
2 CROSSTALK The Journal of Defense Software Engineering September 1998

Your July issue contained a letter to the
editor from Joe Saur of Fort Monroe, Va.
It is interesting that in acquisition man-
agement the “developer” (usually the
contractor) is still referred to as the en-
emy. He also refers to the IV&V (inde-
pendent validation and verification)
group as “experienced developers” (are we
to consider developers here as the enemy,
also?) hired to search through the “horse
dung (documents).”

As a contractor, I run across this mind-
set every time I go to a military installa-
tion. It is a sad state of working affairs to
continue to make references to developers
or even internal IV&V team members in
this way. And if the developers are search-

ing through the horse dung to find the
intent, the fault probably rests with how
the contract was awarded. You get what
you pay for. If you pay for horse dung,
expect to receive horse dung. It sounds like
Saur is and has been constantly on the
receiving end of work not produced by a
company assessed at least CMM (Capabil-
ity Maturity Model) Level 3, and they are
probably not ISO (International Organi-
zation for Standardization) registered.
Most of the companies the government
does business with do not meet either
criterion. And usually, these companies are
able to bid their services at a much lower
rate than one that makes the investment in
its people and processes to do the job

right. Therefore, I recommend to Mr. Saur
that he reassess his idea of who is the
enemy and pro-actively eliminate the
problem before a contract is awarded by
basing award on technical capability and
desired output and not the lowest cost.

As a final note, most of the experi-
enced developers (IV&V team members)
I’ve dealt with have had less than five years
experience, with most being in the one- to
two-year range. Remember that they are a
part of the equation, too. In this analogy
then, the IV&V members are not the
Apache but instead are the Apache
wannabes.

Alan L. Reagan
Warner Robins, Ga.

Acquisition Managers Get What They Pay For

Process Improvement: Plan for Success
Reuel S. Alder

Publisher
Discipline is no fun—I
consider day planners
self-inflicted torture. My
idea of a good day is to
wake up with no plan
and accomplish more
than humanly thought

possible. The work would be intuitively
discovered as the day progressed. Creativ-
ity and spontaneity would be enhanced,
and routine, repetitive activities would be
minimized. Each day would be a fresh and
exhilarating experience filled with learn-
ing, personal growth, and development.
The variations would be unlimited, and
the success would be phenomenal.

But if you believe the last 40 years of
development data, this dream is not
achievable for most software projects. Yet
we are still largely living in a dream world
where we think software can be built by
pure “artists” who arrive at river’s edge
with no plans, and through sheer talent
can turn a pile of scrap iron into a decent
bridge. However, I have learned from
unfortunate personal experience that
almost all significant human achievements
require more than just talent and creativ-
ity. Decades of data prove it: Even the best

software artists do better work when they
start with a foundation of planning, prepa-
ration, and discipline.

This issue of CROSSTALK addresses soft-
ware process improvement. Development
models like the Capability Maturity
Model may not be as easy to apply as the
random search for truth, but they help
apply the discipline necessary to create
complex software systems.

Real process improvement is not easy,
and anyone who believes otherwise has
either never tried it or has never helped
make an improvement of lasting signifi-
cance. Learning better techniques and
technologies is only the beginning—there
are many human aspects to work through
as you try to fund the improvements, sell
all the players on them, and then follow
up until the changes are institutionalized.

The expertise to navigate through
these challenges is available, and over the
years the Software Technology Support
Center has acquired much experience in
helping others adopt proven processes and
technologies. We know that to adopt a
new process, you must first create a strong
process improvement infrastructure.

First, you need an initial assessment to
know your strengths and weaknesses so
your senior managers can scope the im-
provement effort. Only with this knowl-
edge can you customize an infrastructure
for process improvement. We have had
success with plans tailored according to
the Software Engineering Institute’s
IDEAL model. This includes formation of
a Management Steering Group, which
helps you develop a charter and vision and
to establish a clear match to organizational
goals and objectives.

You will then need to establish func-
tioning change agents (such as Software
Engineering Process Groups) and imple-
mentation teams (such as Process Action
Teams) who know their roles, responsibili-
ties, charters, and action plans. They will
be much more effective if they receive the
right formal and informal training.

Without a strong process improvement
infrastructure, it may be impossible to
institutionalize superior processes and
technologies. If you do not have such an
infrastructure in place, do not hesitate to
get the help you need to build one. Process
improvement is paying dividends for those
with the discipline to do it right. u

Letter to the Editor

From the Publisher

CROSSTALK The Journal of Defense Software Engineering 3September 1998

Faced with governments
transitioning to commercial stan-
dards, and responding to business

pressures to expand into new lines of
business, many software engineering
organizations are faced with adapting
their CMM-based systems for ISO 9001
compliance. At the same time, many
small- and medium-sized software engi-
neering organizations are exploring
methods to exploit these models for
process definition and improvement. In
the United States, CMM (Capability
Maturity Model) to ISO (International
Organization for Standardization) is
emerging as the prevalent transition for
government organizations and their
suppliers. In Europe, because of the early
adoption of ISO 9001 and ISO 9000-3,
there is greater interest by commercial
software development organizations in
the transition from ISO 9001 to the
CMM. European interest is evidenced
by steadily increasing attendance num-
bers for the annual European Software
Engineering Process Group (ESEPG)
conferences sponsored by the SEI.

In response to this industry need, a
number of articles and conference pre-
sentations published since 1992
[1,2,3,12] have laid a foundation for
comparing the requirements of the two
models. These articles and presentations
provide background information useful
to people who are preparing to
• Plan a transition between models.
• Identify the most appropriate model.
• Implement the most effective and

efficient combination of elements
from both models.

The balance of this article presents
steps such people can take to translate
this generic background information
into a detailed, specific action plan for
their organization.

Where to Start
At the beginning of the selection or
transition process, there are typically
champions for both models and a small
group responsible for selecting a model.
Whether the champions participate in
the group is determined by the company
culture and the willingness of the cham-
pions to participate in a process that has
an uncertain outcome.

The first step in the selection or
transition process is to explore and as-
similate enough of the large body of
knowledge to overcome initial resistance
to the language and structure of ISO
9001 and ISO 9000-3 [7] or to the sheer
size of the CMM—even when the focus
is only on Levels 2 and 3. For organiza-
tions that persevere, the outcome of this
phase is typically an understanding that
both models
• Can be the basis for effective process

improvement in any software engi-
neering organization.

• Are flexible in principle, and in prac-
tice, support any software develop-
ment lifecycle.1

• Are extremely susceptible to prob-
lems introduced in the implementa-
tion (excessive bureaucracy, inflexible
lifecycle definitions, over-
documentation, lack of management
or engineer buy-in, etc.).

• Require executive management com-
mitment.

• Require continuing organization-
wide support.

• Include regular appraisals (audits or
assessments) to ensure the effective
implementation and continuing
relevance of the defined processes.

• Are not equivalent to each other,
although ISO 9001 compliance and
CMM Level 3 assessment are similar
[3, 12].

• Have requirements that can be selec-
tively implemented to satisfy the
requirements of the other model. For
example:

• ISO 9001 clause 4.18, Training,
maps to the requirements out-
lined in the Level 3, Training
Program.

• The key practices described in
the Level 3 key process area
(KPA), Peer Reviews, can satisfy
the requirements of ISO 9001,
clause 4.4.6, Design Reviews.2

Formal Appraisal
The second step in the selection or
transition process is the appraisal,
which creates a bridge between the
available information and the impact of
a model on the practices in a particular
software engineering organization. The
formal appraisal is a continuing oppor-
tunity to educate the organization about
the content of the models, to allay con-
cerns about bureaucracy and change,
and to reinforce the credibility of the
models and the appraisal process. Expe-
rience with the appraisal process also
serves as a valuable input to the model
selection. An appraisal is also a necessary
first step in planning the introduction
and implementation of any new system
or process.

