
24 CrossTalk March/April 2017

The impact of this lost sponsorship was most keenly felt by the
Capability Maturity Model Integration (CMMI©) program, once
the crown jewel of the SEI and Carnegie Mellon University (CMU)
itself. Forced to depart the protection of the SEI and CMU, the
CMMI© has now landed at the Information Systems Audit and
Control Association (ISACA) in the form of the CMMI© Institute,
relegated to serving the commercial IT governance professionals
it catered to. Finding itself now in the competitive death grip of a
more innovative and popular Agile method, the CMMI© frame-
work continues to teeter. All this is occurring despite the fact that
the value of the CMMI© has not yet been fully discovered (Cross-
Talk, 2012) despite a quarter-century of use. Yet there may still
exist a way forward in harmonizing Agile and CMMI© (CrossTalk,
2016) as part of that discovery.

Even beyond the CMMI©, the broader software situation is
dire (Defense AT&L, 2015). Industry and government continue
to increase dependence on software produced by an immature
profession that has stumbled in delivering trustworthy software
components, systems, and systems of systems to the nation’s
critical infrastructure and defense industrial base. The result is
cybersecurity weaknesses and vulnerabilities exploited at will
by persistent adversaries whose capabilities and motivation can
only be surmised by assessing their consequences.

Center Stage
At play on center stage in all this is the software development

life cycle. Beginning with Winston Royce, managing the develop-
ment of large software systems became the center of attention

Secure DevOps Foundations for
Large-Scale Software Systems
Don O’Neill
Abstract. “In Search of a Modern Software Life Cycle” explores the “Secure DevOps Foundations for Large Scale Software Sys-
tems” in terms of voices from the trenches, the field of play, life cycle on center stage, and evolutionary features and issues including
sequential, prototype, incremental, iterative, spiral, CMMI©, technical debt, code and upload and frequency of release, next generation
software engineering, open source software, false claims, integration engineering, and a new way of thinking.

Heard from the Trenches
If DevOps is needed to change the world, Secure DevOps is also

needed to save the world. In a world where business questions
masquerade as technical questions, where programmers must ex-
perience an epiphany before they are motivated to master the skill
of writing secure code, [1] and where bonuses must be withheld to
obtain management attention to security, resistance rules.

If these are the risks, what are the outcomes? Acquirers com-
plain they don’t know how to ask for secure code from vendors,
adding that they get what they ask for but not what they want.
[2] It’s complicated! Programmers confess that writing code is
hard, and writing secure code may be beyond the tipping point.
[3] Software engineers wonder if there is any secure code
anywhere and assert that best practices are insufficient. Supply
Chain Risk Management Software Assurance practitioners
retreat behind the wall and only hope for bug-free, patchable
software deliveries accompanied by a bill of material. [4] These
were just some of the comments made at the 2016 CERT Se-
cure Coding Symposium conducted by the Software Engineer-
ing Institute in Arlington, Virginia, on September 8, 2016.

The Field of Play
Formed to support the advancement of software engineering

in the Department of Defense (DoD), the Software Engineering
Institute (SEI) lost its way by too vigorously pursuing commer-
cial partners. Like the dog that chased and caught the firetruck
without a plan for what comes next, the SEI lost its DoD spon-
sor, its principal foundation of financial support.

MODERN PROCESS TRENDS

In Search of a Modern Software Life Cycle

CrossTalk—March/April 2017 25

MODERN PROCESS TRENDS

based on a waterfall model of software activities and his belated
inclusion of prototyping as an essential step (Royce, 1970).

From Royce’s waterfall life cycle model followed by incremen-
tal, iterative, and spiral to the SEI’s CMMI© followed by Agile
methods and now DevOps, the software development life cycle
continues as an unsettled issue. Today’s unbridled complexity
(Sheard, 2015), the stresses of scale in the Internet of Things
(IoT) (Recode, 2016) with its explosion of endpoints and no
one in charge, and the unpredictability of cybersecurity threats
(CrossTalk, 2011) with their persistence of vulnerabilities like
System 7 and its public safety access points all combine to
destabilize software system development life cycle approaches.

