Scrums (SoS)

is a technique used to scale Scrum up to large groups of 12
or more people. Each daily stand-up within a sub-team ends
by designating one member as “ambassador” to participate in
a daily meeting with ambassadors from other teams. [6]

In my experience, I have found that the Scrum of Scrums
is needed for larger projects that involve more than three
development teams consisting of 10 or more members. Large
teams should be divided into smaller teams that focus on a
subset of the end product.

The Scrum of Scrums should be held two or three times a
week depending on project complexities or hurdles after the
daily stand-up. Scrum of Scrums should be attended by the
Scrum Master of each team or a responsible team member
selected by the team. This session should be facilitated by an
Agile coach or a very experienced Scrum Master to ensure
discussions remain focused. The meeting is not time-boxed
like other Scrum meetings because it does not take away
from any committed time that team members have agreed to
work. Specific guidelines for the Scrum of Scrums include:

—Allowing clusters of teams to discuss their work, focusing
especially on areas of overlap and integration.

—The agenda is the similar to the daily stand-up:
—What has your team done since we last met?
—What will your team do before we meet again?
—Is anything slowing your team down or getting in their way?

Conclusion
The title of this article is, “Scrum is Simple,” but Scrum is

not easy. Scrum implementation represents a significant cul-

tural shift from traditional project management methods. The
Scrum roles are different from traditional roles and frequently
cause confusion to general engineering and business com-
munities. Scrum terminology is foreign to most, and change
from the ‘status quo’ is not only difficult but also initially
resisted by most. Scrum is best used as a wrapper of an
organization’s existing engineering practices and is improved
as necessary while product increments are delivered or de-
ployed. Scrum provides a way for team members to feel good
about their jobs, their contributions, and their performances.

http://www.scrumalliance.org/
http://www.pmi.org/
http://www.pmi.org/PMBOK-Guide-and-Standards.aspx
http://hbr.org/1986/01/the-new-new-product-development-game/ar/1
http://www.agilealliance.org/
https://www.agilealliance.org/glossary/scrum-of-scrums/

CrossTalk—January/February 2017 31

SOFTWARE’S GREATEST HITS & MISSES

Y Y Totals ↓
+ : s i ∈ {Z} t+ (malicious) f+ (false alarm) | Z| = t+ + f+

­ : s i ∈ {Z} f­ (missed attack) t­ (normal) | Z| = f­ + t­

| Y | = t+ + f­ | Y | = f+ + t­ | S| = | Y | + | Y | = | Z| + | Z|

Actual classification (ground truth)

Totals

Test Result

1. Introduction
DoD systems are becoming increasingly automated. Although

human supervision is important, more and more operational
activities are coming under computer control. Classification is
a key element in these control systems. Incorrect classification
can have devastating effects. Assessing classifiers is an impor-
tant activity, not only during tool selection but also at deployment
and during operation. Practitioners need actionable information.

Imagine you are responsible for choosing the target selec-
tion software for a system such as Iron Dome. Some missiles
may impact in desert or agricultural areas, causing little damage.
Conversely, some missiles may impact hospitals or power or water
plants, causing severe damage and/or casualties. How does one
generate actionable information for such a mission? And how can
that information be mapped to the software selection task? Un-
fortunately, classifier evaluation is not a trivial task. One challenge
is that there are numerous measures used and their relevance to
mission capability is unclear. This article will apply actual industrial
control system intrusion detection system (ICS IDS) test results to
a hypothetical mission. We will identify what constitutes actionable
information for mission capability, define two specific classifica-
tion mission types, and review some commonly seen classifier
evaluation measures (“total accuracy rate”1 (TAR), F score [1] and
the “Youden index” (J)[2]) for applicability, then recommend a
measure selection protocol. ICS IDS utility will be measured rela-
tive to the mission. The practitioner’s takeaway from this article

will be an understanding of classifier evaluation and an evaluation
protocol for generating actionable information.

In this discussion, classifier test results are presented in the
“de facto” standard format, the joint probability table (JPT) (also
called confusion matrix, error matrix and contingency table).
Table 1 shows the JPT and defines the variables used for vari-
ous test category counts.

2. Use Case
Our task is to make a “GO/NO GO” recommendation on

deploying an advanced ICS anomaly detector on a power
system provisioning a mission-critical service. “GO” indicates
deployment is justified; “NO GO” indicates deployment is not
justified: the existing situation (no anomaly detection) is favor-
able. Table 2 summarizes our evaluation’s test outcome. (These
results are an actual test result of an advanced anomaly
detector in a recent ICS IDS development project. [3] Test
conditions set the significant digits to four). At first glance, the
detector results look compelling; there are few missed attacks
and no false alarms. However, decision makers are looking at
the big picture: how is the mission affected? For this discus-
sion, we assume the mission effect is measured in U.S. dollars;
the units could be anything relevant (e.g., pounds, kilowatts,
gallons treated). We want to compare implications of both the
“GO” and “NO GO” options. Table 3 shows the results for three
measures in the literature.

For all three measures, higher is better, so the measures all
support a “GO” decision. However, how great will that benefit be?
Unfortunately, these measures cannot provide that information.