There are a number of well-defined,
formal appraisal methods associated

Hybrid Multi-Model Assessment
When the CMM Meets ISO 9001

Robert C. Bamford and William J. Deibler II
Software Systems Quality Consulting

CMM is registered in the U.S. Patent and
Trademark Office. Capability Maturity Model
is a registered service mark of Carnegie Mellon
University.

This article outlines a strategy and methods to employ formal appraisals to deter-
mine which model—or which elements from either model—offer the most value
for a particular software engineering organization. The article is illustrated with
examples from our experiences in guiding software engineering organizations to
examine and select the most appropriate model for software development.

Software Process Improvement

4 CROSSTALK The Journal of Defense Software Engineering September 1998

with ISO 9001 and the CMM: the ISO
9001 registration audit or pre-assess-
ment, the Software Process Assessment
(SPA), and the family of CMM-based
appraisals (CBAs), which includes the
Software Capability Evaluation (SCE),
the CBA for Internal Process Improve-
ment (CBA/IPI), and Interim Profiles.

ISO Registration Audits
Although the ISO 9001 audit process
originally had little associated documen-
tation, it has been well understood and
consistently practiced by registrars:
• A scope is selected.
• The quality manual and supporting

policy and procedural documents are
reviewed.

• A plan and schedule are prepared.
• People from all levels of the organiza-

tion within the selected scope are
interviewed, typically at their work-
stations.

• The results of the audit, including a
recommendation for or against
registration, are consolidated into a
presentation and report that is given
to the managers of the audited orga-
nization.

• The report, including a recommen-
dation for or against registration, is
reviewed and approved by registrar
personnel who were not involved in
the audit.
The registrars’ initial and surveillance

audit methods have shaped the internal
audits (ISO 9001, 4.17), which are
periodic, mandatory self-assessments to
ensure on-going compliance “with
planned arrangements and to determine
the effectiveness of the quality system.”
[6, clause 4.17]

The internal audits are critical to the
management review process and to the
management representative, who is
responsible to “ensure that a quality
system is established, implemented, and
maintained in accordance with this
International Standard.” [6, clauses
4.1.2.3 and 4.1.3]

With the publication of ISO/IEC
Guide 61 [8] and ISO/IEC Guide 62
[9] in 1996, the accreditation and the
registration processes have been com-
pletely defined in standards virtually
equivalent to ISO 9002. With the for-

malization of the role of the Interna-
tional Accreditation Forum (IAF), an
audit structure has been implemented to
monitor the on-going compliance of the
accreditation bodies and registrars3 and
to ensure a baseline consistency across
registrations.

Because of the experience of the
assigned assessors, advance preparation
tends to be minimized. Typically, only
the lead assessor reviews the quality
manual, the top-level document, and
selected policies and procedures. In the
course of the on-site interviews, auditors
examine process and product documen-
tation in detail to ensure compliance
with planned arrangements. ISO 9001’s
unique requirement that the quality
policy be “understood, implemented,
and maintained at all levels of the orga-
nization” [6, clause 4.1.1] has led to the
practice of interviewing a sample of
some 15 percent to 20 percent of the
organization. Although national pro-
grams, like TickIT, include guidance
(suggestions) regarding contact hours [4,
section 11, p. 18], there are no interna-
tional standards that define sample size
and contact hours for ISO registration
and surveillance audits. This has become
a problem as competition forces regis-
trars to reduce costs.

For implementation guidance, a pre-
assessment by a registrar falls short.
Although the registrar will be as thor-
ough as the implementor requires, the
results can only define observed noncon-
formity. Corrective recommendations

would be a form of consulting, which is
forbidden by accreditation bodies and
ISO/IEC Guide 62 as a conflict of inter-
est that would contravene the impartial-
ity of the assessors [9, clause 2.2.2 (o)],
who would have a vested interest in their
recommended solutions.4 As a result, a
large, independent consulting commu-
nity exists to provide detailed, collabora-
tive audits, similar to the CBA/IPI (pre-
assessments, gap analyses, diagnostic
audits, etc.) to support implementation
and action planning.

CMM Appraisal Methods
It is only since 1993 that methods like
the SCE have been published. Before
that, detailed information about the
SCE Method was available only through
SCE team training, which was available
only to government teams [15, p. 28].
The Software Engineering Institute
(SEI) has also published a standard, the
CMM Appraisal Framework (CAF),
against which any CMM-based appraisal
method can be evaluated [16] and with
which it has been stated the SEI-pro-
vided methods will comply.

From comments in [16, p. 25] and
[17, section LA.B, p. 13] and from a
wealth of anecdotal data provided by
numerous people, it appears the CMM
appraisal process has changed dramati-
cally. In its initial form, the appraisal
process did not rely on objective evi-
dence or on systematic techniques to
obtain evidence; the process incorpo-
rated interviews with project managers

APK2leveL esualC1009OSI APK3leveL esualC1009OSI

tnemeganamstnemeriuqeR 4.4,3.4 sucoFssecorPnoitazinagrO 41.4,9.4

gninnalPtcejorPerawtfoS 9.4,4.4,3.4,1.4 noitinifeDssecorPnoitazinagrO 2.4

dnagnikcarTtcejorPerawtfoS
thgisrevO

9.4,4.4 margorPgniniarT 81.4

tcartnocbuSerawtfoS
tnemeganaM

6.4 tnemeganaMerawtfoSdetargetnI 9.4,4.4

ecnarussAytilauQerawtfoS 71.4,4.4 gnireenignEtcudorPerawtfoS 01.4,4.4

noitarugifnoCerawtfoS
tnemeganaM

,9.4,8.4,7.4,5.4,4.4
51.4,41.4,31.4,21.4

noitanidrooCpuorgretnI 4.4

sweiveRreeP 4.4

Figure 1. Relationship between the Level 2 and Level 3 KPAs and the ISO 9001 clauses.

Software Process Improvement

CROSSTALK The Journal of Defense Software Engineering 5September 1998

and free-form discussions with func-
tional area representatives. The CMM
appraisal process has evolved to its
present form, engaging individuals from
all levels of a development organization,
including middle management, and
incorporating more traditional auditing
methods and systematic techniques for
corroboration.

This change in method, in terms of
the CBA/IPI, is presented in the SEI lead
assessor training [17, section LA.B, p.
13]. Key improvements are identified as
• Documentation review. The CBA/IPI

incorporates more extensive docu-
mentation review.

• Interviews. The CBA/IPI includes
individual interviews of project lead-
ers, structured group interviews of
middle managers, and structured
group interviews of functional area
representatives and individual con-
tributors. Previously,

• Middle managers were not neces-
sarily interviewed.

• Functional area representative
interviews were free-form dis-
cussions.

• Data consolidation. The CBA/IPI
incorporates more systematic analysis
and consolidation of the data from
the interviews and documentation
review.
The CBA/IPI requires an extensive

commitment from the software engi-
neering organization undergoing the
assessment. An integral part of the CBA/
IPI, as a CAF-compliant method, is
training for a team of members from the
sponsoring organization, who participate
in the assessment and who are posi-
tioned to participate in the follow-up
process improvement activities. Al-
though this commitment of resources
and money has a high potential rate of
return, it is typically more than can be
justified by an organization investigating
whether the CMM is applicable.

