
4 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

Introduction and Context for Ada
By the 1970s, the “software crisis” was a well-known phe-

nomenon. Simply put, software usually:
—Was overpriced.
—Didn’t meet all requirements.
—Took too long to develop.
—Was difficult to maintain and update.

There were many reasons software had these failings. One was
that designing and developing software is inherently difficult [2].
Another cause was the proliferation of programming languages,
with each one differentiated from the others with perhaps one
unique feature. As pointed out in Schorsch and Cook [3], lan-
guages evolve to solve problems, but when too many languages
proliferate too quickly, problems in maintenance and continued
support occur. By some counts, by the 1980s, the Department of
Defense alone was supporting software in more than 1,000 lan-
guages. This made maintenance extremely difficult — finding an
expert in any one particular specialized language was difficult. In
addition, code that solved a problem in one language could not be
ported to other systems that were coded in different languages.

By the 1970s, approximately 50 percent of all DoD projects
involved embedded systems (systems in which the computer is
embedded in the device it controls). It was estimated that the
DoD supported over 400 different languages used for embed-
ded systems alone. [4] Embedded systems often share a com-
mon set of systems (command and control, targeting, navigation,
etc.) — and, as mentioned above, each solution had to be re-
developed in multiple languages since code reuse among lan-
guages was difficult. The DoD, in an effort to stop this language
proliferation, created the High Order Language Working Group
(HOLWG) to standardize and create a new high-order language
for embedded systems. The process to create the Ada lan-
guage was the result of the most extensive and most expensive
language design effort ever undertaken. It took over six years to
produce the standard, MIL-STD 1815 (and later 1815a) which
became the basis for the Ada programming language. [5]

In 1986, Ada became the mandated DoD language after the

A Failure That
Never Happened!Ada

David A. Cook, Ph.D. Stephen F. Austin State University
Eugene Bingue, Ph.D. NCTAMS-PAC

“The major cause of the software crisis is that the machines have become several
orders of magnitude more powerful! To put it quite bluntly: as long as there were
no machines, programming was no problem at all; when we had a few weak com-
puters, programming became a mild problem, and now we have gigantic comput-
ers, programming has become an equally gigantic problem.” — Edsger Dijkstra [1]

“Ada Mandate”: “Notwithstanding any other provisions of law, where
cost effective, all Department of Defense software shall be writ-
ten in the programming language Ada, in the absence of special
exemption by an official designated by the Secretary of Defense.”

While the Ada Mandate was a bold step, in retrospect, most
people believe it came too early — there were very few tools and
compilers in 1986 — and was unenforceable. The phrase “where
cost effective” was difficult to define, and the DoD-sponsored
AJPO (Ada Joint Program Office) had little authority to enforce the
mandate. Nevertheless, the DoD poured millions into the AJPO to
promote and support Ada throughout the U.S. and the DoD.

Ada Features and Update
Whether or not the Ada Mandate was ill-timed, Ada itself

was a visionary language. It had several features that, in the
early 1980s, were revolutionary (or at least evolutionary). In
addition, Ada has been updated multiple times to keep the
language current and vibrant.

“Ada has influenced the development of Java, C++, Visual
Basic, and even the Microsoft .NET Framework. Likewise, Ada
has been influenced by more than 30 other languages, including
Java, C, and C++.” — Richard Conn[6]

Features of Ada 83 (the original language):
—Packages. Data types, data objects, and procedure specifica-

tions that could be abstracted and encapsulated into a pack-
age. This supports the program design of data abstraction. This
promotes reuse “in the large.”

—Exception Handling. Ada has very good exception handling
capabilities that allow the program to handle its own runtime er-
rors. It is possible in Ada to prevent errors from propagating to the
operating system, making Ada very useful in embedded systems
when full OS support for error handling is minimal or nonexistent.

—Generic Program Units. It is possible in Ada to write a proce-
dure (for example, a sorting procedure) that does not require a data
type to be specified at compile time. This permits reuse “in the small.”