3. Actionable Information Consider-
ations for Measuring Mission Capability

For classifier selection, deployment, and field
checking, practitioners must quantify performance.
We have distilled their needs to four questions
which correlate directly to rows in Table 4.

Generating Actionable
Information for
Classifier Assessment
E. Earl Eiland, New Mexico Institute of Mining and Technology
Lorie M. Liebrock, Ph.D., New Mexico Institute of Mining and
Technology

Abstract. DoD systems are becoming increasingly automated and classifiers
are essential to their operation. Classifier assessment, then, is also essential, not
only during tool selection, but also for maintaining deployed systems. Classifier
evaluation is, however, not trivial: there are numerous classifier evaluation mea-
sures used. How does one select a measure, and once selected, what do the
values mean? This article addresses what constitutes actionable information
regarding a classifier’s effect on mission capability, maps some commonly seen
measures to these needs, and recommends a means of maximizing the action-
able information generated in classifier evaluations.

Table 2: Observed Test Results, Organized into a
Joint Probability Table.

Y Y Totals ↓
+ : s i ∈ {Z} 177 0 177
­ : s i ∈ / {Z} 23 310000 310023

200 310000 310200

Actual classification (ground truth)

Totals

Test Result

Measure NO GO GO
Accuracy 0.9993 0.9999
F1-score 0.009852 0.9389

Youden Index 0.004978 0.8850

Measure value

Table 3: The bolded values for each of the three measures sup-
port a “GO” decision. However, the measure values vary greatly.
What do these values indicate to decision makers about the
extent to which the target IDS will mitigate the success of an
adversary to cripple their mission?

Table 1: Category Cardinalities Shown in a Joint Probability Table.

32 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

3.1 What Is the Classifier’s Impact on My Mission?
To address category impacts, consider what the measure

quantifies and how that relates to the mission capability. This
question is actually a bit simplistic, because there are two dif-
ferent mission types: one where the relative difference in class
sizes is important and one where the relative class size
(ratio+ = |Y| / |Y|) is confounding. [4]

Our intrusion detection use case includes both types of
instances. High-impact events may have devastating, perhaps
irrecoverable, effects on the mission; even a single occurrence of
such an event must be avoided. In this case, the relative frequency
of such attacks is irrelevant. Indeed, the occurrence of these
events may be sufficiently infrequent so that a distribution cannot
be reasonably estimated.

At the other end of the spectrum, some events may be mere
nuisances with little effect on the mission. The risk of “nuisance
level” events may be sufficiently frequent that the impact is
cumulative: ratio+ is important. Commonly seen measures do
not reflect this risk well. Question one in Table 4 shows three
measures’ ability to quantify impact.

For this use case, we also define an intermediate event
category. This impact category’s missional effect is significant,
but not irrecoverable. We also stipulate that a relative attack
frequency can be reasonably estimated. Intermediate impact
events will have different impact parameters, but can use the
same measure as the nuisance events.

Impact is problem specific and can affect each JPT category
differently. In this paper, we refer to a vector of the expected per-
event impacts: I = (ιT+ , ιF+ , ιF_, ιT_).

3.2 What Is the Boundary that Provides the Optimum
Impact?

Practitioners need to know what boundary settings produce the
best results. Only a boundary (B) sensitive measure can provide
this information. One mission’s optimum boundary (B*) may not be
optimum for another. In the intrusion detection use case, the three
impact levels could each have independent optimum boundaries.
This information could affect the detector’s deployment strategy.

A measure useful to practitioners must be sensitive to the
same factors and to the same degree as practitioners are to
their respective mission capabilities. With regard to utility, the
practitioner’s context is defined by the importance, or impact,

of elements from each JPT category in that context. A small
change to any element of I will generate corresponding changes
in a compliant measure.

A useful measure is sensitive to I, allowing practitioners to
tune the measure’s output to match their mission. Commonly
seen measures do facilitate boundary selection; however, they
do not quantify impact, so there is no guarantee that their B*s
are optimum for impact. [5] Boundary optimization in Table 4
shows three measures’ utility for optimum boundary selection.
3.3 How Sensitive is the Impact to Boundary Selection?

Classifiers are often used in situations where the practitio-
ner has imperfect knowledge of the environment; they may
not be able to determine the optimum boundary with cer-
tainty. In these cases, a practitioner’s boundary selection may
be suboptimal. They will benefit from knowing how a slightly
suboptimal boundary will affect the mission outcome. Only
a boundary-sensitive measure can provide this information.
Although many commonly seen measures do have Bs, their
values cannot be mapped to impact.

Indeed, different measures will have different curvatures on
the same test data; they cannot be used to assess boundary
sensitivity. Boundary sensitivity in Table 4 shows three measures’
ability to quantify boundary sensitivity.

