
8 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

Introduction
In the past the author of this paper has worked as both the

editor of a medical journal and of medical research papers and
also as the editor and technical reviewer of a number of soft-
ware journal articles and books.

Medical papers devote about a third of the text to discussions
of measures and metrics and include accurate quantified data.
Software papers, on the other hand, devote hardly a paragraph to
measures and metrics and seldom contain accurate quantified data.

As readers know medical practice has been the top learned
profession for over 100 years. By contrast software is not even
recognized as a true profession and is still classified as a craft. One
reason for the low status of software is that software has failed to
use effective metrics and measures. As a result software has close
to zero accurate data on software quality and productivity.

Medical diagnoses are based on a number of quantitative
measures and known values. The patient’s measures are taken
during diagnostic workups and then compared against known
criteria to identify abnormal conditions that might be symptoms
of infections or other diseases.

If the patient has a temperature above 102 something is
seriously wrong. If the patient has blood pressure is above 190
something is seriously wrong.

Many other key metrics are also involved in medical diagnos-
tic procedures: blood sugar, respiratory volumes, heart rate and
regularity, and many more.

Diagnosing software problems should also use quantitative
data. If a company’s defect potential is above 4.5 per function
point something is seriously wrong. If defect removal efficiency
is below 95% something is seriously wrong. If past schedule
slips are > 5% something is seriously wrong.

A key difference between medical diagnostic studies and soft-
ware diagnostic studies is that software engineering has close to

zero knowledge about the ranges and boundaries of quantitative
results that differentiate healthy projects from unhealthy projects.

Hardly anybody in software in 2016 knows that safe defect
potentials are below 3.5 per function point and dangerous de-
fect potentials are above 4.5 per function point. Hardly anybody
in software knows that safe defect removal efficiency is above
98% and hazardous defect removal efficiency is below 90%.

Universities know as little about software quantitative data as
do journeymen software professionals. Even quality companies
selling test tools and static analysis tools know almost nothing
about quantitative data on key topics such as defect potentials
and defect removal efficiency (DRE).

Hardly any of the software education companies know enough
about effective software metrics and measures to include any
quantitative data. The software industry has been running blind
for over 50 years. This is a professional embarrassment for one
of the largest and wealthiest industries in human history.

Major software consulting companies are also in the dark
about actual quantitative software quality and productivity
results. They are pretty good at large-scale studies such as
corporate spending on information systems or corporate re-
search budgets, but not at all good about the measured results
of software quality and productivity based on samples of several
thousand measured software projects.

Software productivity data is just as bad as software quality
data. Hardly anybody in software in 2016 knows that work
hours per function point above 16.00 indicate significant
problems while those below 12.00 work hours per function
point indicate smooth sailing.

Software has a 50 year history of bad metrics and bad
measures. Cost per defect penalizes quality; lines of code
penalize modern programming languages. Technical debt only
covers 17% of the total costs of poor quality. Story points and
use-case points are not standardized and have no certification
exams. These two non-standard metrics vary by over 400%
from company to company and project to project.

Only function point metrics are accurate enough for software
diagnostic analysis. Unlike other software metrics function points
have ISO standards for consistency and also certification exams
to ensure accurate function point sizing. This is true for all of the
major forms off function point metrics: COSMIC, FISMA, IFPUG,
and NESMA. (This report uses IFPUG function points version 4.3)

The new SNAP metric for non-functional requirements may
add value in the future but as of 2016 it is a new metric that
lacks empirical data on defect potentials, costs, schedules, pro-
ductivity and other useful indicators.

The basic metrics used in this report are function point
metrics defined by the International Function Point User’s Group
(IFPUG) counting rule version 4.3.

Defect potential metrics were developed by IBM circa 1970
and first used to validate the effectiveness of formal inspections.
Defect potentials are the sum total of bugs found in requirements,
architecture, design, source code, user documents, and bad fixes, or
new bugs accidentally included in bug repairs themselves. The cur-
rent U.S. average for defect potentials are about 4.25 defects per
function point. Table 1 shows the distribution of defect potentials
by defect origins. Defect potentials are predicted before projects
start, measured during development, and totaled after release.

A Comparison of Medical
Diagnoses and Software
Problem Diagnoses
Capers Jones, Vice President and CTO,
Namcook Analytics LLC

Abstract. From working as an editor of both medical papers and software
papers, there are important differences between the two fields. For medical
papers about a third of the text is devoted to discussions of the metrics and
measures used to reach the author’s conclusions.