At any point in time, Secure DevOps processes must possess
the capability to detect cyber vulnerabilities and malware. Com-
mon Weaknesses Evaluation (CWE) and Common Vulnerabilities
Evaluation (CVE) assist in this, as do tools like Hyperion from
Oak Ridge, Function Extraction (FX) from CMU, MUSE from the
Defense Advanced Research Projects Agency (DARPA), and Ap-
proximate Matching from the National Institute of Standards and
Technology (NIST). Beyond the range of typical Secure DevOps,
the sectors of the critical infrastructure with their stovepipe yet
interdependent operations face more insidious supply chain resil-
ience challenges (CrossTalk, 2014). And then there are cascade
triggers. Hidden or in plain sight, cascade triggers are capable of
invading various industry sectors in a variety of ways:

— The transportation sector can be brought to its knees if truck
drivers cannot use credit cards to charge for gas tank fill-ups.

— The medical sector depends on the Internet to distribute
and present patient electronic medical records.

— The electrical grid depends on a survivable electrical grid
with predictable demand profiles matched to planned
resources and capacities (Koppel, 2015).

— The banking and finance sector remains ever conscious of
its need to protect next-day opening, even in the pres-
ence of a flash crash disruption (Lewis, 2014).

— The users of the telecommunications sector are increas-
ingly vulnerable to Internet disruptions like Distributed
Denial of Service (DDoS) and encryption-based scams
like ransomware.

Evolutionary Features and Issues
The following life cycle evolutionary features and conse-

quences are introduced, including sequential, prototype, incre-
mental, iterative, spiral, CMMI©, technical debt, code and upload
and frequency of release, next generation software engineering,
open source software, false claims, integration engineering, and
a new way of thinking.

Sequential
The much-aligned waterfall model is a linear sequence of de-

pendent activities. Much of the focus on life cycle model improve-
ment is devoted to disrupting this dependence on the sequential.

Prototype
The use of prototypes — perhaps rapid prototypes — is an at-

tempt to produce an early kernel of operational capability that can
be exercised (not so much tested) to glean necessary insights into

selective component interactions, numerical analysis of algorithms
and their finite word effects, computer capacity utilization of both
memory and speed, and targeted operational usage considerations.

Incremental
The use of multi-level design (Defense AT&L, 2012) and

staged incremental development (SSJ, 1983) are tactics to
put early performance pressure on the development team and
its people, processes, and tools through incremental stages of
production; for example, operating system services, middleware,
and environment; executing system and subsystem interfaces
using underlying stubs; executing prime mode functional-
ity buildup in place of stubs; and exercising and transitioning
degraded mode scenarios.

Iterative
Larman skillfully traces the real-world application of various

evolutionary features in his “Agile & Iterative Development: A
Manager’s Guide” (Larman, 2004). Larman mentions the work
of the IBM Federal Systems Division (FSD) on the integration
engineering of the Trident Submarine Command and Con-
trol System (SSJ, 1983) and its pioneering work on design,
development, and management life cycle activities spanning
advanced design, systematic design, systematic programming,
code management, integration engineering, technical reviews,
cost management, and program management (IBM SJ, 1980).

Spiral
Introduced by Barry Boehm, the foundational spiral method is

a purposeful and strategic departure from the sequential waterfall
model in integrating prototype, incremental, and iterative tactics in the
systematic management of software system risk (Boehm, 2015).

CMMI©
Now that the CMMI© has been organized into three con-

stellations for assuring an organization’s capability to perform
development, acquisition, and service, there is a need to extend
the range of value of the CMMI© to a new normal (Cross-
Talk, 2012). As an organization improves its process maturity,
strategic imperatives need to replace waste and neglect as the
CMMI© value driver. Only those organizations able to elevate
their game and transition from tactical to strategic use of the
CMMI© will be able to reap its full value.

While the traditional treatment of the value of the CMMI© in
terms of cost, schedule, productivity, quality, customer satisfac-
tion, and return on investment is sufficient to promote adoption
of the CMMI© and even to sustain a process improvement ini-
tiative through the early maturity levels, the value of the CMMI©
determined in this way is likely to be underestimated as the
organization approaches higher maturity levels.

The value of the CMMI© can be framed more strategically as a
means for carrying out visionary statements of strategic intent in
achieving measured outcomes in business and competitiveness,
management and predictability, process and improvement, engi-
neering and trustworthiness, and operations and dependability.

© CMMI is registered in the U.S. Patent and Trademark Of-
fice by Carnegie Mellon University.