3.4 How Can I Measure Classifier Performance in the
Field?

Practitioners may have imperfect mission and context knowl-
edge, resulting in unexpected classifier performance, or mission
conditions may shift, resulting in performance drift. Either
situation may justify re-tuning a classifier after deployment; a
classifier’s field performance must be monitorable. For our intru-
sion detection use case, the events flagged as malicious can be
analyzed, thereby determining ground truth (t+, f+), but all that is
known about missed attacks(t_) is discovered by other means.
Evaluating a short-range missile interception system, such as
Israel’s Iron Dome, has the same problem: ground truth (t_,f_) is
known for ignored missiles2, but not for the intercepted missiles
(Z in this case). In these two cases, field data is incomplete;
however, practitioners can rely on knowing Z and . With these
two values, practitioners can compare actual and predicted
results. Unexpected variations trigger deeper analysis. A gener-
ally useful measure, then, must be calculable from classifier

output: Z and . Commonly seen measures are
not amenable to the practitioner’s need for this
perspective. Perspective in Table 4 shows three
measures’ utility for field checks.

4. The Utility of Classifier Evaluation
Measures for Practitioners

Table 4 summarizes Total Accuracy Rate,
Fβ-score and Youden Index utility for practitio-
ners. Each measures’ ability to answer the four
questions posed in Section 3 were evaluated.
Key findings were:
• Most are ordinal scale measures and none
were ratio scale measures. Answering the ques-
tions requires ratio scale values, so none could

Table 4: In the general case, there are four characteristics a measure needs to well-inform
practitioners on classifier performance. They are posed as questions in Sections 3.1-3.4; none
of the measures considered satisfy all four practitioner’s questions. Hence, the measures provide
practitioners little actionable information.
The measure does not quantify the classifier’s impact on the practitioner’s use case. The B is op-
timizing another characteristic, so there is no guarantee that the B* identified is correct for impact.

TAR Fβ -score Youden
1: category impacts (Section 3.1) No Partial No
2: boundary optimization (Section 3.2) Yes∗ Yes∗ Yes∗
3: boundary sensitivity (Section 3.3) No No No
4: perspective (Section 3.4) No No No

Measure
Practitioner’s need

CrossTalk—January/February 2017 33

SOFTWARE’S GREATEST HITS & MISSES

answer practitioner questions one through three.
•	 Each measure’s characteristics were, at best, suitable for

niche problems. None of the questions were answered
for the general case.

•	 None included mission capability impact. (Category
impact in Table 4.)

•	 Excepting total accuracy rate, the summary measures re-
viewed define classifier quality equal to a fair coin as “zero.”
However, from the practitioner’s perspective, a fair coin
is just another classification algorithm: randomly tagging
output as Z or with probability 0.5 may not have a zero
effect on mission capability. A meaningful zero for research
may not be meaningful for any particular mission. Thus, the
measures could not answer questions one through three.

Additional measure characterizations and in-depth analysis
are available in Eiland and Liebrock [5, 6].

4.1 Two Evaluation Measures Valuable for Practitioners
As noted in Section 3, based on relative class size impor-

tance, there are two classification mission types, and the exist-
ing measures do not factor in expected event impacts. Here we
show that there are two measures which include I. The vector
of JPT category impacts are expressed as statistical expecta-
tions (expected individual element impact) by category or class.

For missions such as detecting low- and medium-impact ICS
attacks and short-range missile defense, impact is cumulative
and ratio+ is an important factor. For this mission type,

4.1.1 Applying ιI and ισ to Practitioner’s Questions
How well do the impact measures ιI and ισ meet the

practitioner’s needs?
1.	 What is the classifier’s impact on my mission capability?

The four impacts specified in I quantify the expected
mission impact of each output type. These are part of the
impact equations, so the measure values quantify mission
impact. Also, the impact measures are ratio-scale.

2.	 What is the boundary that provides the optimum
impact? The impact measures are boundary sensitive, so
the optimum expected impact can be mapped to a value
or values in the boundary continuum.

3. How sensitive is the impact to boundary selection?
Since the impact measures are boundary sensitive, the
change in expected impact can be calculated relative to the
variation in the selected boundary from the true optimu

4. How can I assess classifier performance in the field?
Both impact measures can be stated as functions of the
classifier’s output, Z and . Practitioners can compare
these values to the actual (observed) impact values, thereby
determining if the classifier is performing as expected.

Both ιI and ισ satisfy the four criteria for quantifying a
classifier’s impact on the practitioner’s mission capability.

5. Measure Comparison Protocol
Section 2 describes the ICS use case; this section illustrates

applying the new measures to it and the actionable information
generated. An essential initial step to using ιI and ισ is defining
I. Using ιI and ισ does require additional mission-environment-
specific information, the vector I. Table 5 lists the impact (I) vec-
tors for this use case. The values for each category are based
on the following assumptions:
• Legitimate events processed as legitimate (T_): The enter-

prise realizes a $100 benefit from every legitimate event.
• Legitimate events processed as malicious (F+): Although

there is some loss incurred, the enterprise still realizes a
$99 benefit from every false alarm event.

•	 Malicious events processed as malicious (T+): The enter-
prise avoids the potential negative effects but experiences
a small detection and response cost per event.