—Parallel/Concurrent Processing. Ada supports parallel and
concurrent execution of tasks (the “tasking” parallel processing
paradigm). For embedded systems developers, this permits the
coding of parallel processes at the language level rather than at
the operating system and underlying hardware level. This also al-
lows reuse “in the large.” Most parallel processing at the time was
accomplished via the operating system, not the language.

—Strong Typing. This feature allowed programmers to, for
example, declare two separate integer types (like “kilometers”
and “miles”), both of which look like integers but are treated
as two separate (and noncompatible) types. This was relatively
new at the time and made Ada programs more reliable. Many
developers are unaware of the
many errors caused by improper
mixing of incompatible types.
One example, reported at Hotz,
was the loss of the $125 million
NASA Mars Climate Orbiter
“because spacecraft engineers
failed to convert from [imperial]

CrossTalk—January/February 2017 5

SOFTWARE’S GREATEST HITS & MISSES

to metric measurements when exchanging vital data before the
craft was launched.” [7] Strong typing (and good design) would
have prevented this error. Ada was not the first programming
language to use “name” instead of “structural” type compat-
ibility, but it was one of the first to provide such a wide range of
options for effective design and implementation, thus providing
good abstraction of the “real world” and enhanced reliability. [8]

Enhanced features of Ada95 (the first major update of
the language, still within the Ada Mandate):

—Object-Oriented Programming. The original language
supported object-based programming, but C++ and other
languages later began supporting object-oriented design and
development. Ada was updated to include this powerful feature,
including polymorphism and multiple inheritance.

—Other.
—More flexible libraries (including child libraries) to en-

courage easier reuse and better design.
—Better control mechanisms for shared data, including

protected records (threads) and improved tasking.
In retrospect, the original language strongly encouraged good

design and the use of software engineering methods to produce
code that was reliable, understandable, modifiable/maintainable
and efficient. While the Ada Mandate might not have been appro-
priate, the use of a language that encouraged (and possibly re-
quired) good design was a major advance in the 1980s. Ada was
also strongly typed, which required more design and planning but
resulted in safer code that was more likely to execute correctly.

The emphasis of Ada is that code must be safely compiled
before it can run. All interfaces must be completely speci-
fied and all library references must be established before the
compiler can create executable code. In short, the Ada compiler
typically did the work that was done, in other languages, by the
debugger. Ada code required a lot of design and coding before
it would compile, whereas in other languages, library linkages
and even code dependencies could wait until link time or even
execution time. The authors, both of whom have taught Ada
since the mid-1980s, used to say, “In C and C++, the debugger
is your most used tool. In Ada, it’s the compiler.” [9]

Ada After the Mandate
The Ada Mandate was removed in 1997. For the last few years

of its existence, it was widely ignored. Ada had, in fact, left a “bad
taste” in the mouths of many developers and companies in the
U.S. and many international companies that interacted with the
U.S. The mandate had required Ada’s use when there were few
tools and compilers and may have actually prevented the spread
of Ada. Due to a lack of enforcement of the Ada Mandate, com-
panies that continued to use languages not particularly suitable
for high-integrity embedded systems faced little, if any, penalty for
ignoring the mandate. Those companies that had invested time
and effort in training and Ada code production saw few external
benefits in the short term. In fact, Ada was viewed as a failure,
and with the removal of the Ada Mandate in 1997, many thought
the language would die a quick death. But they were wrong. Ada
did not fail. In fact, it never faltered. In retrospect, it appears that

the Ada Mandate (and lack of compilers and tools once Ada was
mandated) enticed developers to switch to Ada prematurely. Ada
did not fail, but perhaps the mandate did.

The real benefit to the companies investing time and effort
into converting to Ada was perhaps the increased quality of their
software. The software was more maintainable, easier to update,
and exhibited fewer errors. Studies showed that “Back in the
day when people were pushing for Ada there was a few studies
showing how better it is in terms of defect rates and produc-
tivity. Ada is an example of a language designed towards the
goal of eliminating defects.” [10]. The study also says that “Ada
is designed so that as much as possible is caught at compile-
time rather than run-time. What this means is that it often takes
about 10x longer to get a program in Ada to compile than the
equivalent would in Java say, but when it does compile you can
be much more confident that whole classes of bugs will not
manifest themselves when the program’s run.”