Key Differences Between the
Appraisal Methods
Both the ISO audit and the CBA/IPI
produce objective results to support
process improvement. Although the two
models differ in content and scope,5

both appraisal methods require that the

organization have completed the imple-
mentation activities necessary to define
and institutionalize—implement across
the organization—effective processes.
The appraisal confirms the success (or
continuing success) of the implementa-
tion by gathering and analyzing objec-
tive evidence. Both methods require that
management invest whatever resources
are required to address issues identified
in the assessment or audit. There are,
however, a number of key differences
between the methods.

Difference 1: Level of Involvement
The most prominent difference between
the ISO audit and the CBA/IPI is the
level of involvement required of the
organization. To position the organiza-
tion to understand and take action on
the findings, the CBA/IPI requires that
one or more members of the organiza-
tion serve on the assessment team. The
comparable ISO audit relies on a repre-
sentative of the audited organization (the
guide), who accompanies the ISO audi-
tor, and depends on detailed, written
findings reviewed with the audited
organization’s management as the last
step in the on-site portion of the audit.6

Difference 2: Interview Methods
A second difference is in how input is
gathered. In an ISO audit, interviews are
typically conducted in or near the
interviewee’s workplace and are attended
by the auditor, interviewee, and the
guide. In the CBA/IPI, although project
managers are interviewed individually,
small groups of middle managers and
small groups of functional-area represen-
tatives meet with panels of assessors,
chaired by the lead assessor or another
member of the assessment team. The
group approach is based on the principle
that individual contributors will be more
willing to speak frankly when they are
part of a small group.

Difference 3: Reporting Results
The third difference is in how findings
are reported at the conclusion of the
assessment or audit. As described above,
in conjunction with Difference 1, de-
tailed, written findings are provided to
and reviewed with the audited

organization’s management as the last
step in the on-site portion of the ISO
audit, typically on the day following the
last interviews. Findings are expressed in
terms of a specific clause of ISO 9001
and include detailed information about
the nonconformity and are classified as
major or minor. The only global finding
is binary. Based on the identified
nonconformities, the audit team states
whether it recommends that the audited
organization be registered or retain its
registration.

The CMM assessment concludes
with presentations of draft and final
findings, defining at a minimum the
organization’s strengths and weak-
nesses at the KPA level. Detailed infor-
mation is transferred through the
members of the organization who
participate on the assessment team. In
addition, a written report may be pur-
chased as an option, but typically it is
not available for an additional four to
six weeks, and it does not necessarily
include any significant information
beyond that which was published in
the final findings presentation.

Difference 4: Role of the Lead
Assessor and Assessment Team
Make-Up
In the CBA/IPI, preparation spans at
least two weeks. Team members may
lack prior assessment experience or di-
rect experience with the CMM. In the
first week, the lead assessor trains the
team. In the second week, documenta-
tion is reviewed, and the assessment
checklists and schedules are prepared.
The lead assessor conducts key inter-
views, leads team interviews, and facili-
tates team discussions that reach consen-
sus on findings. The lead assessor also is
the CMM expert, guiding the team in its
interpretation of whether observed prac-
tices satisfy the requirements of the
CMM. This latter function becomes
increasingly critical as the CMM is ap-
plied to commercial organizations, pro-
viding products to customers outside the
Department of Defense (DoD) commu-
nity. The problem of interpretation is
exacerbated as commercial organizations
go beyond the experience provided by
many DoD software providers who have

Hybrid Multi-Model Assessment: When the CMM Meets ISO 9001

6 CROSSTALK The Journal of Defense Software Engineering September 1998

been able to rely on CMM-compatible
Military Standards, e.g., MIL-STD-
2167A and MIL-STD-498, to com-
pletely define the implementation.

The CMM recognizes this problem
and states that “Organizations using the
key practices should be aware of these
conventions (in expressing the key prac-
tices) and map them appropriately to
their own organization, project, and
business environment.”7

To mitigate the problem of auditor
preconception and to enhance the main-
tainability of the implemented quality
system, ISO 9001 requires that the orga-
nization create a quality manual, which
documents how the requirements of the
standard are addressed.

Difference 5: Who Appraises the
Appraiser—Ensuring the Quality of
the Assessments
The ISO registration process includes
four levels of quality assurance:
• ISO lead auditors must complete an

approved course.
• Performance of ISO lead auditors is

monitored by the registrars.
• Performance of registrars is moni-

tored by accreditation bodies.
• Performance of accreditation bodies

is monitored by the IAF.
The CBA/IPI infrastructure is less

extensive; the SEI is just beginning to
define standards, guidelines, and a
mechanism for pro-active monitoring of
the quality of assessments. People with
extensive experience in software develop-
ment, including participation in two
CBA/IPIs, can become registered lead
assessors by completing the SEI curricu-
lum and completing an assessment ob-
served by a lead assessor. Only assess-
ments conducted by SEI-authorized lead
assessors can be recorded at the SEI as
“SEI-recognized” assessments. The regis-
try of CBA/IPI lead assessors is main-
tained by the SEI.

Selecting an Appraisal Method
For CMM Level 3-compliant or ISO
9001-compliant organizations, one or
two people experienced in both models
and familiar with the organization, and
who ideally have been or have access to
internal auditors or members of the

CBA/IPI team, can convert two available
sources of information into an accurate
benchmark of the position of the organi-
zation with respect to the other model.
The first source of information is the
organization’s library of presentations
and reports from recent appraisals (ISO
9001: internal and registrar’s audits;
CMM: CBA/IPI, SCE, and SQA audits
and reviews). The results of these assess-
ments record the degree of “institution-
alization” (CMM) or “effective imple-
mentation” (ISO 9001) of the required
practices. The second source of informa-
tion is the organization’s set of docu-
mented policies, procedures, and stan-
dards, which describe in detail how the
organization should operate.

Omissions identified in this conver-
sion are addressed by updating the exist-
ing set of process documents. A by-
product of the conversion is a mapping
of the organization’s policies, procedures,
and standards to the requirements of the
other model.

For CMM Level 2-compliant organi-
zations, the most effective strategy de-
pends on whether the organization is
committed to the CMM and how well it
is positioned for Level 3, i.e., how much
groundwork has been done, exceeding
the requirements of Level 2. If the
CMM is well-established and the organi-
zation is well-positioned for Level 3, the
recommended strategy is to continue to
Level 3 and to follow the conversion
strategy outlined above for a CMM
Level 3-compliant organization. An
alternative for a CMM Level 2-compli-
ant organization is to commission an
ISO pre-assessment and proceed with an
exclusive ISO focus. To the extent that
the Level 2 organization has adopted
standard processes across projects (a
Level 3 requirement), work products and
processes will carry forward to ISO.

Organizations that are not commit-
ted to either model face the greatest
challenge—and opportunity—in design-
ing an appraisal strategy. The most
straightforward approach, to undertake
separate ISO and CMM appraisals, is
typically too expensive, too time-con-
suming, and too confusing. The hybrid
model and its associated assessment

method offer a viable alternative for the
currently uncommitted organization.

Hybrid Models
A number of hybrid models exist, in-
cluding Bootstrap [5, 11] and Trillium.
Although these models incorporate ISO
9001, ISO 9000-3, the Malcolm
Baldrige National Quality Award crite-
ria, the CMM, and various other stan-
dards, they do not answer the needs of
the organization investigating ISO 9001
and the CMM. The outputs of the ap-
praisals associated with these hybrid
models are unique to the model and do
not facilitate translation among the
various source models with which these
proprietary hybrid models are intended
to compete.

