
14 CrossTalk—January/February 2017

The history of the design of Ada and the selection of the “green”
language in 1979 is well-documented elsewhere. Prior to the Ada
Mandate it was estimated that there were more than 450 program-
ming languages in use in the DoD. [1] It was common to develop a
unique operating system and programming language for a specific
system. A reasonable estimate of programming languages in use
by the DoD in 1997 was less than 50. [1][2] So, on a simplistic
level, it was argued that the original mission of the AJPO had been
accomplished. The closure of the AJPO then proceeded rapidly.

From the AJPO perspective, this all happened quite quickly,
and there were some harsh lessons to be learned.

1. The usefulness of a policy varies inversely with the size of
the policy domain.

2. Money is always a factor.
3. Attempts to make software a commodity were and

still are premature.

In 1997 it was projected in “CrossTalk” that Ada would still be
around 20 years later, even if no new programs were written in Ada
because of the critical mass achieved. [2] (Although the paper “Why
Programming Languages Matter” is too old to be in the current
CrossTalk online archives, it can be downloaded from http://www.
drew-hamilton.com/pub/Why_Programming_Languages_Matter.pdf)

Almost 20 years later, the trends forecast in that paper have
proved correct. Rather than rehash what was already written,
this paper will focus on what was not foreseen in 1997.

It is very difficult to prescribe technical policies for an organi-
zation as large as the Defense Department. As noted in the Ada
Information Clearing House Archives, the Ada Mandate went
into effect on June 1, 1991, and read as follows: “Notwithstand-
ing any other provisions of law, where cost effective, all Depart-
ment of Defense software shall be written in the programming
language Ada, in the absence of special exemption by an official
designated by the Secretary of Defense.” [3]

The mandate was sound as written, but its implementation
varied greatly across the DoD. There were certainly cases where
Ada was not the most effective choice from an engineering
design perspective as well as from a cost perspective. Early Ada
compilers could be extremely expensive, particularly compared to
compilers written for C, Pascal, FORTRAN, etc. Further muddying
the waters were development environments that, early on, were
more advanced for other languages. (Hamilton recalls dealing
with an Army organization seeking an Ada waiver to use Lisp
simply because they wanted to use Symbolics Lisp machines for
development.) Ada waiver requests were typically handled at very
senior levels in the services, creating some unintended conse-
quences. A legitimate way to obtain a waiver was to demonstrate
that Ada usage was not cost effective. By focusing on upfront
costs rather than downstream savings, this was often easy to do.

AdaCore (http://www.adacore.com) revolutionized the cost of Ada
compilers in the ‘90s as their GNAT Ada compiler matured. GNAT
(Gnu NYU Ada Translator) is still freely available for download.

DoD policies preferring commercial off-the-shelf (COTS)
systems and components essentially eliminated the rationale for
a DoD-procured compiler. In 1998, the Software Engineering
Institute published a monograph on DoD COTS policies. [4]

There were certainly examples of failing DoD information
systems that appeared to have successful and cheap commer-

20 Years After the Mandate
By Drew Hamilton and Patrick Pape

In January 1997, the first author was seconded from the U.S. Military Faculty to
serve as the chief of the Ada Joint Program Office (AJPO). The spring of 1997
was very eventful for the AJPO and DoD support of Ada. By May 1996, there
were well-founded rumors that the Defense Information Systems Agency (DISA)
intended to discontinue supporting the Ada support activities of the AJPO. The
Computer Science and Telecommunications Board of the National Research
Council made a compelling case for continued support of Ada and the AJPO
in their significant work entitled “Ada and Beyond.” (“Ada and Beyond” may be
downloaded for free from the National Academies Press at http://www.nap.edu/
download/5463#.) On April 29, 1997, Lieutenant General Emmett Paige, Jr.,
ended the policy mandate requiring use of the Ada programming language.

http://www.drew-hamilton.com/pub/Why_Programming_Languages_Matter.pdf
http://www.adacore.com
http://www.nap.edu/download/5463#

CrossTalk—January/February 2017 15

SOFTWARE’S GREATEST HITS & MISSES

cial alternatives. Applying COTS to weapons systems always
seemed absurd, since you cannot simply go to Wal-Mart and buy
a guided missile. But 20 years later, we see networked informa-
tion systems carrying more and more sensitive information, and
the reality is that few commercial software products — then or
now — have military-appropriate security.