Seeing the potential for Ada, Lieutenant General (U.S. Army,
retired) Emmett Paige, who in 1997 was retired and serving as
Assistant Secretary of Defense (Command, Control, Communica-
tions, and Intelligence), was quoted as saying “Ada will compete
better without the mandate.” [11] And it has. In fact, Ada might be
viewed as one of the most successful failures in history.

As part of an ongoing effort to keep Ada viable as a lan-
guage, Ada underwent another significant update in 2005.
This update, which included adding support for state-of-the-art
programming paradigms and practices, kept Ada current as a
modern programming language. Conn and Taft [12] both explain
how and why Ada continues to evolve to meet current needs.

Ada 2005 updates improved features to support safety, high-
integrity and enhanced reliability, and included improved parallel
processing (both threads and tasks). [13] The latest language
update, Ada 2012, added to Ada’s ability to produce high-reli-
ability code by introducing contract-based programming. [14]

Ada is also known for being “backward compatible” so that
programs written in earlier versions will both compile and run
correctly on the latest compilers. [15]

Major Ada 2005 enhancements:
—Improvements to OO usage.
—Enhanced embedded support.
—Enhanced real-time support.
—Enhancements supporting safety, portability and interoperability.

Major Ada 2012 enhancements
—Formal methods.
—More powerful assertion mechanisms (pre- and post-conditions).
—Contract-based programming.
—Memory usage enhancements.
—Improvements to the container library.
—More powerful use clauses.
—Additional uses of incomplete types that simplify the

construction of nested containers.
In addition to the major changes listed above, both of the

recent language enhancements contain numerous minor
enhancements and additions that enhance readability, program

6 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

correctness, efficiency of code, and program expressiveness.
It is also important to note that Ada does not just evolve; it has
“planned evolution.” The language is an ISO standard and is
regularly updated by an international standardization committee.

To quote from WG9, “…the existence of an international
standard is vital to [Ada’s] usage. More than any other program-
ming language, the users of Ada employ the standard itself as
their basic reference to the language. The Ada marketplace has
placed great importance on the existence of an unusually detailed
validation suite that is driven by the specification of the standard.
Vendors and users of Ada maintain a continuing and frequent
dialogue with SC22/WG9 in order to ensure that interpretations
of the language standard are applied uniformly and that code is
highly portable. In fact, the highly rigorous standardization of the
language and the continuing maintenance of that standard is
often cited as one of the Ada language’s ‘selling points.’ The high
degree of collaboration between the marketplace and WG9 is
one of the great successes of JTC1 standardization efforts.” [16]

Ada is sometimes viewed by developers in the U.S. as a
“dead” language. However, companies and projects such as
Airbus, Boeing, TGV, the subway in New York City, the C130,
the European Space Agency, and 28 of the world’s Air Traffic
Control Systems continue to use Ada. Feldman has a list of the
many projects worldwide using Ada. [17]

Ada is alive and current in terms of programming features
with the 2012 update. In this update, the language has taken
another step in ensuring safe, reliable, and maintainable sys-
tems. Due to a lack of mandate outside of the U.S., Ada is not
viewed with a “bad taste” overseas. SPARK, a subset of Ada, is
widely used outside of the U.S., and even in the U.S. for such
projects as CubeSat. SPARK is designed to produce code for
use where high reliability is absolutely essential and, with sup-
porting tools, can produce formal verifiable software. [18]

There are several current projects (mostly requiring real-time
or embedded support) that use Ada. Ada has launched vehicles
into space, is being used for drones, and is used in the AdaPi-

lot “Digital Flight Control System” — a new project to create a
highly reliable open source autopilot using the Ada and SPARK
languages. [19] A quote from the project says, “Ada has a set of
unique technical features that make it highly effective for use in
large, complex, and safety-critical projects and is well-known for
its typing features, which allow the programmer to define ranges
over discrete or floating-point types. This specificity of Ada is
very useful when it comes to proving the absence of overflow
and constraint errors using SPARK.”