Secure DevOps Foundations for
Large-Scale Software Systems

26 CrossTalk March/April 2017

MODERN PROCESS TRENDS

Technical Debt
Technical debt is the organizational, project, or engineering

neglect of known good practices that can result in persis-
tent public, user, customer, staff, reputation, or financial cost
(Defense AT&L, 2013). Shortcuts, expedient activities, and poor
practices that contribute to the initial product launch or initial
operational capability are often cited as justifiable excuses for
taking on technical debt. But in truth, most technical debt is
taken on without this strategic intent, without even knowing it,
and without the capacity to do the job right.

Code and Upload and Frequency of Release
In order to simplify, relieve stress and sustain a very high

frequency of release, one major corporation is employing an
extreme move. They no longer test software upgrades, prefer-
ring instead to use the code-and-upload tactic. This leaves any
defects to be encountered by unsuspecting customers. The
frequency of release cited by this corporation is an amazing
30,000 per year.

Next Generation Software Engineering
Practical Next Generation Software Engineering addresses

the unclaimed benefits and unmet needs associated with
competitiveness, security and software. In accordance with the
austerity of the times, the immediate goal of practical next gen-
eration software engineering is to drive systems and software
engineering to do “more with less ... fast” (IEEE, 2009). Four
practical objectives are identified to advance this goal using
smart, trusted technologies:

— Drive user domain awareness.
— Simplify and produce systems and software using a

shortened development life cycle.
— Compose and field trustworthy applications and systems

from parts.
— Compose and operate resilient systems of systems from

systems.

Open Source Software
Open Source Software is openly available off-the-shelf soft-

ware that depends on community development and distribution
support subject to license compliance. Open source code is
openly available for inspection and change. By contrast, closed
source is a proprietary product dependent on the vendor for
support and not open to inspection or modification.

Open source software features free distribution of source code.
When open source software is extended or revised, the result is
termed a “derived work.” Furthermore, an open source software
license may permit resale of a derived work. While freely available,
there are project costs associated with modifying and integrating
derived works into deployable software systems.

The proper use, reuse, modification, and sale of open source
software as derived work lies in the art of program and contract
management. When this is done in government contracting,
retaining the classification of “Commercial Off the Shelf” (COTS)
and “Government Off the Shelf” (GOTS) software has financial
and legal consequences. Furthermore, blending all this into use

under the General Services Administration (GSA) contract may
introduce complexities not yet fully explored. The government
is recognizing the potential savings in absorbing software into
the GOTS classification and is now establishing target goals
for accomplishing this. Failure to assign the proper COTS and
GOTS classifications and associated fee structures may result
in a Department of Justice (DOJ) false claims charge against
the contractor under the False Claims Act.

False Claims
With 80 percent of government software procured as COTS

and accorded limited or restricted rights, government acquisi-
tion managers need to be aware of intellectual property consid-
erations (Defense AT&L, 2014). When modified and extended
through government funding, COTS software becomes GOTS
software and is entitled to government purpose rights. Unless
the government acquisition manager insists on it, a contractor
may engage in false claims practice by improperly marketing
and selling GOTS software products as COTS. Instead of re-
ceiving the benefits of government purpose rights, the govern-
ment may be charged a commercial product licensing fee and
accorded only limited or restricted rights. Neglecting intellectual
property rights can be costly.

Integration Engineering
The penultimate challenge in fielding large-scale systems and

systems of systems that are trustworthy, secure and resilient
resides in critical infrastructure (White House, 2016). Simply
put, the resilience value proposition is intended to yield a critical
infrastructure capable of anticipating, avoiding, withstanding,
minimizing, and recovering from the effects of adversity, whether
natural or man-made, under all circumstances. This is based on
an architecture of resilience that squarely faces the issues of
harmonizing a diverse industry sector culture and context and of-
fers effective prescriptions for success in the form of well-trained
intelligent middlemen, a resiliency maturity framework, a system
of systems technical architecture, a common and useful way
of working, and an integration engineering program structure
staffed by a capable resilience integrator. Anticipation and avoid-
ance replace cleanup, recovery, and opportunity loss.

The author offers the following integration engineering context
and culture harmonization guidance:

— Formality within an architectural framework facilitates the
imposition of distributed supervisory control, interoperabil-
ity, and operation sensing and monitoring protocols.

— Strong code management practices facilitate reconfigura-
tion and reconstitution.