•	 Malicious events processed as legitimate (F_): The enter-
prise realizes a cost from every missed attack. For this use
case, a specific event’s impact class is mapped directly
to the expected ιF_ . High-impact events generate a major
loss; low-impact events generate a small reduction in per-
event income.

These values are for illustration purposes; each practitioner
must determine values for their situation.

Another initial step is measure selection. ιI is appropriate
when the mission results affected by the classifier are cumula-
tive and ground truth for the input population is known. If either
of these conditions does not exist, then ισ must be used.

Once I has been defined and the measure selected, then
the evaluation consists of inserting the JPT data and I into the
selected measure (ιI or ισ) and comparing the values. The B
with the JPT that generates the best impact value is B*.

Z and Z. With these two values, practitioners can compare actual and predicted re-
sults. Unexpected variations triggers deeper analysis. A generally useful measure, then,
must be calculable from classifier output: Z and Z. Commonly seen measures are not
amenable to the practitioner’s need for this perspective. Perspective in Table 4 shows
three measures’ utility for field checks.

4. The Utility of Classifier Evaluation Measures for Practitioners

Table 4 summarizes Total Accuracy Rate, Fβ-score and Youden Index utility for
practitioners. Each measures’ ability to answer the four questions posed in Section 3
were evaluated. Key findings were:

• Most are ordinal scale measures and none were ratio scale measures. Answering
the questions require ratio scale values so none could answer practitioner questions
one through three.

• Each measure’s characteristics were at best, suitable for niche problems. None of
the questions were answered for the general case.

• None included mission capability impact (Category impact in Table 4).

• Excepting total accuracy rate, the summary measures reviewed define classifier
quality equal to a fair coin as “zero”. However, from the practitioner’s perspective,
a fair coin is just another classification algorithm: randomly tagging output as
Z or Z with probability 0.5 may not have a zero effect on mission capability. A
meaningful zero for research may not be meaningful for any particular mission.
Thus, the measures could not answer questions one through three.

Additional measure characterizations and in-depth analysis are available in Eiland and
Liebrock [5, 6].

4.1. Two Evaluation Measures valuable for Practitioners
As noted in Section 3, based on relative class size importance, there are two clas-

sification mission types and the existing measures do not factor in expected event im-
pacts. Here we show that there are two measures which include expected impact values.
I = (ιT+ , ιF+ , ιF− , ιT−). The vector of JPT category impacts are expressed as statistical
expectations (expected individual element impact) by category or class.

For missions such as detecting low and medium impact ICS attacks and short-range
missile defense, impact is cumulative and ratio+ is an important factor. For this mission
type,

ιI = ιT+

t+
|S|

+ ιF+

f+

|S|
+ ιF−

f−
|S|

+ ιT−

t−
|S|

(1)

is an appropriate measure. ιI can also be expressed on Z and Z, the outputs actually
observed by the practitioner:

ιI = ιZ
|Z|
|S|

+ ιZ
|Z|
|S|

. (2)

5

is an appropriate measure. ιI can also be expressed on Z and
, the outputs actually observed by the practitioner:

Z and Z. With these two values, practitioners can compare actual and predicted re-
sults. Unexpected variations triggers deeper analysis. A generally useful measure, then,
must be calculable from classifier output: Z and Z. Commonly seen measures are not
amenable to the practitioner’s need for this perspective. Perspective in Table 4 shows
three measures’ utility for field checks.

4. The Utility of Classifier Evaluation Measures for Practitioners

Table 4 summarizes Total Accuracy Rate, Fβ-score and Youden Index utility for
practitioners. Each measures’ ability to answer the four questions posed in Section 3
were evaluated. Key findings were:

• Most are ordinal scale measures and none were ratio scale measures. Answering
the questions require ratio scale values so none could answer practitioner questions
one through three.

• Each measure’s characteristics were at best, suitable for niche problems. None of
the questions were answered for the general case.

• None included mission capability impact (Category impact in Table 4).

• Excepting total accuracy rate, the summary measures reviewed define classifier
quality equal to a fair coin as “zero”. However, from the practitioner’s perspective,
a fair coin is just another classification algorithm: randomly tagging output as
Z or Z with probability 0.5 may not have a zero effect on mission capability. A
meaningful zero for research may not be meaningful for any particular mission.
Thus, the measures could not answer questions one through three.

Additional measure characterizations and in-depth analysis are available in Eiland and
Liebrock [5, 6].

4.1. Two Evaluation Measures valuable for Practitioners
As noted in Section 3, based on relative class size importance, there are two clas-

sification mission types and the existing measures do not factor in expected event im-
pacts. Here we show that there are two measures which include expected impact values.
I = (ιT+ , ιF+ , ιF− , ιT−). The vector of JPT category impacts are expressed as statistical
expectations (expected individual element impact) by category or class.