One unique aspect of the Ada effort was compiler validation.
DoD usage required a validated compiler, so there was little
market for non-validated compilers. There were many calls for
subsets and supersets, but compiler validation ensured that Ada
code was always very portable and that compiling for another
target architecture was generally not a problem as long as you
were using validated compilers on both systems. This portability
had profound implications for technical interoperability, but was
generally ignored after the end of the mandate.

Computer security concerns were already surfacing in 1990s,
but one thing the AJPO did not consider was the problem of rigged
compilers — that is, compilers that surreptitiously create back doors
in any code they generate, such as Ken Thompson demonstrated in
1984. This attack is described on stack exchange as follows:

“Re-write compiler code to contain two flaws:
“—When compiling its own binary, the compiler must compile
these flaws.
“—When compiling some other preselected code (login func-
tion), it must compile some arbitrary back door.
“Thus, the compiler works normally — when it compiles a

login script or similar, it can create a security backdoor, and
when it compiles newer versions of itself in the future, it retains
the previous flaws — and the flaws will only exist in the compiler
binary so are extremely difficult to detect.” [5]

Had Ada compiler validation continued, ensuring compil-
ers did not have back doors would have been something else
to consider. For more information on the DoD Ada Compiler
Validation Procedures, see the 1997 ACVP posted on the Ada
Information Clearinghouse. [6]

As noted in “Why Programming Languages Matter,” entire class-
es of security vulnerabilities are eliminated when code is compiled
with a validated Ada compiler. Buffer overflows, for example, are im-
possible in Ada. One general officer at the time remarked that this
did not matter since “good programmers write good code and bad
programmers write bad code.” Regardless, 20 years later, the prob-
lems with unbounded buffers are well known, but buffer overflows
are still at the top of most computer security vulnerability lists.

Dr. John W. McCormack’s analysis of a 1997 Communications
of the ACM article entitled “My Hairiest Bug War Stories” points
out that of the 17 software bugs enumerated, an Ada compiler
would have detected 15. [7] The software engineering literature
is full of papers that suggest ways to manage security flaws that
simply do not exist in Ada.

Much has been written about the technical merits of Ada.
But it is important to remember why the Ada Mandate came
about. “Why Programming Languages Matter” stated that Ada
had achieved critical mass in DoD with an approximately 33.5
percent share of DoD weapons systems and an approximately
22 percent share of DoD automated information systems. [1]
The percentage of DoD software that is still in Ada is unknown
but likely in decline, particularly in information systems.

A survey of programming languages in current use is beyond

the scope of this retrospective paper. The Tiobe index (http://
www.tiobe.com/tiobe-index/) is another measurement of
programming language use not confined to just DoD systems.
The index shows Ada usage declining, currently ranking thirtieth
with a usage rate of 0.655 percent. It is important to recognize
that the Tiobe index measures much more than just DoD usage,
but the trend seems clear. A rolling five-year history of the Tiobe
index is shown in Figure 1. [8]

Ada is still here almost 20 years after the DoD ended support
for the Ada Programming Language. The August 2006 issue of
“Crosstalk” was entirely devoted to Ada2005. [9] Ada 2012 is an
International Organization for Standardization and an International
Electrotechnical Commission Standard (ISO/IEC 8652:2012).
The Ada 2012 ISO/IEC standard was approved on Feb. 1, 2016.
Reports of Ada’s demise would seem to be premature.

The latest Ada Language Reference Manual is available for
download from many sources, including http://www.ada-auth.
org/standards/12rm/RM-Final.pdf. The Association for Comput-
ing Machinery has a special interest group dedicated to the Ada
language (SIGAda, http://www.sigada.org/index.html). SIGAda
through ACM publishes Ada Letters and conducts an annual
conference entitled “High Integrity Language Technology” (HILT,
http://www.sigada.org/conf/hilt2016/). Ada still commands
greater interest internationally than domestically. Ada-Europe is
one particularly active Ada group (http://www.ada-europe.org).