— Exercising strong control over the workforce facilitates
business continuity and survivability.

— Exercising strong government control facilitates compli-
ance for the benefit of the commons at the expense of
initiative for the self-interest.

— The diverse industry sector expectations of trust, loyalty, and
satisfaction must be respected, blended, and harmonized.

— Technical debt must be eliminated.
— Cascading and propagating triggers must be anticipated,

CrossTalk—March/April 2017 27

MODERN PROCESS TRENDS

avoided, and minimized.
— Industry sector software sourcing exposures must be

understood and managed.
— Supply chain risk management operations must be as-

sured.
— Cybersecurity strategy policy decisions and defined tac-

tics must be assured.

A New Way of Thinking
The Integration Engineers, Resilience Integrators, and Intel-

ligent Middlemen must be equipped with a new way of thinking.
(Jacobson, I., Lawson, H.B., 2015). As the twig is bent, so grows
the tree. To get your project off on the right foot, expectations
should be set and evidence should be sought on the following
assertions and principles:

— Stakeholders are in agreement and share a vision for the
project.

— An opportunity value proposition has been established,
and stakeholders share a vision for achieving it.

— Requirements or user stories are coherent and accept-
able, and stakeholders share a vision for them.

— The software system architecture is selected and comprises
a domain-specific architecture to guide software system
implementation. The software system implementation is also
made ready and operational with no technical debt.

— The team operates in collaboration, shares a vision for the
project, and is ready to perform with respect to shared
vision, software engineering processes, software project
management, software product engineering, operations
support, and domain-specific architecture processes,
methods, and tools.

— The way of working by the team has established foun-
dations for software engineering processes, software
project management, software product engineering, and
operations support.

— Work begins only when everything is prepared, includ-
ing coherent requirements and acceptable user stories,
stakeholders that are in agreement, and an established
foundation for the way of working.

— All work products are prepared and inspected in accor-
dance with a defined standard of excellence assuring
completeness, correctness and consistency.

A product focus on perfection is assisted by the “work
product” expectations as shown here. The work product
should be:

— Identified as part of the way of working.
— Produced, shared with the team, and inspected.
— Complete with parts that are traceable to predecessor

work products.
— Correct with parts that are verified and provably correct.
— Consistent in style and form of recording, and consistent

with the software system architecture and its rules of
construction.

— “Value add,” traceable to user stories and the “Done”
criteria for the way of working.

1. David Svoboda. (Sept. 8, 2016.) SEI CERT Secure Coding Team, 2016 CERT Secure Coding
Symposium. Arlington, Virginia.

2. Kris Britton. (Sept. 8, 2016.) NSA Center for Assured Software, 2016 CERT Secure Coding
Symposium. Arlington, Virginia.

3. Dr. Carl Woody. (Sept. 8, 2016.) CERT Cyber Security Engineering Team, 2016 CERT Secure
Coding Symposium. Arlington, Virginia.

4. Josh Corman. (Sept. 8, 2016.) The Atlantic Council, 2016 CERT Secure Coding Symposium.
Arlington, Virginia.

Don O’Neill served as the president of the Center for
National Software Studies (CNSS) from 2005 to 2008.
Following 27 years with IBM’s Federal Systems Division
(FSD), he completed a three-year residency at Carnegie
Mellon University’s Software Engineering Institute (SEI)
under IBM’s Technical Academic Career Program and has
served as an SEI visiting scientist. A seasoned software
engineering manager, technologist, independent consultant,
and expert witness, he has a Bachelor of Science degree
in mathematics from Dickinson College in Carlisle, Penn.
His current research is directed at public policy strategies
for deploying resiliency in the nation’s critical infrastructure;
disruptive game-changing fixed price contracting tactics
to achieve DOD austerity; smart and trusted tactics and
practices in supply chain risk management assurance; a
defined “software clean room method” for transforming a
proprietary system into a clean system devoid of proprietary
information, copyrighted material, and trade secrets and
confirming, verifying, and validating the results; and a con-
structive approach to sequencing the transition of SEMAT
Essence Kernel Alpha states with an eye to pinpointing the
risk triggers that threaten success and lead to the accumu-
lation of technical debt.