In software papers there are little and sometimes no discussions of the metrics
and measures used to reach the author’s conclusions. Worse some software
papers use metrics such as “cost per defect” and “lines of code” with proven er-
rors. Function point metrics are the best choice in 2016 for software diagnostic
studies of both quality and productivity.

Unlike medical practice, the software industry has been running blind for
over 50 years with little or no accurate quantitative data on productivity or
quality and no empirical data that proves the value of software tools, method-
ologies, or programming languages.

CrossTalk—January/February 2017 9

SOFTWARE’S GREATEST HITS & MISSES

Defect removal efficiency (DRE) metrics were developed
by IBM at the same time as defect potential metrics circa
1970. All bugs are measured and counted during develop-
ment (including bugs often not reported such as those identi-
fied by static analysis and unit testing). User-reported bugs
are also measured and counted. After the software application
has been in use for 90 days DRE is calculated. If developers
found 950 bugs and users reported 50 bugs in the first three
months then DRE is 95.00%. Of course bugs continue to be
reported after 90 days but the 90-day interval provides a fixed
point for statistical analysis.

Although both cost per defect and lines of code are
flawed metrics that distort reality, the author’s estimation
tools and benchmarks include both metrics primarily to show
clients what their problems are.

Both metrics ignore fixed costs. A basic law of manufacturing
economics is this: If a manufacturing cycle has a high percent-
age of fixed costs and the number of units produced declines,
the cost per unit goes up. Other industries have understood
this law for more than 200 years but not the software industry
which still ignores fixed costs today in 2016.

For the cost per defect metric the costs of writing and run-
ning test cases are fixed costs so cost per defect goes up later
in development when fewer defects are found. Defect removal
cost per function point shows the true economic value of high
quality. Cost per defect penalizes high quality. For zero-defect
software the cost per defect would reach infinity, but cost per
function point would still be accurate.

For the lines of code metric the costs of requirements and
design are fixed costs so when high-level languages are ad-
opted the number of “units” declines and cost per line of code
goes up. Thus the low-level assembly language looks better
than the high-level Objective C, the language used by Apple for
all software. Cost per function point shows the true economic
value of high-level programming languages such as Objective C.

The author’s estimates and benchmarks are based on func-
tion points but also include counts of logical code statements
and counts of physical lines of code in order to show clients
the huge differences in LOC size based on which metric is used
as well as the economic distortion caused by these metrics.

Logical code consists only of executable statements and
data definitions. Physical lines of code also include blank
lines, comments, headers, and other non-executable materi-
als that don’t have any relationship to the actual operating
features of the software application.

There can be a 500% difference between logical code
size and physical code size. There are no ISO standards or
certification exams for counting lines of code and so software
articles based on lines of code are highly inconsistent due to
using many counting variations.

It is technically possible to predict the key indicators of a soft-
ware project such as defect potentials early before full require-
ments are known and then also predict the probable outcome
for the project in terms of quality, costs, schedules, and risks.

This is not any harder than carrying out a medical exami-
nation on a human patient. But very few people in software
know the quantitative values that differentiate software suc-
cess from software failure.

What the author’s colleagues try to do with is take software
project vital measures early; feed the data into a parametric
estimation tool; and then predict the results of specific projects
in terms of schedules, costs, defect potentials, defect removal
efficiency (DRE) and other key metrics.

If the project is healthy the clients are happy. If the project
has possible problems such as high defect potentials above
4.50 per function point or low defect removal efficiency below
90%, the clients can be alerted early enough to take remedial
action before too much money is spent (and possibly wasted).

Although collecting the necessary quantitative and qualitative
data about software projects takes about half a day and doing
the diagnostic workup takes several days, the actual costs of
this kind of software diagnostic study are about the same as
the costs of a full annual medical examination that includes lab
tests, EKG examination, and possibly MRI or CAT scans.

For one thing software does not have expensive diagnostic
machines such as MRI or CAT scan equipment. In fact soft-
ware has hardly any automated metrics tools at all other than
cyclomatic complexity and test coverage and the new auto-
mated function point tools.

Today in 2016 almost every thinking person has an annual
physical exam and does not believe that the costs are out of line
although medical costs are certainly higher than they could be.

Software needs the same concept about diagnostic studies:
companies and key projects should have annual examinations
that collect accurate data on the quantitative and qualitative indi-
cators and the consultants should use those indicators to create
an accurate diagnosis of software health or possible illness.

This could be done on a retainer basis for companies where
all projects in progress and recently completed are examined
and results are provided to the clients several times a year.