Hybrid Multi-Model Assessment
The emergence of a general agreement
on the relationship between the require-
ments of the CMM and ISO 9001 im-
plicitly defines another hybrid model,
the union of the two models, and forms
the basis for a set of assessment tools and
report templates that address both the
goals of the CMM KPAs and the re-
quirements of ISO 9001.

The tools associated with the hybrid
assessment address the requirements the
two models share, like documented
procedures for planning, and those re-
quirements that lie outside the intersec-
tion of the two models. For example,
ISO requirements for record retention,
technical support, packaging and distri-
bution, and software maintenance are
not addressed in the CMM, and the
CMM’s detailed requirements for plan-
ning (size and cost) are not addressed in
ISO 9001.

The method we adopted, a hybrid
multi-model assessment, is conducted by
a small team of experienced, indepen-
dent assessors following standard audit
practices reflected in both ISO 9001
registration audits and the SEI CAF:
• Scope selection.
• Off-site document review.
• On-site interviews.
• Report preparation and delivery of

findings.
By building on the well-defined

relationship between the clauses of ISO

Software Process Improvement

CROSSTALK The Journal of Defense Software Engineering 7September 1998

9001 and the Level 2 and Level 3 CMM
KPAs, as described in Figure 1, the re-
sults of a single set of comprehensive
interviews can be presented from both
an ISO 9001 and a CMM perspective.
To achieve the maximum impact from
the report, the findings are presented
twice in separate sections. Each section
of the report is organized around one of
the models. Each time the finding is
presented, it includes detailed recom-
mendations for action planning and
points to the sections of the other model
that address similar or identical require-
ments. To support overall action plan-
ning, the report concludes with a single
set of priorities for implementation that
define the assessors’ view of a logical
path through the most important of the
detailed findings.

Considerations for Planning
Hybrid Multi-Model
Assessments
A hybrid multi-model assessment can be
completed by a small, independent team
in approximately 140 percent of the
time required for an ISO 9001 registra-
tion assessment. Based on anecdotal
information and on our experience in a
number of CMM-based process assess-
ments,8 a hybrid multi-model assessment
can be completed with 20 percent to 30
percent of the time and resources of an
initial CBA/IPI.9

Although the proposed hybrid multi-
model assessment does not include the
team training that prepares the organiza-
tion to act on the results of the assess-
ment, there is implicit training in the
interview process, especially when a
value-added approach is used [14]. Em-
ploying collaborative assessment tech-
niques, the hybrid multi-model assess-
ment method is sponsored by the
assessed organization and allows time in
the interviews, in the entry meetings,
and in general communications to solicit
and deal with specific issues and con-
cerns that might otherwise influence
responses. The communications and
interviews can be structured to reinforce
three key principles:
• The purpose of the appraisal is to

gather information to measure the
completeness of the organization’s

practices (what you do, not what you
are supposed to do) with respect to
the models.

• The purpose of measuring is to im-
prove the organization’s ability to
develop and deliver software to its
customers.

• Any changes or new processes intro-
duced as a result of the appraisal
must support the way the organiza-
tion does or wants to do business.
This principle leads to at least three
corollaries:

• Members of the organization
will be required to adopt the
defined processes—and alert the
appropriate people if there are
problems with the documented
procedures.

• The ISO 9001 and the CMM
models will be used to determine
only what has to be done—not
how it will be done.

• Achieving compliance with the
chosen model will be a by-
product of implementing effec-
tive and efficient processes that
support the organization’s busi-
ness goals and objectives and
that meet the needs of its em-
ployees.

The report derived from the assess-
ment reinforces the similarity between
the requirements both models place on a
software engineering organization. The
consolidated report adopts the value-
added audit technique of including
recommended actions, allows the cham-
pions of each particular model, who are
frequently well-respected and influential
engineers, to consider the other model
and to leverage their experience. The
recommended actions also facilitate
post-assessment action planning.

After the Assessment
The assessments described in this article
provide the information required to
select a model—or combination of mod-
els—and to prepare a plan for effective
process definition, implementation, and
improvement. Achieving compliance
with the chosen model is a byproduct of
acting on the assessment findings.

Whether the organization’s man-
agement chooses to go beyond compli-

ance to become ISO registered or to
complete a formal CBA/IPI or an
SCE, it is critical that management
acknowledge and respond systemati-
cally to the assessment findings. In the
context of ISO 9001 and CMM Levels
2 and 3, the assessment findings define
problems that are adversely affecting
the organization’s ability to perform—
that are costing the organization time
and money and creating unnecessary
stress. If management fails to respond,
the members of the organization will
inevitably draw the obvious conclu-
sions about management’s commit-
ment to its customers and to its em-
ployees. In fact, it would have been
preferable not to have conducted the
appraisal.

If management responds positively,
there is no guarantee of success, but that
positive response may launch the organi-
zation on a path to software process
improvement that will lead to increased
efficiency, capability, and competitive
strength. u

About the Authors
Robert C. Bamford, a principal of Soft-
ware Systems Quality Consulting, has a
master’s degree in mathematics and has
managed training development, technical
publications, professional services, and
third-party software development. His
over 30 years experience include the
implementation of a Crosby-based Total
Quality Management System, facilitating
quality courses, managing education
teams, and serving on a corporate quality
council. He is an active member of the
U.S. Technical Advisory Group for the
ISO/IEC JTC1 SC7 – Software Engineer-
ing Standards subcommittee, which is
responsible for the development and main-
tenance of ISO 12207 and ISO 15504
(SPICE). He and William Deibler jointly
developed and published numerous
courses, auditing and assessment tools,
research papers, and articles on interpret-
ing and applying the ISO 9000 standards
and guidelines and the SEI CMM for
Software.

William J. Deibler II, a principal of Soft-
ware Systems Quality Consulting, has a
master’s degree in computer science and
20 years experience in the computer in-

Hybrid Multi-Model Assessment: When the CMM Meets ISO 9001

8 CROSSTALK The Journal of Defense Software Engineering September 1998

dustry, primarily in software and systems
development, quality assurance, and test-
ing. He has extensive experience in manag-
ing and implementing CMM- and ISO
9001-based process improvement in soft-
ware and hardware engineering environ-
ments. He is an active member of the U.S.
Technical Advisory Group for the ISO/
IEC JTC1 SC7 – Software Engineering
Standards subcommittee, which is respon-
sible for the development and mainte-
nance of ISO 12207 and ISO 15504
(SPICE). He and Robert Bamford jointly
developed and published numerous
courses, auditing and assessment tools,
research papers, and articles on interpret-
ing and applying the ISO 9000 standards
and guidelines and the SEI CMM for
Software.

Software Systems Quality Consulting
2269 Sunny Vista Drive
San Jose, CA 95128
Voice: 408-985-4476
Fax: 408-248-7772
E-mail: ssqc@concentric.net
Internet: http://www.ssqc.com

References
1. Bamford, R.C. and W.J. Deibler, “A

Detailed Comparison of the SEI Soft-
ware Maturity Levels and Technology
Stages to the Requirements for ISO
9001 Registration,” Software Systems
Quality Consulting, San Jose, Calif.,
1992.

2. Bamford, R.C. and W.J. Deibler, “Ex-
ploring the Relationship Between ISO
9001 and the SEI Capability Maturity
Model for Software Engineering Organi-
zations,” Proceedings of the 1993 Interna-
tional Conference on Software Quality,
Lake Tahoe, Oct. 4-6, 1993, The Soft-
ware Division of the American Society
for Quality Control, p. 199.