Conclusion
At this point in time, the Ada language is over 30 years old. It

has accomplished exactly what it was designed to accomplish.
[20] It was innovative (for its time) and helped developers become
familiar with abstraction and encapsulation. Ada focused on reli-
ability and correctness and shifted the focus of development from
“code and fix” to “engineer and design before coding.” The goal
switched from “code that would run” to “code that was reliable,
understandable, modifiable and maintainable, and efficient.” Years
after the Ada Mandate expired, Ada is being successfully used in
industry fields such as manufacturing, flight, transportation, simu-
lation and modeling, and medicine. It is regularly updated, is an
international standard, and is literally used worldwide. [21] In fact,
Ada’s use on the CubeSat and the Cassini-Huygens project actu-
ally show that it is used solar system-wide! In particular, CubeSat
says, “As compared to the more commonly used C language, Ada
makes it much easier to write correct, robust software. SPARK
adds the ability to create mathematical proofs (with the aid of
tools), showing freedom from certain classes of runtime errors
and other correctness properties.” [22]

CrossTalk—January/February 2017 7

SOFTWARE’S GREATEST HITS & MISSES

Ada is still ranked in the “Top 30” languages in The TIOBE
Programming Community index, which is an indicator of the
popularity of programming languages. The index is updated
once a month. The ratings are based on the number of skilled
engineers worldwide, courses, and third-party vendors. [23]

Ada’s niche for developing high-integrity, reliable embedded
software is secure, and there exists many high-quality tools and
compilers to support its successful use in the future. Ada has
recently been used for projects such as:

—Rosetta “Comet Chaser.”
—CubeSat.
—Paris-London Eurostar.
—Paris Metro Line 14 (Driverless Subway line).
—U.S. and U.K. Air Traffic Control.
—Cassini-Huygens Mission to Saturn.
—Boeing 777 and 787.
—London Victoria underground.
—New York City subway.

These are just a few of the “Powered by Ada” success stories
listed at http://www.sigada.org/awareness/ada-posters-gallery/
index.html. For a language that was once viewed as a failure,
Ada is very active in the embedded community, where high reli-
ability is required.

Ada’s death and failure never occurred. It was — and is — one
of the better successes the DoD has produced.

1. Dijkstra, E. (1979.) Turing Award Lecture: “The Humble Programmer. Classics in
Software Engineering Yourdon Press. ISBN 0917072146. Original paper, shown in CACM
1972 V15 #10. Available online at http://www.cs.utexas.edu/users/EWD/transcrip-
tions/EWD03xx/EWD340.html.

2. Brooks, Frederick. (1975.) “No Silver Bullet: Essence and Accident in Software Engi-
neering.” Reprinted in The Mythical Man Month, Addison-Wesley.

3. Schorsch, Thomas & Cook, David. (February 2003.) “Evolutionary trends in program-
ming languages.” Crosstalk: the Journal of Defense Software Engineering.

4. Language Guide. “Ada: The Ada Programming Language.” Available online at http://
groups.engin.umd.umich.edu/CIS/course.des/cis400/ada/ada.html

5. D’Andrea, Luigi. Available online at https://www.linkedin.com/pulse/kingdom-ada-luigi-
d-andrea?forceNoSplash=true

6. Conn, Richard. (August 2006.)“Ada 2005.”Crosstalk: the Journal of Defense Software Engineering.
7. Hotz, Robert L. (Oct. 1, 1999.) “Mars Probe Lost Due to Simple Math Error.” Los Angeles

Times. Available online at http://articles.latimes.com/1999/oct/01/news/mn-17288
8. Gicca, Greg. “Ada Watch: Choosing a programming language that supports reliability.”

Military Embedded Systems.Available online at http://mil-embedded.com/guest-blogs/
ada-watch-choosing-a-programming-language-that-supports-reliability/

9. Bingue, Cook, Dupaix. (1996.) “Introduction to Ada 95.” Proceedings of TriAda ’96 (slide
notes). Philadelphia, Penn. Dec. 3–7.