It could also be done for critical individual projects that are likely
to be larger than 1,000 function points or which have some urgent
business requirements that are vital to corporate plans for success.

One interesting difference between medical diagnoses
and software diagnoses is that insurance companies pay for
the medical diagnoses. There is no software insurance as of
2016 that covers diagnostic studies, although software does
have cyber-attack insurance.

Software’s lack of a knowledge base of leading indica-
tors for quality and costs is a professional embarrassment.
Diagnosing software problems in 2016 is closer to medical
diagnoses from 1816 before medicine adopted careful mea-
sures and accurate metrics.

In the software industry only the benchmark consult-
ing companies that have current data on quality and costs
expressed in terms of function points are reasonably close to
2016 medical diagnostic procedures.

Some of these benchmark groups with accurate data include
Davids’ Consulting, the International Software Benchmark Stan-
dards Group (ISBSG), Namcook Analytics, Quality/Productivity
Management Group (QPM), Quantitative Software Management
(QSM), and TIMetricas from Brazil. Some of the parametric es-
timation companies also have current quantitative data such as
Galorath (SEER), Namcook Analytics (SRM), and QSM (SLIM).

However the software quality companies that sell test tools
and static analysis tools are almost totally lacking in quantita-

10 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

tive data with the exception of a few such as CAST software
the use function point metrics. Most of the quality companies
make advertising claims of huge improvements in quality but
don’t back up those claims with any quantitative data. This is a
professional embarrassment.

The same is true of software project management tool com-
panies. Unless project management tools use function point
metrics the data that they gather will have only transient value at
best, but no persistent value for future benchmarks.

Knowing a project’s schedules and costs without knowing its size
in function points is like trying to diagnose a human patient without

recording the patient’s weight or height. (Some 35 of the 37 major
benchmark organizations only use function point metrics.)

It is also of interest that a number of national governments
now require function point metrics for all government soft-
ware contracts: Brazil, Italy, Japan, Malaysia, South Korea now
mandate function point metrics. Eventually all governments will
probably do the same thing.

Because poor quality is a software industry weakness,
following are two tables that show the patterns of high qual-
ity that will lead to success and low quality that might lead
to failure and will certainly lead to lengthy schedule delays
and to large cost overruns. There will probably be deferred
features as well.

As can be seen from Table 1 healthy projects that are qual-
ity strong are much more sophisticated in defect measures,
defect prevention, and defect removal than unhealthy proj-
ects that are quality weak.

Table 2 shows the actual quantitative results between the two
polar opposites of quality strong and quality weak technical factors:

As can be seen from Table 2 quality-strong approaches have
lower defect potentials and higher defect removal efficiency

Table 1: Quality Strong and Quality Weak Technology Stacks

Quality Quality Quality Quality
Strong Weak Strong Weak

Quality Measures Test Stages
Defect potentials in function points Yes No Unit test Yes Yes
Defect removal efficiency (DRE) Yes No Function test Yes Yes
Delivered defects - all severity levels Yes Yes Regression test Yes Yes
Delivered defects - high severity defects Yes Yes Performance test Yes Yes
Delivered defects - security flaws Yes No Security test Yes No
Defect removal $ per function point Yes No Nationalization test Yes No
Cost of quality (COQ) per function point Yes No Usability test Yes No
Technical debt per function point Yes No Stress and limits test Yes No
Defect density - KLOC No Yes Component test Yes No
Cost per defect No Yes System test Yes Yes

Beta Test Yes No
Defect Prevention Acceptance test Yes Yes

Joint application design (JAD) Yes No
Quality function deployment (QFD) Yes No Post Release Quality
Requirements models Yes No Complete defect tracking Yes No
Early risk estimates Yes No Root-cause analysis - high severity bugs Yes No
Early quality estimates Yes No Root-cause analysis - security flaws Yes No
Defect potential estimates - function points Yes No DRE analysis Yes No
Defect removal efficiency (DRE) estimates Yes No Delivered defects per function point Yes No
SEMAT essence Yes No Delivered defects per KLOC (to show problems) Yes No

Cost per defect (to show problems with metric) Yes No
Pre-Test Defect Removal Defect origin analysis Yes No

Quality Inspections Yes No Defect severity analysis Yes No
Security inspections Yes No Defect consequence analysis Yes No
Static analysis of all code Yes No Security flaw analysis Yes No
Text static analysis (requirements, design) Yes No Ethical hackers Yes No
FOG index of requirements, design Yes No Bad test case analysis Yes No
Desk check Yes Yes Bad-fix analysis Yes No
Automated correctness proofs Yes No Error-Prone Module (EPM) analysis Yes No
Pair programming No Yes Cost of quality (COQ) analysis Yes No
Race condition analysis Yes No Technical debt analysis Yes No
Refactoring Yes No