The SIGAda focus seems to be the current direction of Ada
usage — employment in high integrity applications. It is hard
to imagine a DoD weapons system that does not require high
integrity software, but it is unlikely that the DoD will mandate a
programming language anytime soon. In addition to AdaCore,
commercial Ada compilers are available from several companies,
including: DDC-I, Green Hill Software, Irvine Computer, Corp.,
OC Systems, Atego, RR Software, and PTC. While some compa-
nies are only offering legacy support, several companies are of-
fering current compilers targeting to high-integrity applications.
Dr. Martin Carlisle and the Department of Computer Science at
the United States Air Force Academy developed A# as a port of
Ada to Microsoft.NET (http://asharp.martincarlisle.com). [9]

Java 1 1 1 3 17 - -

C 2 2 2 1 1 1 1

C++ 3 3 3 2 2 2 5

C# 4 5 6 11 - - -

Python 5 6 7 25 23 - -

PHP 6 4 4 8 - - -

JavaScript 7 9 8 7 21 - -

Visual Basic .NET 8 29 - - - - -

Perl 9 8 5 4 3 - -

Ruby 10 10 21 32 - - -

Ada 27 16 16 17 7 4 2

Lisp 28 12 12 14 6 7 3

Pascal 62 13 17 15 4 3 7

2016
Programming
Language

TIOBE Index Very Long Term History
Programming Languages Ranked by Usage

198619911996200120062011

http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/
http://www.ada-auth.org/standards/12rm/RM-Final.pdf
http://www.sigada.org/index.html
http://www.sigada.org/conf/hilt2016/
http://www.ada-europe.org
http://asharp.martincarlisle.com

16 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

Software engineering has changed a lot in the past 20 years.
Where previously there were many calls, especially from govern-
ment, for software reuse, now reusable components are common-
place. This reuse resulted in different problems, like determining
who originally wrote which component. The DoD still has problems
fielding secure, software-intensive systems, and a new program-
ming language mandate is unlikely to resolve those challenges.

So looking into 2017, do programming languages matter?
We believe the answer to this question is “yes,” programming
languages do still matter. While there are common and wide-
spread security issues with current languages, each language
finds a niche where it performs better than other languages for
a specific application. Different projects have different require-
ments, and performance is almost always an issue with real-time
system development. An engineering design team must con-
sider both the speed of a system and its robustness. This is a
classic trade-off in the world of programming languages that is
not likely to be overcome anytime soon.

We live in a world that has multiple programming languages
currently being used. Some languages are more conducive
to portability, like Java, which might explain why it is the most
popular in the current landscape. For rapid prototyping and a
wealth of existing and easily integrated libraries, Python is a
good choice. For compiled languages, C gives a strong middle
ground where you have object-oriented programming, with
enough control at the lower levels to get the behavior you want
from the system without having to manually configure all as-
pects of the code. In many cases, such as the work discussed in
[10], efforts are being made to create processes for quickly and
efficiently increasing the reliability and robustness of software
developed in particular languages. Post-development checking
and enhancement is a practice often seen when developers try
to minimize the shortcomings of using a particular language.

The referenced article focuses on creating more scenarios
where open-source software can be used to complement
an existing body of work. For languages that are not par-
ticularly portable or that do not have a great selection of
existing open-source libraries, a focus on enhancing what

REFERENCES
1. Computer Science and Telecommunications Board, National Research Council. (1997.)

“Ada and Beyond, Software Policies for the Department of Defense.” National Academy
Press, Washington, D.C. Available online at http://www.nap.edu/download/5463#.

2. Hamilton, J.A., Jr. (December 1997.) “Why Programming Languages Matter.” Crosstalk:
The Journal of Defense Software Engineering. Vol. 10, No. 12, p 4–6. Available online at
http://www.drew-hamilton.com/pub/Why_Programming_Languages_Matter.pdf

3. Ada Information Clearinghouse, “The Congressional Ada Mandate.” Downloaded from
http://archive.adaic.com/pol-hist/policy/mandate.txt Accessed Sept. 7, 2016.

4. Oberndorf, P. & Carney, D. (September 1998.) “A Summary of DoD COTS-Related Po-
lices.” SEI Monographs on the Use of Commercial Software in Government Systems.
Available online at http://www.sei.cmu.edu/library/assets/dodcotspolicies.pdf

5. “Ken Thompson Hack,” Downloaded from http://programmers.stackexchange.com/ques-
tions/184874/is-ken-thompsons-compiler-hack-still-a-threat Accessed Sept. 6, 2016.

6. (18 Nov. 1997.) “Ada Compiler Validation Procedures.” Ada Joint Program Office, Ver-
sion 5.0. Downloaded from the Ada Information Clearinghouse, http://archive.adaic.
com/compilers/val-proc/1222val.html.