For missions such as detecting low and medium impact ICS attacks and short-range
missile defense, impact is cumulative and ratio+ is an important factor. For this mission
type,

ιI = ιT+

t+
|S|

+ ιF+

f+

|S|
+ ιF−

f−
|S|

+ ιT−

t−
|S|

(1)

is an appropriate measure. ιI can also be expressed on Z and Z, the outputs actually
observed by the practitioner:

ιI = ιZ
|Z|
|S|

+ ιZ
|Z|
|S|

. (2)

5
An in-depth discussion and analysis of ιI is in the online

technical report [6].
For events such as detecting ICS attacks with potentially high

impact, each event’s impact is independent and ratio+ is con-
founding; normalized JPTs are used. Normalization mathematically
balances relative class size (ratio+ = 1), thus it mitigates any skew
resulting from ratio+. To facilitate comparison with non-normalized
JPTs, the sum of all categories is kept at one (|S| = 1) and the
individual input class values (Y and Y) add up to 0.5.

For missions where ratio+ is confounding, the expected
impact is

An in-depth discussion and analysis of ιI is in the online technical report [6].
For events such as detecting ICS attacks with potentially high impact, each event’s

impact is independent and ratio+ is confounding; normalized JPTs are used. Normaliza-
tion mathematically balances relative class size (ratio+ = 1), thus it mitigates any skew
resulting from ratio+. To facilitate comparison with non-normalized JPTs, the sum of
all categories is kept at one (|S| = 1) and the individual input class values (Y and Y)
add up to 0.5.

For missions where ratio+ is confounding, the expected impact is:

ισ =
1
2

(
ιT+t+n

|Zn|
+

ιF+f+n

|Zn|
+

ιT−t−n

|Zn|
+

ιF−f−n

|Zn|

)
. (3)

An in-depth discussion and analysis of ιI and ισ is in the online technical report [6].
ιI and ισ are suitable for many classification problems and extensible to classification

problems with more than two classes. For ισ, the JPT must be normalized, then each
category conditioned by its classification tag. Then, the impact adjusted values can be
summed up.

4.1.1. Applying ιI and ισ to Practitioner’s Questions
How well do the impact measures ιI and ισ meet the practitioners needs?

1) What is the classifier’s impact on my mission capability? The four impacts
specified in I quantify the expected mission impact of each output type. These are
part of the impact equations, so the measure values quantify mission impact. Also,
the impact measures are ratio-scale.

2) What is the boundary that provides the optimum impact? The impact mea-
sures are boundary sensitive, so the optimum expected impact can be mapped to
a value or values in the boundary continuum.

3) How sensitive is the impact to boundary selection? Since the impact measures
are boundary sensitive, the change in expected impact can be calculated relative
to the variation in the selected boundary from the true optimum.

4) How can I assess classifier performance in the field? Both impact measures can
be stated as functions of the classifier’s output, Z and Z. Prectitioners can com-
pare these values to the actual (observed) impact values, thereby determining if
the classifier is performing as expected.

Both ιI and ισ satisfy the four criteria for quantifying a classifier’s impact on the
practitioner’s mission capability.

5. Measure Comparison Protocol

Section 2 describes the ICS use case; this section illustrates applying the new measures
to it and the actionable information generated. An essential initial step to using ιI and
ισ is defining I. Using ιI and ισ does require additional mission-environment-specific
information, the vector I. Table 5 lists the impact (I) vectors for this use case. The
values for each category are based on the following assumptions:

6

ιI and ισ are suitable for many classification problems and are
extensible to classification problems with more than two classes.
For ισ , the JPT must be normalized, then each category must be
conditioned by its classification tag. Then, the impact-adjusted
values can be summed up.

An in-depth discussion and analysis of ιI and ισ is in the online
technical report [6].

34 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

classifier evaluation, the less satisfied they were with the exist-
ing measures, and after exposure to ιI and ισ and viewing a
use case applying them, Accuracy, F1-score and Youden index,
the respondents overwhelmingly felt that ιI and ισ provided
substantial additional actionable information and the extra ef-
fort needed to define I was justified.

7. Conclusion
Historically, practitioners have had difficulty assessing clas-

sifier effect on their mission capability. This paper identifies
actionable information desired by practitioners, evaluates three
commonly seen measures for mission relevance, and recom-
mends changes that provide better quality (more actionable)
information. Testing demonstrated the increase in actionable
information received by practitioners.

Questions expressing information useful to practitioners
were identified:

1. What is the classifier’s impact on my mission?
2. What is the boundary that provides the

optimum impact?
3. How sensitive is the impact to boundary selection?
4. How can I measure classifier performance

in the field?
Commonly seen classifier evaluation measures fail to answer

these questions. To illustrate this point, values using three mea-
sures — Total Accuracy Rate, F1-score and Youden index — are
presented and discussed. Two measures were identified that do
answer the questions: ιI and ισ .

Generally, the intent of publishing classifier performance data is to
inform a broad readership, including practitioners. Practitioners would
be better served if classifier performance reports provided data that
enabled them to calculate their own mission-relevant impacts.

One suggestion is for researchers to publish ιI and ισ with
balanced I, on normalized JPT(B*), and the normalized JPT(B)
for a range of boundaries. Researchers can use the published
ιI and ισ values, and practitioners have the values necessary to
calculate actionable information for their specific missions.

The four-step process for practitioners is:
1. Identify the expected impacts and define I. If the prob-

lem is complex, like the intrusion detection example, then
multiple I s may be needed.