ABOUT THE AUTHOR

NOTES

Conclusion
Clearly the search for an ideal model software life cycle is a

journey, not a destination. The disruptive journey continues, with
the tension of Agile and cybersecurity serving as current dis-
rupters. As before, a variety of adaptations and innovations will
emerge from practice, and some will be absorbed in the body
of professional practice for those that follow. And so goes the
evolution of the software profession.

O’Neill, D. (January/February 2012.) “Extending the Value of the CMMI to a New Normal.” Cross-
Talk, The Journal of Defense Software Engineering. http://www.crosstalkonline.org/storage/
issue-archives/2012/201201/201201-ONeill.pdf.

O’Neill, D. (July/August 2016.) “The Way Forward: A Strategy for Harmonizing Agile and CMMI.”
CrossTalk, The Journal of Defense Software Engineering. http://static1.1.sqspcdn.com/
static/f/702523/27124563/1466890559753/201607-ONeill.pdf?token=CYClitqj%2B4Q5KzD%
2B8d1nHTuHh9s%3D.

REFERENCES

http://www.crosstalkonline.org/storage/issue-archives/2012/201201/201201-ONeill.pdf
http://static1.1.sqspcdn.com/static/f/702523/27124563/1466890559753/201607-ONeill.pdf?token=CYClitqj%2B4Q5KzD%2B8d1nHTuHh9s%3D

28 CrossTalk March/April 2017

MODERN PROCESS TRENDS

1. Introduction
Software deployment or installation represents the final

handover of software from the development team to the
customer. After successful deployment, the software system is
finally operational so that the customer can benefit economically
from its use. At the end of this deployment effort, the software
development organization receives payment from the cus-
tomer and the project is considered successful from both the
developer’s and the customer’s viewpoints. However, software
deployment is anything but trivial, depending on the scale of
implementation. While a nontechnical person can install a desk-
top application by either installing a downloaded file or installing
from a disk, a large-scale enterprise resource planning (ERP)
system such as SAP may take several months — if not years —
to be fully configured and ready to use [1, 2, 3].

A question one might have is why certain software deploy-
ments take a long time. Is it possible to shorten all deployments
to the time it takes to install a desktop application? In this article
we examine typical deployment models and discuss some
answers to these questions. To answer these questions, we
develop a generic deployment model based on typical deploy-
ment models, and this generic model will help us rationalize our
answers. We also explore opportunities to automate some or all
deployment activities.

What happens when, after successful software deployment,
users notice defects (or bugs) during normal software opera-
tion? The customer reports these bugs to the software develop-

The Software
Deployment Process
and Automation
Dr. Nary Subramanian, Associate Professor of Computer Science,
University of Texas at Tyler

Abstract. Software deployment is the last step in the software develop-
ment life cycle. During deployment, control of the software transfers from
the development team to the customer. After deployment, people in the
customer organization will use the software as part of their jobs and de-
rive economic benefits from the software. Any defects found in software
post-deployment are resolved as part of the maintenance phase. The first
step in mitigating user problems is the proper deployment of software.
Software deployment is anything but trivial. Some enterprise software
may take months, if not years, to completely deploy. Therefore, efficient
software deployment will considerably shorten the deployment phase
and save resources in terms of cost and labor. In this article, we explore
typical models for software deployment. Based on these models, we
develop a generic software deployment model, then identify deployment
processes that lend themselves to further automation and may lead to an
overall reduction in the deployment effort.

O’Neill, D. (May/June 2015.) “Software 2015: Situation Dire.” Defense
Advanced Technology and Logistics (DAT&L) Magazine. http://www.dau.
mil/publications/DefenseATL/DATLFiles/May-Jun2015/O’Neill.pdf.

Royce, Winston W. (August 25–28, 1970.) “Managing the Development of
Large Software Systems.” Technical Papers of Western Electronic Show
and Convention (WesCon). Los Angeles, Calif., USA.

Sheard, Sarah. (2015.) “Chapter 5: Complexity, Systems, and Software, ‘Soft-
ware Engineering in the Systems Context.’” Edited by Ivar Jacobson and
Harold “Bud” Lawson. College Publications, King’s College, London. ISBN
978-1-84890-76-6. 578 pages;

O’Neill, D. (1983.) “Integration Engineering Perspective.” The Journal of
Systems and Software, 3. 77-83. http://www.sciencedirect.com/science/
article/pii/0164121283900067.