3. Bamford, R.C. and W.J. Deibler, “Com-
paring, Contrasting ISO 9001 and the
SEI Capability Maturity Model,” COM-
PUTER, IEEE Computer Society, Octo-
ber 1993, p. 68.

4. Gilbert Associates (Europe) Limited,
“TickIT Auditor Training Course,” Issue
1, April 1992.

5. Hasse, Volkmar, Richard Messnarz, and
Robert M. Cachia, “Software Process
Improvement by Measurement,”
BOOTSTRAP/ESPRIT Project 5441.

6. “ISO 9001, Quality Systems – Model
for Quality Assurance in Design/Devel-

opment, Production, Installation, and
Servicing, ISO 9001, International
Organization for Standardization (ISO),
Geneva, Switzerland, 1987, revised
1994.

7. “ISO 9000-3, Guidelines for the Appli-
cation of ISO 9001 to the Development,
Supply and Maintenance of Software,”
ISO, Geneva, Switzerland, 1991.

8. “ISO/IEC Guide 61, General Require-
ments for Assessment and Accreditation
of Certification/Registration Bodies,” 1st
ed., Geneva, Switzerland, 1996.

9. “ISO/IEC Guide 62, General Require-
ments for Bodies Operating Assessment
and Certification/Registration of Quality
Systems,” 1st ed., Geneva, Switzerland,
1996.

10. Kasse, Tim, and Wihalm Josef, “The
Long Way to CMM Level 4,” Proceed-
ings of the First World Congress for Soft-
ware Quality, American Society for
Quality Control, June 1995.

11. Kuvaja, Pasi, et al., Software Process Assess-
ment and Improvement – The Bootstrap
Approach, Blackwell Publishers, Oxford,
England, 1994.

12. Paulk, Mark C., “A Detailed Compari-
son of ISO 9001 and the Capability
Maturity Model for Software,” Software,
January 1994.

13. Paulk, Mark C., et al., Key Practices of the
Capability Maturity Model, Version 1.1,
CMU/SEI-93-TR-25, SEI, CMU,
Pittsburgh, Pa., March 1993.

14. Sayle, Allan J., Management Audits – The
Assessment of Quality Management Sys-
tems, (ISBN 0-9511739-1-X), ASQC
Press, 1989.

15. CMM-Based Appraisal Project, Software
Capability Evaluation, Version 2.0,
Method Description, CMU/SEI-94-TR-
6, SEI, CMU, Pittsburgh, Pa., 1994.

16. Masters, Steven and Carol Bothwell,
CMM Appraisal Framework, Version 1.0,
CMU/SEI-95-TR-001, SEI, CMU,
Pittsburgh, Pa., 1995.

17. CBA Lead Assessor Training, Participant’s
Guide, Version 1.1a, SEI, CMU, Pitts-
burgh, Pa., April 1997.

Notes
1. Documents associated with both models

contain explicit statements of principle
regarding lifecycle independence. For
ISO [7], paragraph 5.0 states that the
standard is “intended for application

irrespective of the lifecycle model used.”
For the CMM [13], paragraph 4.3.5
states that “the key practices are not
meant to limit the choice of a software
lifecycle. ... There is no intent to encour-
age or preclude the use of any particular
software lifecycle.”

2. The requirements for verification as-
signed to the software quality assurance
function by the CMM can be satisfied
by ISO 9001 internal audits.

3. “Current and Potential Role of QSAR,”
Quality Systems Update, June 1995, p. 5
and “ISO Decides Fate of QSAR,”
Compliance Engineering Newswatch, July/
August 1997 (http://www.ce-mag.com/
isojul.html). At the time this article is
being written, the IAF is seeking incor-
poration.

4. It is interesting to note that although
ISO 9000 accreditation bodies do not
consider training to be a consulting
activity, QS9000 expressly forbids both
training and consulting.

5. [1], [2], and [3] contain the background
for our conclusion that the two models
produce comparable results when
adopted by a software engineering orga-
nization. One of the key differences is in
the ability to extend ISO 9001 to all
parts of an organization, e.g., marketing,
sales, program management, systems
engineering, and system test.

6. The results presented by the audit team
are submitted to the registrar’s “home
office” for review before they become
official.

7. [13], paragraph 4.1. It is of interest to
note that there is an analogous statement
in ISO 9001. In the Introduction, [6]
states, “It is not the purpose of these
[standards] to enforce uniformity of
quality systems. ... The design and
implementation of a quality system will
be influenced by the varying needs of an
organization, its particular objectives, the
products and services supplied, and the
processes and specific practices em-
ployed.”

8. We have participated in CBA/IPIs and
conducted Hybrid Maturity Model
assessments in organizations ranging in
size from 100 to more than 800 employ-
ees. This size estimate is also consistent
with [10], page 15.

9. Note that the initial CBA/IPI considers
all the Level 2 KPAs and a number of
Level 3 KPAs.

Software Process Improvement

CROSSTALK The Journal of Defense Software Engineering 9September 1998

Surviving in the increasingly com-
petitive software business requires
more than hiring smart, knowl-

edgeable engineers and buying the latest
development tools. You also need to use
effective software development processes
so those smart engineers can systemati-
cally apply the best technical and mana-
gerial practices to successfully complete
their projects. More organizations are
looking at software process improvement
(SPI) as a way to improve the quality,
productivity, and predictability of their
software development, acquisition, and
maintenance efforts. However, SPI ef-
forts can be derailed in many ways,
leaving the members of the organization
jaded, frustrated, and more committed
than ever to the ways of the past.

This article describes eight common
traps that can undermine an SPI pro-
gram. Learning about these process
improvement killers—and their symp-
toms and solutions—will help you pre-
vent them from bringing your initiative
to its knees. However, it is important to
realize that none of the solutions pre-
sented here is likely to be helpful if you
are dealing with unreasonable people.
That is a different class of problem.

Trap No. 1: Lack of
Management Commitment
Symptoms: Although individual groups
can improve the way they do their work
through grass-roots efforts, sustainable
changes across an organization require

management commitment at all levels.
Senior managers may claim to support
SPI (how can they say otherwise?), but
they may not be willing to make short-
term sacrifices to free-up the resources
required for the long-term investment.
Larger organizations must establish
alignment between senior management
and one or more layers of midmanagers.

If you are leading the SPI effort, you
might obtain senior management com-
mitment, but get resistance from
middle managers. In this case, you will
be forced to spend time and energy
debating the importance of SPI with
people who should only have to be
educated, not sold.

Such mixed signals from manage-
ment make it hard for team leaders and
software developers to take the effort
seriously. Watch out for lip service and
buzz words that masquerade as commit-
ments. Lower-level managers who assign
their least capable people (or no one) to
the program send a clear signal that the
lack of management commitment is
about to foil your effort.

Solutions: Managers at all levels need
to send consistent signals about SPI to
their constituencies. Executives must be
educated about the costs, benefits, and
risks so they will have a common vision
and understanding of this complex as-
pect of software engineering. Commit-
ments need to be aligned along the orga-
nizational hierarchy, so that managers
are not working at cross purposes, and a
reluctant manager cannot sabotage the
effort through inaction.

“Commitment” means more than
hearing a manager say, “I’m fully behind
this process improvement thing you’re

doing.” Look for this tangible evidence
of management commitment:
• Part of the manager’s performance

goals or salary depends on success in
SPI.

• Adequate resources are provided.
• Managers communicate clear, consis-

tent expectations, and they publicly
share the progress that is made.

• SPI leaders have adequate access to
key managers to educate them,
present issues, share status, and re-
quest assistance.

• Managers take effective actions to
break down SPI barriers you present
to them.