10. Programmers Stack Exchange (PSE), Available online at http://programmers.stackex-
change.com/questions/131137/research-on-software-defects

11. Paige, Emmett. Quotation available online at http://www.adahome.com/ar-
ticles/1997-03/end_mandate.html

12. Taft, Tucker. (August 2006.) “The Ada 2005 Language Design Process.” Crosstalk: the
Journal of Defense Software Engineering.

13. Brosgol, Benjamin. (August 2006.) “Ada 2005: A Language for High-Integrity Applica-
tions.” Crosstalk: the Journal of Defense Software Engineering.

14. Dewar, Robert. “Ada 2012: Ada With Contracts.” Dr. Dobbs’ Journal. Available
online at http://www.drdobbs.com/architecture-and-design/ada-2012-ada-with-
contracts/240150569

15. Radford University. “Whirlwind tour of Ada.” Available online at http://www.radford.
edu/~nokie/classes/320/Tour/intro1.html

16. See http://www.open-std.org/JTC1/SC22/WG9/overview.htm
17. Feldman, Michael. See https://www.seas.gwu.edu/~mfeldman/ada-project-summary.

html
18. See http://www.spark-2014.org/about
19. See http://adapilot.likeabird.eu/
20. Cook, David. (August 2006.) “Ada: The Maginot Line of Languages.” Crosstalk: the

Journal of Defense Software Engineering.
21. SIGAda. The ACM SIGAda homepage. See http://www.sigada.org/logos/ada_world_

black.gif
22. See http://www.cubesatlab.org/
23. See http://www.tiobe.com/tiobe-index/

ABOUT THE AUTHORS
David A. Cook, Ph.D.
Stephen F. Austin State University
cookda@sfasu.edu

Eugene Bingue, Ph.D.
NCTAMS-PAC
eugene.bingue@navy.mil

REFERENCES

mailto:cookda@sfasu.edu
http://www.sigada.org/awareness/ada-posters-gallery/index.html
http://www.cs.utexas.edu/users/EWD/transcrip-tions/EWD03xx/EWD340.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html
http://www.cs.utexas.edu/users/EWD/transcrip-tions/EWD03xx/EWD340.html
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/ada/ada.html
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/ada/ada.html
https://www.linkedin.com/pulse/kingdom-ada-luigi-d-andrea?forceNoSplash=true
https://www.linkedin.com/pulse/kingdom-ada-luigi-d-andrea?forceNoSplash=true
https://www.linkedin.com/pulse/kingdom-ada-luigi-d-andrea?forceNoSplash=true
http://articles.latimes.com/1999/oct/01/news/mn-17288
http://mil-embedded.com/guest-blogs/ada-watch-choosing-a-programming-language-that-supports-reliability/
http://programmers.stackex-change.com/questions/131137/research-on-software-defects
http://programmers.stackexchange.com/questions/131137/research-on-software-defects
http://programmers.stackex-change.com/questions/131137/research-on-software-defects
mailto:eugene.bingue@navy.mil
http://www.adahome.com/ar-ticles/1997-03/end_mandate.html
http://www.adahome.com/articles/1997-03/end_mandate.html
http://www.adahome.com/ar-ticles/1997-03/end_mandate.html
http://www.drdobbs.com/architecture-and-design/ada-2012-ada-with-contracts/240150569
http://www.drdobbs.com/architecture-and-design/ada-2012-ada-with-contracts/240150569
http://www.drdobbs.com/architecture-and-design/ada-2012-ada-with-contracts/240150569
http://www.radford
http://www.open-std.org/JTC1/SC22/WG9/overview.htm
https://www.seas.gwu.edu/~mfeldman/ada-project-summary
http://www.spark-2014.org/about
http://adapilot.likeabird.eu/
http://www.sigada.org
http://www.cubesatlab.org/
http://www.tiobe.com/tiobe-index/