7. McCormack, J. W. (29 March 1997.) “Ada Kills Hairy Bugs.” Ada Home, The Home
of the Brave Ada Programmers. Downloaded from http://www.adahome.com/
articles/1997-05/am_bugs.html Accessed Sept. 6 2016.

8. Tiobe Index, “Very Long Term History.” Downloaded from http://www.tiobe.com/
tiobe-index/ Accessed Sept. 6 2016.

9. Crosstalk: The Journal of Defense Software Engineering. Vol. 19, No. 8. Available online at
http://static1.1.sqspcdn.com/static/f/702523/9277154/1288925958213/200608-0-Issue.
pdf?token=55AQAO6AKygfHRhdhMKYpAU8HI8%3D

10. Pape, P. A., & Hamilton, J. A., Jr. (Jan./Feb. 2016.) “Better Reliability Verification in
Open-Source Software Using Efficient Test Cases.” Crosstalk: The Journal of Defense
Software Engineering. Vol. 29, No. 1. Available online at http://static1.1.sqspcdn.
com/static/f/702523/26767145/1451886697337/201601-0-Issue.pdf?token=B1bglc
NUe0fOf1G4RtR87ltierI%3D

11. Whitaker, W. A. (1996.) “Ada—the Project: the DoD High Order Language Working
Group.” History of programming languages—II. (Bergin, T.J., Jr. and Gibson, R.G., Jr.
ed.) ACM, New York. p. 172–232.

open-source content is available can give developers more
freedom to choose a language for the benefits that it has,
while still attempting to minimize its shortcomings. The ability
of an engineering design team to select a language that best
fits their project while utilizing techniques for mitigating its
shortcomings is an indication that even in the current soft-
ware landscape, programming languages still matter.

Conclusion
If you consider the 1975 formation of the DoD High Order

Language Working Group to be the beginning of the DoD’s Ada
effort, then the effort spanned 22 years. [11] By the program’s
end in 1997, Ada 95 had been fielded and the number of pro-
gramming languages in use was estimated to be less than 50. It
is not clear if anyone is counting anymore. During a seven-year
project (2003–2010), the first author conducted software vul-
nerability analysis for the Missile Defense Agency. We encoun-
tered software written in mainstream, supported languages: Ada,
C, C++, C#, FORTRAN, and Java.

The DoD Ada effort, Ada 95 in particular, certainly solved a lot
of technical interoperability problems between programs adhering
to the Ada Mandate. Unfortunately, no programming language
could solve the proprietary and acquisition challenges that bedevil
interoperability in addition to very technical challenges.

The era of building software-intensive systems with proprietary
operating systems and propriety programming languages ended
many years ago. The DoD Ada effort helped to end it, but even
without it, other trends would have ended the practice eventually.

If the interoperability and, particularly, the cybersecurity chal-
lenges of the 21st century had been foreseen in the mid-‘90s,
perhaps DoD policymakers would have looked at Ada in a differ-
ent light. Ada changed the conversation about defense software
engineering and promoted correctness, reliability, security,
interoperability and architecture, among other contributions.
The DoD investment in Ada advanced compiler technology and
programming language design. In retrospect, it is hard to dispute
that DoD made a sound investment.

http://www.nap.edu/download/5463#
http://www.drew-hamilton.com/pub/Why_Programming_Languages_Matter.pdf
http://archive.adaic.com/pol-hist/policy/mandate.txt
http://www.sei.cmu.edu/library/assets/dodcotspolicies.pdf
http://programmers.stackexchange.com/ques-tions/184874/is-ken-thompsons-compiler-hack-still-a-threat
http://programmers.stackexchange.com/ques-tions/184874/is-ken-thompsons-compiler-hack-still-a-threat
http://programmers.stackexchange.com/questions/184874/is-ken-thompsons-compiler-hack-still-a-threat
http://archive.adaic
http://www.adahome.com/
http://www.tiobe.com/
http://static1.1.sqspcdn.com/static/f/702523/9277154/1288925958213/200608-0-Issue.pdf?token=55AQAO6AKygfHRhdhMKYpAU8HI8%3D
http://static1.1.sqspcdn.com/static/f/702523/26767145/1451886697337/201601-0-Issue.pdf?token=B1bglcNUe0fOf1G4RtR87ltierI%3D