• A reward structure is established for
those who seriously pursue and suc-
ceed at process improvement.
Management commitment to SPI

also affects the morale and dedication of
people who work to advance the cause of
better processes in the organization.
When management objectives change
with the wind and the staff devoted to
facilitating process improvement is
downsized, those affected may be embit-
tered at having months or years of their
technical careers sidetracked for nothing.
Once burned in such a fashion, they
may be reluctant to step forward the
next time the organization is looking for
people to enable change.

Trap No. 2: Unrealistic
Management Expectations
Symptoms: Excessive enthusiasm by
ambitious managers also can pose risks
to the improvement program. If the
goals, target dates, and results expected
by managers are not realistic, the SPI
effort is ultimately set up for failure.
Managers, particularly those with little

Software Process Improvement: Eight Traps to Avoid
Karl E. Wiegers

Process Impact

Even well-planned software process improvement initiatives can be derailed by one of
the many risks that threaten such programs. This article describes eight common traps
that can undermine a software process improvement program, their symptoms, and
some possible solutions. Stay alert to the threat of these process improvement killers and
attack them before they bring your process improvement program to a screeching halt.

This article is based on an article originally pub-
lished in Software Development, May 1996. It
is reprinted (with modifications) with permission
from Software Development magazine. Capa-
bility Maturity Model and CMM are service
marks of Carnegie Mellon Institute.

10 CROSSTALK The Journal of Defense Software Engineering September 1998

software experience, may not appreciate
the effort and time involved in a large-
scale SPI effort, such as one based on
the Software Engineering Institute’s
five-level Capability Maturity Model
(CMM) [1]. These managers may be
confused about how process improve-
ment frameworks like the CMM relate
to other software engineering ap-
proaches, such as a specific object-
oriented development method. They
may focus on issues of pressing impor-
tance to them that are not realistic
outcomes of the process improvement
effort. For example, a manager may
hope to solve current staff shortages by
driving the organization to reach CMM
Level 2, which can lead to higher soft-
ware productivity. However, since it can
take two years or more to reach Level 2,
this is not an effective solution to a
near-term staffing problem.

Management needs to understand
that the behavioral changes and organi-
zational infrastructure that are parts of a
successful SPI program cannot be man-
dated or purchased. Catchy slogans like
“Level 5 by ’95” or “Six Sigma by ’96”
or “9001 by 2001” are not constructive.
In an unhealthy competitive environ-
ment, process improvement can become
a contest: Department A sets an objec-
tive to achieve CMM Level 3 by the end
of 1998, so the head of Department B
says that they can do it by mid-1998.
With rare exceptions, such behavior is
neither inspiring nor motivating.

Solutions: Educate your managers to
help them understand the realities of
what a serious process improvement
initiative will cost and what benefits they
might expect. Collect data from the
software literature on results that have
been achieved by other companies with
effective improvement programs and the
investments those companies made over
a specified period [4-6]. Every organiza-
tion is different, so it is risky to promise
an eightfold return from each dollar
invested just because you read that some
company achieved that level of success.
Use data from the literature or from
other areas of your company to help
your managers develop realistic expecta-
tions and set reasonable, even ambitious,
goals. SPI is no more of a magic silver

bullet than any other single software tool
or technology.

Trap No. 3: Time-Stingy Project
Leaders
Symptoms: When senior managers
state that they are committed to im-
proving the software processes used in
the organizations, most project leaders
will say that they are, too—whether
they mean it or not. However, success-
ful SPI initiatives require project leaders
to adjust their project schedules to
permit team members to devote some
time to improvement activities. A
project leader who claims to believe in
SPI but who treats it as a burden added
on top of the project activities is send-
ing conflicting signals.

Even if team members are permitted
to work on improvement tasks, these
tasks often get low priority, and “real
work” can easily squeeze process im-
provement activities out of a busy
engineer’s schedule. Project leaders may
respond to the pressure of delivering the
current product by curtailing the effort
that should go into upgrading the
organization’s process capability.

Solutions: You need to have consis-
tent, active commitment at all stages of
management; a bottleneck anywhere in
the organizational hierarchy can bring
the SPI program to a screeching halt.
One way to achieve consistency is
through an interlocking management
commitment process as a corporate or
organizational policy. Top managers
publicly state their goals and priorities
(including SPI), and people at the lower
management levels write their goals to
support those at the higher levels.

Senior management must make it
clear that project leaders will be evalu-
ated on the effectiveness of their process
improvement activities as well as on the
success of the software projects. Software
project planning needs to account for
the resources being devoted to design
and implement the new software pro-
cesses. The first-level manager is the
most critical factor in the success of any
process improvement effort. If this per-
son does not make SPI a visible priority,
it is not going to happen.

One way to keep a program viable is
to treat all process improvement activi-
ties as miniprojects, to give them the
visibility and legitimacy they need for
success. Write a short action plan for
each miniproject. This plan identifies
resources, states time lines, itemizes
deliverables, clarifies accountability, and
defines techniques to assess the effective-
ness of new processes implemented as a
result of each miniproject. Track the
effort devoted to SPI to see if the invest-
ment level matches your planned com-
mitment. Do not try to solve every pro-
cess problem in your group at once.
Instead, concentrate on the two or three
top-priority items, as determined
through some process assessment mecha-
nism, then tackle the next few, and so on
down the line.

Project leaders cannot just assign
their least effective people to the im-
provement efforts, either. If good people
and respected leaders are not active con-
tributors, the processes generated will
have less credibility with the rest of the
organization.

Trap No. 4: Stalling on Action
Plan Implementation
Symptoms: Action plans might be writ-
ten after a process assessment, but little
progress is made on them because man-
agement does not make them a clear
priority, assign individuals to work on
them, or otherwise take them seriously.
Managers may never mention the action
plans after they are written, so team
members get the message that achieving
improved processes by implementing the
action plans is not that important. The
lack of progress on improvement plans is
frustrating to those who want to see
progress made, and it devalues the in-
vestment of time and money made in
the process assessment.

Solutions: As with Trap No. 3, a
good way to turn action plans into ac-
tions is to treat improvement activities as
miniprojects. You need to measure
progress against the plans and to mea-
sure the impact of each action plan on
the business results achieved. For ex-
ample, a plan to improve the effective-
ness of unit testing performed by the
programmers might include an interim

Software Process Improvement

CROSSTALK The Journal of Defense Software Engineering 11September 1998

goal to acquire test automation tools and
train developers in their use. These in-
terim goals can be easily tracked. The
desired business outcome of such an
action plan should be a specific quantita-
tive reduction, over some period, in the
number of defects that slip through the
unit testing quality filter.

If your project leaders never seem to
make much progress against their action
plans, you may need to implement a
management oversight function to en-
courage them to take SPI more seriously.
In one organization I know of, all
project leaders must report the status of
their action plans every three months to
a management steering committee.
When this occurs, the project leaders do
not want to be embarrassed by reporting
little or no progress on their plans.

From one perspective, such periodic
reporting reflects appropriate manage-
ment accountability for the commit-
ments that people have made to im-
prove their software processes. From
another, this approach represents a “big
stick” strategy to enforce SPI, which is
best avoided unless progress is not be-
ing made. Your culture will determine
the most effective techniques to drive
action plans to completion. The man-
agement oversight approach did achieve
the desired effect in the aforementioned
organization.