2. Identify the appropriate measure, ιI or ισ. Various
aspects of a complex problem may need to be
addressed separately, and the same measure may
not be appropriate for all aspects.

3. If ιI is appropriate, then use JPT tuning to compensate for
the mission domain’s ratio+, then condition the published
JPTs by Z and .

4. Calculate the selected measure. The B with the JPT
that generates the best impact value is B*. B* will
provide the best results for the target classifier. In the
example given, the best impact is the maximum. This,
however, is problem-dependent. In some cases, the best
result may be a minimum.

With these values, practitioners can also determine the
classifier output’s B sensitivity.

Table 5: Impact values for this use case. For clarity, impact classes are tied to
missed attacks (ιF_). All other vector values are kept constant. The table reflects
the test’s precision to four significant digits.

Impact Class ιT+ ιF+ ιF_ ιT_

Low $­ 0.001000 $99.00 $90.00 $100.00

Medium $­ 0.001000 $99.00 $­ 0.001000 $100.00

High $­ 0.001000 $99.00 $­ 10,000 $100.00

Impact value

Table 6: The bolded values for each measure indicate the
decision supported. Whereas the common measures all
support a “GO” decision, the impact measures show that the
decision is not so clear-cut. A “GO” decision is only strongly
supported for high-impact events. The impact measures
provide more actionable information to practitioners.

Measure NO GO GO

Accuracy 0.9993 0.9999

F1-score 0.009852 0.9389

Youden Index 0.004978 0.885

Low impact (ιI) $99.99 $99.94

Medium impact (ιI) $99.93 $99.93

High impact (ισ) –$4937 −$941. 7

Measure value

Table 6 shows the values using the new measures. Do the pro-
posed measures, ιI and ισ , provide more actionable information?
All three common measures support a “GO” decision, but those
measures do not reflect how the ICS IDS affects the practitio-
ner’s mission capability. The impact measures, however, are quan-
tified in relevant units (for this example, we use dollars per event).
Decision makers need only compare the predicted net income
for deploying the ICS IDS (“GO”) to the predicted net income
without the ICS IDS (“NO GO”). The impact measures show that
a “GO” decision is only strongly supported for high impact events.
For medium impact events, the correct decision is debatable and
the ICS IDS is contraindicated for low impact events. Practitio-
ners receive this insight from ιI or ισ , but not the other measures.
Given the information in Table 5, one might suspect that the ICS
IDS would not be cost effective for low impact events, but ιI or
ισ quantify the expected result. Further, ιI shows that the “GO”
decision is strongly supported for high impact events. However,
the impact value is still strongly negative, indicating the enterprise
still has substantial residual risk. Decision makers may want to
implement additional mitigations.

6. User Reaction
The initial work was inspired by anecdotal stories and informal

discussions with practitioners. However, a group of practitioners
was surveyed to substantiate the stories. The group size was too
small for a rigorous statistical analysis. However, two conclu-
sions were possible: the more experience practitioners had with

SOFTWARE’S GREATEST HITS & MISSES

1. Van Rijsbergen, C.J. (1979.) “Information Retrieval.” Available online at http://www.
dcs.gla.ac.uk/Keith/Preface.html

2. Youden, W.J. (1950.) “Index for rating diagnostic tests.” Cancer, 3:32–35.
3. Eiland, E. Earl & Stride, Eric. (June 2016.) “Unpublished data set.” Emerging Tech-

nologies Directorate. root9B, LLC.
4. Japkowicz, Nathalie & Shah, Mohak. (2014.) “Evaluating Learning Algorithms: A

Classification Perspective.” Cambridge University Press. New York, N.Y.
5. Eiland, E. Earl & Liebrock, Lorie M. (2013.) “Efficacious end user measures; Part 1:

Relative class size and end user problem domains.” Adv. in Artif. Intell. 2013:2:2–2:23.
6. Eiland, E. Earl. & Liebrock, Lorie M. (2015.) “Efficacious end user measures for

discriminant analysis tools.” Technical report, New Mexico Institute of Mining and
Technology.

REFERENCES

E. Earl Eiland is a senior cyber security
engineer with root9B, LLC. In his current
position, he has lead development of a
novel control system anomaly detector and
is rolling out a company-wide innovation
program. He holds an M.S. in computer
science from New Mexico Tech and is
completing a computer science doctorate
at New Mexico Tech. His interests include
risk-based classifier evaluation, machine
intelligence applications and control sys-
tem cybersecurity.
earl.eiland@root9b.com
505.453.2605
root9B, LLC
310 South Saint Mary’s Street, Suite 1600
San Antonio, TX 78205

Lorie M. Liebrock is Dean of Graduate
Studies and a professor of computer
science and engineering at New Mexico
Tech. Her research integrates enterprise
cybersecurity, foundations of computer
science, computer forensics, information
assurance, parallel processing, and visual-
ization for complex problems. Dr. Liebrock
holds M.S. and Ph.D. degrees in computer
science from Rice University and B.S. and
M.S. degrees in computer science from
Michigan Technological University. She is a
member of ACM and IEEE.
liebrock@nmt.edu

ABOUT THE AUTHORS
1. TAR has been in use so long, its source is not found cited.
2. Ground truth is also known for missed missiles, but that is a separate matter.

