
CrossTalk—March/April 2017     39

BACKTALK

How long have software developers been 
around?  Well, seventy-five years ago – we 
were using slide rulers, and we were happy to 
see electronic calculators (invented in 1972?)  
Doctors talk about blood-letting in their history, 
and engineers talk of building bridges with 
just rock and mortar.  Software developers?  
Younger ones talk about “OMG – I actually had 
to code a program in FORTRAN!!” 

Back in the 1970s, I was an instructor in the 
basic developer course at Keesler AFB, Missis-
sippi.  We taught a basic programming course 
using, as I recall, a Hughes 407L (although I can 
find no reference to this computer – my memory 
might be slipping.  Feel free to email if you have 
a better memory.)  Granted – it was an old 
computer – but still adequate for teaching basic 
concepts.  We used it to teach assembly lan-
guage programming.  To the best of my memory, 
listed below are the steps involved in running a 
program.  Note that this was only 45 years ago!

0. Before you started, of course, you had
to punch your program onto a card deck.  We 
used an IBM 029 model.  

1. Take your card deck with you into the com-
puter room during your reserved 30-minute slot.  
Kick out the developers using the computer, 
ignoring their “Just 5 more minutes?” please.

2. Power down the computer (which was room
sized!) and power it up, to ensure clean memory. 

3. Locate the “Operating System” card deck
from the card shelf, and place it in the card reader.  

4. Go to main panel, and press the “Boot
Init” button, which would load the OS deck, and 
execute the code.  OS now running.  Return OS 
deck to card shelf.  Locate the Assembler deck, 
and place it in the card reader.

5. Go to the main console, and type “load/

run”.  This caused the OS to read the Assembler 
card deck into memory, and execute it.  The as-
sembler was now ready for input.

6. Place the Assembler deck back.  Load
your program into the card reader, go to con-
sole, and type “continue”.  You card deck (your 
program) was now loaded as data into the as-
sembler, and the assembler, well, “assembled” it.  

a.  If there was an assembly error – you got
a listing of the error at the printer.  You then 
frantically tried to fix it during your 30-minute 
slot, and restarted from step 2 above.  

b.  However, IF your program had no
errors, the card punch produced an object 
deck – ready to be linked and loaded.

7. Grab the “Link and Load” card deck, add
your object card deck to the end, place it in the 
card reader, and type “load/run” on the console.  
The “Link and Load” program linked in code for 
system routines, created an executable module 
in memory, and executed it.

a.  IF the program ran successfully, your
output showed up on the console.  Tear off 
the paper from the console (it was a teletype, 
NOT a CRT monitor) and you were done!  

b.  On the other hand, if an ABEND (Ab-
normal ENDing) occurred (i.e. the program 
crashed) you went to the console, typed 
“dumpmem/all” and retrieved a dump of 
ALL 32K (!) of memory on the line printer.  
Try and pour through memory to find error.  
Go to step 6b above.

Processes are MUCH simpler now.  But – 
you know what?  We have forgotten the art of 
desk-checking code in the last 40 years.  The 
pain and difficulty of the steps above guar-
anteed that you didn’t just casually type up a 

Whole Lotta Shakin’ Going On!
(with apologies to Jerry Lee Lewis)

Come on over baby, whole lotta processes goin’ on 
Yes I said come on over baby, baby you can’t go wrong 

We ain’t fakin’ a whole lotta processes goin’ on

deck of cards without seriously reading (and 
re-reading) looking for typos.  However, the 
great part of desk-checking was that you found 
both syntax AND semantic (logic) errors as you 
read through your code.

Nowadays, compiles are so quick and easy 
(typically, “push one button”) that we no longer 
desk-check for syntax (“let the compiler do 
that!”)  And, sadly, we seldom desk-check for 
semantics until we try and run the code.  We 
have forgotten how to individually review code 
for semantics.  We have IDEs (Integrated De-
velopment Environments) that compile as we 
are coding – and fix syntax errors as we type.  
Why bother to desk-check?

Back in the 1970s, we had a simple process 
for writing code – it was called the “code and 
fix” process.  Basically, it was a “repeat until 
somebody gives up” process.

Nowadays – NOBODY uses the “code and fix” 
process model, right? (Pause for sarcastic and 
guilty laughter).  We have developed more complex 
and better processes that produce software that 
is more reliable, understandable, modifiable/
maintainable and efficient.  The processes improve 
quality, increase productivity, and reduce wasted 
time fixing the same error over and over … 

But remember that a process does not replace 
creativity, imagination, and thinking.  There is even 
more of a need to desk-check code.  Back in 
the 1970s, a 2000 line program was considered 
huge.  Now?  7 million lines of code is relatively 
common.  Rather than just reading 2000 lines of 
a single program, we now need to review the code 
and the design of a tightly coupled 7 million line, 
100+ program system.  In fact, we have to review 
multiple components of the design:  architectural, 
data, interface, and finally module (the code).

There has never been a greater need for 
good processes.  Likewise, there has never been 
a greater need for developers who understand 
the process, and use their skills and intelligence 
and experience to keep alive the spirit of desk-
checking.  Don’t let the process take the place 
of individual reviews and common sense.  

It could be worse.  You could still be looking 
for a FORTRAN compiler card deck to load into 
a card reader.  And “keep on shakin’ “. 

David A. Cook, Ph.D.
Stephen F. Austin State University
cookda@sfasu.edu

I have to admit – I am not a young man anymore.  In fact, unless I plan on living into my 120s, I’m not 
even “middle aged”.  As a college professor, I promise each class that they will not have to hear more 
than five “Back when I was your age….” stories per class.  (OK – truthfully, I tell them ten).  It’s hard 
not to tell those stories – I don’t think you can fully appreciate modern technology and processes un-
less you understand the way “it used to be done”.  And our profession is so young.  Engineers have 
been building bridges, great walls, and pyramids for thousands of years.  Doctors has been practicing 
medicine a long time – the Hippocratic oath dates from the fifth century BCE.  Lawyers and politi-
cians have been around …… never mind.

mailto:cookda@sfasu.edu