Trap No. 5: Achieving a CMM
Level Becomes the Primary
Goal
Symptoms: Organizations that adopt
the CMM framework for process im-
provement risk viewing attainment of a
specific CMM maturity level as the
ultimate goal of the improvements,
rather than as one mechanism to help
achieve the organization’s real business
goals. SPI energy may be focused on a
race to the level N rating, when some
energy should perhaps be devoted to
other problem areas that can contribute
quickly to the quality, productivity,
people, and management issues that face
the organization.

Sometimes, a company is in such a
rush to reach the next maturity level that
the recently implemented process
changes have not yet become well estab-

lished and habitual. In such cases, the
organization might regress back to the
previous maturity level, rather than
continue to climb the maturity ladder as
it is attempting to do. Such regression is
a surefire way to demoralize practitioners
who are eager to move steadily toward a
superior software engineering culture.

Solutions: In addition to aiming at
the next maturity level, make sure your
SPI effort is aligned with corporate busi-
ness and technical objectives. Mesh the
process improvement activities with any
other improvement initiatives that are
under way, such as ISO 9001 registra-
tion, or with an established software
development framework already in use.
Recognize that advancing to the next
CMM maturity level can take one to
three years. It is not feasible to leap from
an initial ad hoc development process to
a supersophisticated engineering envi-
ronment in one fell swoop. Your goal is
not to be able to chant, “We’re Level 5!
We’re Level 5!” Your goal is to develop
improved software processes and more
capable development engineers so that
your company can prosper by offering
higher quality products to your custom-
ers more efficiently than before.

You may be compelled to achieve a
specific CMM maturity level by an
external driver, such as the need to be
able to bid for certain contracts. If you
are not so driven, though, adapt the
CMM to the shape and needs of your
organization and culture to achieve the
desired benefits. Do not just aim for the
maturity rating because it is a concise,
simply stated goal.

Use a combination of measurements
to track progress toward the business
goals as well as to measure the progress
of the SPI program. Goals can include
reducing project cycle times and product
defect levels. One way to track SPI
progress is to perform low-cost interim
assessments to check the status of your
project teams in various CMM key pro-
cess areas (such as requirements manage-
ment, software project planning, and
software configuration management).
Over time, you should observe steady
progress toward achieving both CMM
key process area goals and your
company’s software success factors.

Trap No. 6: Inadequate Training
Is Provided
Symptoms: A process improvement
initiative is at risk if the developers,
managers, and process leaders do not
have adequate skills and training. Each
person involved must understand the
general principles of SPI, the CMM, and
other pertinent SPI methods, change
leadership, software measurement, and
related areas.

Inadequate knowledge can lead to
false starts, well-intentioned but misdi-
rected efforts, and a lack of apparent
progress. Without training, the
organization’s members will not have a
common vocabulary and understanding
of how to assess the need for change or
how to interpret specialized concepts of
the improvement model being followed.
For example, “software quality assur-
ance” means different things to different
people; training is needed to achieve a
common understanding of such terms
among all participants.

Solutions: Training to support estab-
lished process improvement frameworks
can be obtained from various commer-
cial sources (such as process improve-
ment consultants or training vendors),
or you can develop such training. Differ-
ent participants in the SPI activities will
need different kinds of training. If you
are using a CMM-based approach, the
process improvement group members
should receive several days of training on
the CMM. However, four hours of
training about SPI using the CMM will
be enough for most participants. At
Eastman Kodak Co., we developed a
series of four-hour overview courses on
various software engineering practice
areas (requirements engineering and
management, peer reviews, project plan-
ning and tracking, metrics, and configu-
ration management) for project teams
engaged in SPI.

If you become serious about SPI,
consider acquiring training in other key
software improvement domains: setting
up a Software Engineering Process
Group (SEPG), establishing a metrics
program, assessing the process capability
of a project team, and action planning.
Use commercial sources of training

Software Process Improvement: Eight Traps to Avoid

12 CROSSTALK The Journal of Defense Software Engineering September 1998

wherever possible to avoid having to
create all of your own training materials.

Trap No. 7: Expecting Defined
Procedures to Make People
Interchangeable
Symptoms: Managers who have an
incomplete understanding of the CMM
may expect that having repeatable pro-
cesses available means that every project
can expect to achieve the same results
with any set of randomly assembled
team members. They may think that the
existence of a defined process in the
organization makes all software engi-
neers equally effective. They might even
believe that working on SPI means that
they can neglect technical training to
enhance the skills of their individual
software engineers.

Solutions: Individual programmers
have been shown to have a ratio of
10-to-1, 20-to-1, or even higher range
of performance (quality and productiv-
ity) on software projects [2, 3]. Process
improvements alone can never equalize
such a large range of individual capabil-
ity. You can close the gap quite a bit by
expecting people to follow effective
defined processes rather than using
whatever methods they are used to.
This will enable people at the lower end
of the capability scale to achieve consis-
tently better results than they might get
otherwise. However, never underesti-
mate the importance of attracting,
nurturing, and rewarding the best soft-
ware engineers and managers you can
find. Aim for software success by creat-
ing an environment in which all team-
mates share a commitment to quality
and are enabled—through superior
processes, appropriate tools, and effec-
tive team interactions—to reach their
peak performance.

Trap No. 8: Failing to Scale
Formal Processes to Project
Size
Symptoms: A small organization can
lose the spirit of the CMM (or any other
process model) while attempting to
apply the model to the letter, introduc-
ing excessive documentation and formal-
ity that can impede project work. This
undermines the credibility of SPI, as

teammates look for ways to bypass the
official procedures in an attempt to get
their work done efficiently. People are
reluctant to perform tasks they perceive
as adding little value to their project.

Solutions: To achieve a specific
CMM maturity level, you must demon-
strate that your organization is satisfying
all of the goals of each key process area
defined at that maturity level and at
lower levels. The processes you develop
should be no more complicated or
elaborate than they need to be to satisfy
these goals. Nothing in the CMM says
that each procedure must be lengthy or
documented in extreme detail. Strive for
a practical balance between document-
ing procedures with enough formality to
enable repeatable project successes and
having the flexibility to get project work
done with the minimum amount of low-
value overhead effort.

This nondogmatic view does not
mean that smaller organizations and
projects cannot benefit from the disci-
pline provided by the CMM. It simply
means that the procedures you adopt
should be scaled rationally to the size of
the project. A 40-hour project should
not demand eight hours of project plan-
ning just to conform to a CMM-compli-
ant “documented procedure.” Your pro-
cess improvement teams should provide
a set of scalable processes that can be
applied to the various sizes and types of
projects your group undertakes.

Conclusion
As you chart a course to improve your
software process capability, be aware of
the many minefields lurking below your
organization’s surface. Your chances of
success increase dramatically if you
watch for the symptoms that identify
these traps as a threat to your SPI
program, and when you make plans to
deal with them right away. Process
improvement is succeeding at many
companies. Make yours one of them by
controlling these risks—and others—as
well as you can. u

About the Author
Karl E. Wiegers is the principal consultant
with Process Impact in Rochester, N.Y.
Previously, he spent 18 years at Eastman

Kodak Co., including
experience as a photo-
graphic research scien-
tist, software developer,
software manager, and
software process and
quality improvement

leader. He holds a doctorate in organic
chemistry from the University of Illinois.
He is a member of the Institute of Electri-
cal and Electronics Engineers (IEEE),
IEEE Computer Society, American Soci-
ety for Quality, and the Association for
Computing Machinery. He is the author
of the award-winning book Creating a
Software Engineering Culture (Dorset
House, 1996) and has written over 110
articles on many aspects of computing,
chemistry, and military history. He is a
frequent speaker at software conferences
and professional society meetings.