NOTES

CrossTalk—January/February 2017 35

http://www.dcs.gla.ac.uk/Keith/Preface.html
mailto:earl.eiland@root9b.com
mailto:liebrock@nmt.edu
http://www.navair.navy.mil

36 CrossTalk—January/February 2017

UPCOMING EVENTS

CrossTalk—January/February 2017 37

UPCOMING EVENTS

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

Software Solutions Symposium 2017
Arlington, Virginia
20-23 March 2017
http://www.sei.cmu.edu/sss/2017/

Software Engineering Institute (SEI)
Architecture Technology User Network
Conference (SATURN) 2017
Denver, Colorado
1-4 May 2017
http://www.sei.cmu.edu/saturn/2017/

2017 IEEE Third International Conference on
Big Data Computing Service and Applications
(Big Data Service)
San Francisco, CA
6-9 April 2017
http://big-dataservice.net

2017 Conference on Human-Robot Interaction
(HRI2017)
Vienna, Austria
6-9 March 2017
http://humanrobotinteraction.org/2017/

7th ACM Conference on Data and Application
Security and Privacy (ACM CODASPY 2017)
Scottsdale, Arizona
22-24 March 2017
http://www.codaspy.org/

Design, Automation and Test in Europe
Lausanne, Switzerland
27-31 March 2017
https://www.date-conference.com/

Cyber-Physical Systems
Pittsburgh, PA
18-21 April 2017
https://cpsweek2017.ece.cmu.edu/

ACM CHI Conference on Human Factors in
Computing Systems
Denver, Colorado
6-11 May 2017
http://chi2017.acm.org/

http://www.crosstalkonline.org/events
http://www.sei.cmu.edu/sss/2017/
http://www.sei.cmu.edu/saturn/2017/
http://big-dataservice.net
http://humanrobotinteraction.org/2017/
http://www.codaspy.org/
https://www.date-conference.com/
https://cpsweek2017.ece.cmu.edu/
http://chi2017.acm.org/

38 CrossTalk—January/February 2017

BACKTALK

Ever worked on a project that failed? I don’t just mean it ran
poorly or didn’t meet all of the user’s needs – I mean it failed SO
spectacularly that you refer to the project as a resume stain. I
have worked on one project (not to be named, of course) that
from day one of the project, the project was secondary – trying
to find a new project to transfer to became paramount.

During my 23 years in the Air Force, I had many friends
whose careers were tarnished (if not crippled) from associa-
tion with high profile projects that failed spectacularly. Some
projects fail from technical reasons – it’s a sad fact that in the
DOD, we are often pushing the “bleeding edge” – and we just
don’t have the technology to complete it. Some projects failure
from the sheer size – trying to create 100+ million lines of code
projects are doomed from the complexity.

And some fail because we could do better.

I ran across an interesting article online – from a web site called
outsource2india.com (there’s probably another Backtalk on that
topic later). They listed 10 reasons large projects faili. They are:

1. Miscalculated Time and Budget Frames. Well, YEAH.
Nobody really knows the time, budget or functionality until
AFTER the project is done. You need to plan on this – probably
only 25% if software projects meet schedule and budget goals,
let alone quality and “essential” requirements.

2. Was it Needed at All? Can you list projects you’ve worked
on that there was not really a business case for? Not all ideas
are good – but sometimes it’s not politically expedient to say
“Are you nuts? Nobody really needs this!”. I found a reference
to the - The FAA Advanced Automation System (1981-1994)

: Cost of $3.7 billion; peak staffing of 2000; maximum run rate
of $1 million/day; 13 years duration of development. - Noth-
ing was delivered; no code was ever used. The reason: nobody
wanted it in the first place or in other words there was no busi-
ness case for it

3. Lack of Communication. Five people can communicate.
2000+ developers and 100s of users can’t. But you knew that.
How many projects have you worked on where the end-users
couldn't be identified? Speaking of which…

4. No End-user Involvement, and its companion…..

5. Unfocused Executive Sponsors

6. Failing to See the Bigger Picture. You have to see the
big picture, and use common sense. In the UK, officials called
off what was considered to be the largest public IT project of all
time. It was a project which was intended to provide electronic
health records for all of its citizens. After 10 years and cost-
ing an estimated 19 billion USD the authorities concluded that
the project was not fit to provide the modern services it was
intended to. DO YOU MEAN TO TELL ME THEY SPENT $19
BILLION BEFORE THEY DETERMINED IT WASN’T GOING
TO WORK? Yep – as long as everybody is getting paid and
the money is flowing – why cancel? By the way - $19 billion
seemed impossibly high – but I found several referencesii – they
really spent that much!

7. Chasing Technology. Ada. DODAF. DIICOE. New
technologies are good – but they are NOT a “Silver Bullet”. And
if you haven’t read Brooks’ “No Silver Bullet” paperiii – stop now
and go read it. I’ll wait.