Test Technologies
Certified testers Yes No
Design of experiments test case design Yes No
Cause-effect graph test case design Yes No
Test coverage analysis tools Yes No
Cyclomatic complexity tools Yes No
Automated test tools Yes No
Reusable test cases Yes No
Test library control tools Yes No

Software Quality Technology Stacks

CrossTalk—January/February 2017 11

SOFTWARE’S GREATEST HITS & MISSES

(DRE) levels than quality-weak approaches. Of course averages
are misleading and there are wide ranges in actual results based
on application size, team skills, and other technical factors.

Table 3 shows 10 software methodologies that have strong
quality technology stacks:

By contrast Table 4 shows 10 software development meth-
odologies with poor technology stacks and also high defect
potentials and low levels of defect removal efficiency.

It is obvious from tables 3 and 4 that any methodology that
starts with custom designs and manual coding will be intrinsi-
cally expensive and intrinsically error prone. Only methodolo-
gies that use significant volumes of certified reusable compo-
nents will achieve high quality levels, short schedules, and low
costs at the same time.

Quality Quality
Strong Weak

Requirements defects per function point 0.35 0.7
Architecture defects per function point 0.05 0.2
Design defects per function point 0.6 1
Code defects per function point 0.8 1.5
Document defects per function point 0.2 0.3
Bad-fix defects per function point 0.3 0.8
Total Defect Potential per Function Point 2.5 4.5
Pre-Test defect removal efficiency DRE % > 90.00% < 35.00%
Test defect removal efficiency DRE % > 90.00% < 80.00%
Total defect removal efficiency DRE % > 99.50% < 85.00%
Delivered defects per Function Point 0.0125 0.675

High-severity delivered defect % < 7.50% > 18.00%
Security flaw delivered defect % < 0.01% > 1.5%
Bad-fix injection % < 1.00% > 9.00%
Bad test cases in test library % < 1.00% > 15.00%
Error-prone module % < 0.01% > 5.00%
Reliability (MTTF) > 125 days < 2.00 days
Reliability (MTBF) > 100 days < 1.00 days
Stabilization months to reach zero defects < 1.5 > 18.0

Pre-test defect removal $ per function point $150.00 $25.00
Test defect removal $ per function point $250.00 $650.00
Post-release defect removal $ per function point $100.00 $825.00
Cost of Quality (COQ) $ per function point $500.00 $1,500.00

Technical debt $ per function point $75.00 $550.00

Test coverage % - risks > 97.00% < 70.00%
Test coverage % code and branches > 99.00% < 70.00%
Average cyclomatic complexity < 10.00 > 20.00
Customer satisfaction High Low

Risk of project cancellation < 5.00% > 35.00%
Risk of deferred features due to poor quality < 6.5% > 65.00%
Risk of schedule delays < 10.00% > 70.00%
Risk of cost overruns < 10.00% > 50.00%
Risk of litigation for poor quality < 1.00% > 15.00%
Risk of successful cyber-attacks < 2.50% > 35.00%

Table 2: Differences between Quality Strong and Quality
Weak Technology Stacks

Methodologies such as Agile (92.5% DRE) and test-driven
development (93.0% DRE) are better than waterfall (87.0%
DRE) but they don’t top 98.0% in DRE like the quality-strong
methodologies. Since they also assume custom designs and
manual coding they cannot be truly cost effective compared to
building software with over 50% reusable components.

Once again, reuse of certified materials such as reusable de-
signs, reusable code, and reusable test cases are the
only known approaches that leads to high quality, low costs, and
short schedules at the same time. One of the values of
accurate software measures and metrics is that the economic im-
pact of technology factors such as reuse can actually be measured.

Using Medical History to Improve Future Software
Readers of this article are urged to read an interesting history

of medical practice. This is Paul Starr’s book The Social Trans-
formation of American Medicine. This book won a Pulitzer Prize
and a Booker Prize in 1982.