O’Donnell, Bob. (June 22, 2016.) “The Internet of Things is facing challenges
with scale.” Recode. http://www.recode.net/2016/6/22/11991414/
internet-of-things-iot-challenges-scale.

O’Neill, D. (September/October 2011.) “Cyber Strategy, Analytics, and
Tradeoffs: A Cyber Tactics Study.” CrossTalk, The Journal of Defense
Software Engineering. http://www.crosstalkonline.org/storage/issue-
archives/2011/201109/201109-ONeill.pdf.

O’Neill, D. (March/April 2014.),“Software and Supply Chain Risk Manage-
ment Assurance Framework.” CrossTalk, The Journal of Defense
Software Engineering. http://www.crosstalkonline.org/storage/issue-
archives/2014/201403/201403-ONeill.pdf.

Koppel, T. (2015.) “Lights Out.” Crown Publishing Group. ISBN 978-0-553-
41996-2. 277 pages.

O’Neill, D. (1983.) “Integration Engineering Perspective.” The Journal of
Systems and Software, 3, 77-83. http://www.sciencedirect.com/science/
article/pii/0164121283900067.

Larman, C. (2004.) “Agile & Iterative Development: A Manager’s Guide.”
Pearson Education, Inc. ISBN 0-13-111155-8, 82-85.

O’Neill, D., Linger, R.C., Dyer, M. & Quinnan, R.E. (1980.) “The Management of
Software Engineering.” IBM Systems Journal, Vol. 19, Number 4, 414-477.
http://www.research.ibm.com/journal/sj/.

Boehm, Barry. (2015.) “Chapter 6: Principles and Rationale for Successful
Systems and Software Processes, ‘Software Engineering in the Systems
Context.’” Edited by Ivar Jacobson and Harold “Bud” Lawson. College
Publications, King’s College, London. ISBN 978-1-84890-76-6. 578 pages.

O’Neill, D. (March/April 2013.) “Technical Debt in the Code: Cost to Software Plan-
ning.” Defense Advanced Technology and Logistics (DAT&L) Magazine. http://
www.dau.mil/pubscats/ATL%20Docs/Mar_Apr_2013/O%27Neill.pdf.

O’Neill, D. (June 2009.) “Preparing the Ground for Next Generation Software Engi-
neering.” IEEE Reliability Society, Annual Technology Report 2008, 148-151.

O’Neill, D. (November/December 2014.) “Avoiding Proprietary Problems: A
Software Clean-Room Method.” Defense AT&L Magazine. http://www.
dau.mil/publications/DefenseATL/DATLFiles/Nov-Dec2014/O’Neill.pdf.

O’Neill, D. (April 14, 2016.) “Integration Engineering in the Pursuit of Critical
Infrastructure Resilience: A Unified Theory.” White House Cyber Commis-
sion on Enhancing National Cybersecurity, Kickoff Meeting. http://www.
nist.gov/cybercommission/upload/Meeting_Minutes_April_14.pdf.

Jacobson, I. & Lawson, H.B. (2015.) “Software Engineering in the Systems
Context.” Edited by Ivar Jacobson and Harold “Bud” Lawson. College
Publications, King’s College, London. ISBN 978-1-84890-76-6. 578 pages.

Lewis, Michael. (2014.) “Flash Boys: A Wall Street Revolt.” W.W. Norton and
Company, Ltd. ISBN 978-0-393-24466-3. 274 pages.

REFERENCES CONT.

http://www.dau.mil/pubscats/ATL%20Docs/Mar_Apr_2013/O%27Neill.pdf
http://www.dau.%20mil/publications/DefenseATL/DATLFiles/May-Jun2015/O%E2%80%99Neill.pdf
http://www.sciencedirect.com/science/article/pii/0164121283900067
http://www.recode.net/2016/6/22/11991414/internet-of-things-iot-challenges-scale
http://www.crosstalkonline.org/storage/issue-archives/2011/201109/201109-ONeill.pdf.
http://www.crosstalkonline.org/storage/issue-archives/2014/201403/201403-ONeill.pdf
http://www.sciencedirect.com/science/article/pii/0164121283900067
http://www.research.ibm.com/journal/sj/
http://www.%20dau.mil/publications/DefenseATL/DATLFiles/Nov-Dec2014/O%E2%80%99Neill.pdf
http://www. nist.gov/cybercommission/upload/Meeting_Minutes_April_14.pdf.