Failure IS an Option!

CrossTalk—January/February 2017 39

BACKTALK

8. Development Downtime. Debugging and fixing errors is
going to take longer than you think, even with new time-saving
languages and tools. Plan on it. Then double the time planner.

9. Lack of Periodic Assessment. If you don’t know where
you are – sort of hard to figure out when (or if) you’re going to
be done. Honesty comes into play here – the urge to report
“Almost done” when you really have no clue is overwhelming.

10. Lack of Quality Testing. Testing with live users. Integra-
tion testing with all other systems. Stress testing. Security
testing. If you don’t test, the users will – after you deliver it. And
it becomes a failure.

Mind you, there are LOTS of lists as to why projects fail –
IEEE Spectrum has a similar list.iv Their list is just a list of the
COMMON reasons for failure – implying that there are LOTS
MORE. Depressing, isn’t it?

• Unrealistic or unarticulated project goals
• Inaccurate estimates of needed resources
• Badly defined system requirements
• Poor reporting of the project's status
• Unmanaged risks
• Stakeholder politics
• Use of immature technology
• Poor communication among customers, developers, and users
• Inability to handle the project's complexity
• Sloppy development practices
• Poor project management
• Commercial pressures

When I read such lists, I feel depressed. To make myself even
more depressed I go and browse a website called “Coding Hor-
rors”. The articlev”The Long, Dismal history of software project
failure” (based upon the IEEE article referenced above) is a real
pick-me-up – it starts by pointing out that Sainsbury, the UK
supermarket giant, had to write off a $526 million automated
supply-chain management system just last October (2015) A
half-billion-dollar failure.

Want to feel better? I’m not much help. Software will fail,
for all the reasons listed above and more. It’s the nature of
what we do for a living. BUT – there is a bright side, accord-
ing to the article: Learn from failures! “Failing is OK. Failing
can even be desirable. But you must learn from your failures,
and that requires concerted postmortem introspection and
analysis. …. Once you know what the common pitfalls are,
it's easier to avoid them”.

If you are going to fail (and, sad to say, you probably will)
at least LEARN from the failures. Don’t make the same
mistakes again, or at least try to mitigate similar mistakes in
the future. Learn, take a deep breath, and move on. Sta-
tistics are hard to come by – but some estimate that 50%
of all software projects will fail, and about another 25% will
succeed but not be used. As mentioned above, only about
25% meet time and budget targets. It’s the price we pay for
being on the cutting edge of technology. It’s the nature of
the beast. We do the best we can, learn from the mistakes,
and sign up for the next project that comes along. If I’m
going to fail, I’m going to go down swinging! You really don’t
learn that much from successes – but failure? That’s where
to really get an education!

David A. Cook, Ph.D.
cookda@sfasu.edu
Stephen F. Austin State University

Failure IS an Option!

i https://www.outsource2india.com/software/pricing-structure.asp
ii http://www.independent.co.uk/life-style/health-and-families/health-news/nhs-pulls-the-plug-on-its-11bn-it-system-2330906.html
iii http://worrydream.com/refs/Brooks-NoSilverBullet.pdf
iv http://spectrum.ieee.org/computing/software/why-software-fails
v https://blog.codinghorror.com/the-long-dismal-history-of-software-project-failure/

NOTES

mailto:cookda@sfasu.edu
https://www.outsource2india.com/software/pricing-structure.asp
http://www.independent.co.uk/life-style/health-and-families/health-news/nhs-pulls-the-plug-on-its-11bn-it-system-2330906.html
http://worrydream.com/refs/Brooks-NoSilverBullet.pdf
http://spectrum.ieee.org/computing/software/why-software-fails
https://blog.codinghorror.com/the-long-dismal-history-of-software-project-failure/

CrossTalk thanks the
above organizations for
providing their support.

CrossTalk / 517 SMXS MXDED
6022 Fir Ave.
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

T he Software Maintenance Group at Hill Air Force Base is recruiting
civilians (U.S. Citizenship Required). Benefits include paid vacation,

health care plans, matching retirement fund, tuition assistance, paid time
for fitness activities, and workforce stability with 150 positions added
each year over the last 5 years.

Become part of the best and brightest.

Hill Air Force Base is located close to the Wasatch and Uinta mountains
with skiing, hiking, biking, boating, golfing, and many other recreational
activities just a few minutes away.

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e
Hiring Expertise

Engineers and Computer Scientists

mailto:309SMXG.Recruiting@us.af.mil
mailto:309SMXG.Recruiting@us.af.mil
https://www.facebook.com/309softwaremaintenancegroup/?fref=ts

	From the Sponsor
	ADA: A Failure that Never Happened!
	A Comparison of Medical Diagnoses and Software Problem Diagnoses
	ADA: 20 Years After the Mandate
	A Retrospective View of the Laws of Software Engineering
	Open Forum: Why Agile Projects Sometimes Fail
	Scrum is Simple
	Generating Actionable information for Classifier Assessment
	Upcoming Events
	Backtalk: Failure IS an Option!