Defect Delivered
Methodologies Removal Defects

Efficiency per FP
1 Robotic development with 99% standard parts 99.65% 0.003
2 Reuse-oriented (99% reusable materials) 99.45% 0.005
3 Reuse-oriented (85% reusable materials) 99.50% 0.007
4 Reuse-oriented (50% reusable materials) 99.50% 0.008
5 Pattern-based development 99.50% 0.009
6 Animated, 3D, full color design development 99.20% 0.016
7 Zero-defect development 99.00% 0.02
8 IntegraNova development 98.50% 0.032
9 SEMAT+Agile 98.50% 0.034

10 Team software process (TSP) + PSP 98.50% 0.035
Averages 99.13% 0.017

Table 3: Ten Quality Strong Methodologies Circa 2016

Defect Delivered
Methodologies Removal Defects

Efficiency per FP

1 Iterative development 90.25% 0.341
2 Computer-aided software engineering (CASE) 91.00% 0.342
3 Hybrid: (CMMI1 + waterfall) 91.00% 0.360
4 Spiral development 90.75% 0.407
5 ERP modification development 90.50% 0.447
6 Legacy repair development 90.00% 0.450
7 V-Model development 90.50% 0.456
8 Waterfall development 87.00% 0.598
9 Cowboy development 85.00% 0.930

10 Anti patterns 80.00% 1.400

Averages 88.60% 0.573

Table 4: Ten Quality Weak Methodologies Circa 2016

12 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

(Note: the author of this paper started work as the editor
of a medical journal published by the Office of the Surgeon
General of the U.S. Public Health Service. He then switched
to programming and worked on medical software applica-
tions, also for the Office of the Surgeon General and for the
National Institutes of Health.

From editing both medical papers and software papers the
differences are striking. Medical papers devote about a third
of the text to explaining the measures and metrics used to
develop the author’s conclusions.

Software papers, by contrast, often omit metric and mea-
surement discussions completely, or use bad metrics such as
cost per defect and lines of code with proven flaws. Soft-
ware papers seldom devote more than a short paragraph to
measures and metrics.

A survey by the author of major software journals such as
the IBM Systems Journal and various IEEE software journals
found about one third of the papers using LOC counted physi-
cal lines; one third counted logical statements; and one third
did not even say which kind of counts were used!

There is over a 500% difference between logical and physi-
cal code size so failure to even mention which counts were
used would be professional malpractice for a medical paper
but business as usual for software papers.)

From reading Paul Starr’s book on the transformation of
American medical practice it was interesting to see that medi-
cine was as chaotic and inept 200 years ago as software is in
2016.

—Medical schools had only 2-year curricula. There was no
requirement to have a college degree before entering medical
school or even a high-school diploma.

—There were no medical licenses and no board certification.
Harmful drugs such as opium could be prescribed freely and
there was no FDA to require proof of efficacy and analysis of
possible harmful side effects. (Software in 2016 releases new
methodologies without proof of efficacy and without studies of
possible harmful side effects such as the expensive pair-pro-
gramming technique that is not as effective as one programmer
using static analysis.)

—Medical students never even went into hospitals during
training since hospitals had their own medical staff and would
not admit other physicians or medical students.

—Medical quackery was common and there were no regula-
tions or laws that prohibited it. In fact even attending a medical
school was not mandatory and some physicians merely worked
as apprentices to older physicians.

Medical practices circa 1816 were alarmingly similar to soft-
ware practices circa 2016. Both were unlicensed, unregulated,
unmeasured, and both mixed quackery and harmful practices
with beneficial practices without patients or clients having any
way of knowing which was which.

Summary and Conclusions
Based on reading Paul Starr’s book improving and profession-

alizing medical education and medical practices took about 50
years. Using the points Starr’s useful book guidelines software
might accomplish this in 20 years.

One interesting factor used by the American Medical As-
sociation (AMA) was to arrange reciprocal memberships with
all state medical societies. This raised overall AMA member-
ship from about 800 up to about 80,000 and started to give
the AMA political cloud to lobby for medical licenses with state
governments.

If the various software professional associations such as the
IEEE, SIM, ACM, PMI, the function point associations, etc. were
to cooperate and offer reciprocal memberships that would prob-
ably give software political clout too.

However as of 2016 the software professional groups and
also the function point associations tend to compete more than
they cooperate, although there is some cooperation among the
function point organizations.

ABOUT THE AUTHOR

Capers Jones is currently vice presi-
dent and chief technology officer of
Namcook Analytics LLC. Prior to the
formation of Namcook Analytics in
2012, he was the president of Ca-
pers Jones & Associates LLC. He is
the founder and former chairman of
Software Productivity Research LLC
(SPR). Capers Jones founded SPR

in 1984 and sold the company to Artemis Management Systems
in 1998. He was the chief scientist at Artemis until retiring from
SPR in 2000.

Before founding SPR, Capers was Assistant Director of Pro-
gramming Technology for the ITT Corporation at the Program-
ming Technology Center. During his tenure, he designed three
proprietary software cost and quality estimation tools for ITT
between 1979 and 1983. He was also a manager and software
researcher at IBM in California where he designed IBM’s first
two software cost estimating tools in 1973 and 1974 in col-
laboration with Dr. Charles Turk. Capers Jones is a well-known
author and international public speaker. Some of his books have
been translated into five languages. His most recent book is The
Technical and Social History of Software Engineering, Addison
Wesley 2014.

Capers Jones has also worked as an expert witness in 15
lawsuits involving breach of contract and software taxation is-
sues and provided background data to approximately 50 other
cases for other testifying experts.
Capers.Jones3@gmail.com
www.Namcook.com

mailto:Capers.Jones3@gmail.com
http://www.Namcook.com

CrossTalk—January/February 2017 13

SOFTWARE’S GREATEST HITS & MISSES

Beck, Kent; Test-Driven Development; Addison Wesley, Boston, MA; 2002; ISBN 10:
0321146530; 240 pages.

Black, Rex; Managing the Testing Process: Practical Tools and Techniques for Managing
Hardware and Software Testing; Wiley; 2009; ISBN-10 0470404159; 672 pages.

Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You; Prentice
Hall, Upper Saddle River, NJ; 1995; ISBN 10: 0201633302; 368 pages.

Control of Communicable Diseases in Man; U.S. Public Health Service, published annually.
This book provided the format for the author’s first book on software risks, Assessment
and Control of Software Risks. The format worked well for both medical diseases
and software risks. The format included frequency of the conditions, severity of the
conditions, methods of prevention, and methods of treatment. A few topics such as
quarantine were not used for software risks, although with cyber-attacks increasing
in frequency and severity quarantine should be considered for software that has been
attacked by viruses or worms both of which are highly contagious.

Everett, Gerald D. And McLeod, Raymond; Software Testing; John Wiley & Sons,
Hoboken, NJ; 2007; ISBN 978-0-471-79371-7; 261 pages.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software Project Risk;
Business Expert Publishing, Thomson, GA; 2010; ISBN10: 1-935602-01-9.

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading, MA;
1993; ISBN 10: 0201631814.

Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston, MA; 2011; ISBN 978-0-13-258220-9; 587 pages.
Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York; 2010;

ISBN 978-0-07-162161-8;660 pages.
Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN

978=0-07-150244-3; 662 pages.
Jones, Capers; Estimating Software Costs; 2nd edition; McGraw Hill, New York; 2007;

700 pages.

Jones, Capers; Critical Problems in Software Measurement; Information Systems
Management Group, 1993; ISBN 1-56909-000-9; 195 pages.

Jones, Capers; Software Productivity and Quality Today -- The Worldwide Perspective;
Information Systems Management Group, 1993; ISBN -156909-001-7; 200 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994; ISBN
0-13-741406-4; 711 pages.

Jones, Capers; New Directions in Software Management; Information Systems Manage-
ment Group; ISBN 1-56909-009-2; 150 pages.

Jones, Capers; Patterns of Software System Failure and Success; International
Thomson Computer Press, Boston, MA; December 1995; 250 pages; ISBN 1-850-
32804-8; 292 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success; International
Thomson Computer Press, Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition; Ad-
dison Wesley Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

Nandyal; Raghav; Making Sense of Software Quality Assurance; Tata McGraw Hill
Publishing, New Delhi, India; 2007; ISBN 0-07-063378-9; 350 pages.

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections; Paradoxicon Publish-
ingl Andover, MA; ISBN 0-9645913-1-6; 2002; 479 pages.

Starr, Paul; The Social Transformation of American Medicine; (Pulitzer Prize and Booker
in 1982); Basic Books, 1982. This interesting book summarizes the steps used by
the American Medical Association (AMA) to improve medical education and raise
the professional status of physicians. The same sequence of steps would benefit
software engineering.

Strassman, Paul; The Squandered Computer; The Information Economics Press, New
Canaan, CT; 1997; 426 pages.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley Long-
man, Boston, MA; ISBN 0-201-73485-0; 2002; 232 pages.

REFERENCES AND READINGS ON SOFTWARE QUALITY

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

mailto:309SMXG.Recruiting@us.af.mil
http://www.facebook.com/
https://www.facebook.com/309softwaremaintenancegroup/?fref=ts