Process Impact
31 Canterbury Trail
Fairport, NY 14450-8783
Voice: 716-377-5110
Fax: 716-377-5144
E-mail: kwiegers@acm.org
Internet: http://www.processimpact.com/

References
1. Carnegie Mellon University/Software

Engineering Institute, The Capability
Maturity Model: Guidelines for Improving
the Software Process, Addison-Wesley,
Reading, Mass., 1995.

2. Curtis, Bill, “The Human Element in
Software Quality,” Proceedings of the
Monterey Conference on Software Quality,
Software Productivity Research, Cam-
bridge, Mass., 1990.

3. DeMarco, Tom and Timothy Lister,
Peopleware: Productive Projects and Teams,
Dorset House Publishing, New York,
1987.

4. Diaz, Michael and Joseph Sligo, “How
Software Process Improvement Helped
Motorola,” IEEE Software, September/
October 1997.

5. Dion, Raymond, “Process Improvement
and the Corporate Balance Sheet,” IEEE
Software, July 1993.

6. Herbsleb, James, Anita Carleton, James
Rozum, Jane Siegel, and David Zubrow,
“Benefits of CMM-Based Software
Process Improvement: Initial Results,”
Technical Report CMU/SEI-94-TR-13,
Software Engineering Institute, Pitts-
burgh, 1994.

Software Process Improvement

CROSSTALK The Journal of Defense Software Engineering 13September 1998

Most organizations that
start out on the road toward
 software process improve-

ment (SPI) using the Capability Matu-
rity Model (CMM) for Software have no
clue what this endeavor means. Most
managers get sold on the idea based on
competitive practices within the indus-
try—“keeping up with the Joneses.”
This article discusses some common
misconceptions about the torturous path
to achieving a maturity level.

“What, me change? You’ve got
to be kidding!”
Managers think the CMM focuses on
changing the way the developers work.
What happens is that the CMM forces
management to change the way it man-
ages projects. By requiring the develop-
ment team to collect project data and
report it to management, management
becomes more aware of the project
management process. In some organiza-
tions, managers do not want to know in
detail what is really happening on their
projects. The idea that someone would
report to them actual schedule slippages
and try to determine a standard devia-
tion becomes incomprehensible. It is
not uncommon to shoot the messenger.

What the CMM really provides is
the ability to shape your own destiny. By
generating procedures to do work, you
control your work environment. If man-
agement understood that, they probably
would not start CMM activities.

“We can’t do this. We have to
support our users.”
It is amazing how often supporting the
users is used as an excuse to not do

CMM work. The CMM absolutely
advocates supporting your users. That is
why we are in this business. In case we
have forgotten—no users, no work.
Ultimately, by following CMM guide-
lines, supporting the user becomes
easier because the ground rules have
been established.

Change involves not only the devel-
opers but also management and the user
community. No matter your position,
your attitude plays an important role in
SPI. For example, the way you do work
in your twenties should be different
from the way you do work in your for-
ties, or at least it should be based on
learning. If you are still doing things the
way you always have, you need to re-
examine your work and probably your
life—and you are probably not the best
person to be put in charge of the im-
provement effort. CMM work is all
about change, something such people
apparently know nothing about.

Users also need to change. Your
users do not have the right to kill you,
but that is what they are doing to our
aging work force by creating unneces-
sary stress that contributes to heart
attacks, cancers, and other ills. Control
is the real issue. People who believe they
have some control over their lives tend
to be happier and live longer (so say the
psychologists). So, to gain control of
your project, you must control your
users. Why should you accept an
“emergency” request at 4 p.m. Friday
that will keep you at work all night?
Especially when it turns out that that
particular user always turns in an
“emergency” request at 4 p.m. on Fri-
day and does not need the information

until later the following week? Those
users need to be trained in becoming
pro-active and basically getting their act
together. If everything is an emergency,
nothing is an emergency. This sounds
like an area in need of improvement.

“Standards? We don’t need
standards!”
Nowhere in the CMM does it say that
standards are required. The CMM does
not absolutely require anything. The
model is not a step-by-step how-to
model—it is a framework, a guideline.
It tells you what you need to do but not
how to do it. However, the CMM pre-
supposes that you have standards and
are trying to follow them. The stan-
dards they presuppose you already have
are for products like coding standards,
templates for a requirements specifica-
tion, or test case scenarios.

Following standards institutes a
basic structure within an organization.
So, if you do not have any standards,
get some. One place to search is De-
partment of Defense (DoD) military
standards, even if you are not a DoD
organization. Start searching the Web
for military standards as well as for the
methods used to implement SPI. They
are available, and they are free.

Just do not be anal when you inter-
pret this information (see item 10,
“Keep It Simple”). And all standards
should be tailored for use in your orga-
nization. Do not think that you can use
the same standards you used from the
place you used to work in your new
workplace. They do not fit. They can-
not be used. They can be used as a
target, but you will need to tailor them.

Ten Things Your Mother Never Told You
About the Capability Maturity Model

Margaret Kulpa
Abacus Technology

This article discusses the 10 most common misconceptions the author has had to over-
come concerning software process improvement and the Software Capability Maturity
Model. Topics include management vs. developer changes required, having standards in
place, consensus vs. steamroller approaches, keeping it simple, and why you cannot ex-
pect software process improvement to work unless you give your employees time to do it.

14 CROSSTALK The Journal of Defense Software Engineering September 1998

“Everybody knows what the
process is. What’s the big
deal?”
Everybody knows what a process is
until they try to define it in detail and
write procedures that describe how to
follow the process. Then, they shift
back to documenting who needs to do
something rather than on how that
something is done. They also fall back
on product standards (a form for docu-
menting defects found during peer
reviews) instead of process standards
(how to perform the peer review, how to
detect defects, and how to complete the
form). Telling me that “it is the project
manager’s responsibility to determine
schedule estimates” does not tell me
how that manager is supposed to derive
those estimates.

“Collaborative and achieving
consensus …”
CMM teams usually try to work
collaboratively and make decisions by
consensus. This concept is great and
fosters buy-in and ownership but is
extremely time-consuming and expen-
sive. Consensus is not majority rules.
Consensus means that everyone can live
with the decision—they may not love
it, but they can live with it. This way of
working takes time. If you are on a
tight schedule, (CMM work always is)
you may need to stop the philosophiz-
ing and touchy-feely stuff and steamroll
some folks. You will never get 100 per-
cent buy-in from everyone. Take what
you can get, and get those procedures
written down.

“The CMM requires that a
good process be in place.”
No. It requires that a process be in place
that is documented and followed. At
first, your process could be awful. That
is where the “continuous process im-
provement” concept comes in. After
you hammer out a process, it is piloted,
and projects start to use it, refinements
will be made until (it is hoped) the
process becomes “good.” But to start,
get something down on paper and use
it. Clean it up as you go.

“We need to model our as-is
process in order to create our
to-be process.”
Yes, but I find that organizations take
up to a year to do this, only to find
that their processes are too ad hoc to
be used as a baseline of good practices
and lessons learned. I suggest doing a
software capability evaluation (which
is now done for internal software pro-
cess improvement) or a CMM-based
Appraisal for Internal Process Im-
provement. These assessment methods
can quickly determine consistent prac-
tices across the organization as well as
strengths and weaknesses. Measurable
action plans can be generated based on
the results. Tracking progress can also
be measured. The thing to remember
before starting CMM activities is to
determine ahead of time how to mea-
sure success. Modeling current pro-
cesses is great—but will you ever see a
return on that investment?

“Tie CMM activities to your
business objectives.”
Of course. There are some things in the
CMM that may not make sense for
you. For example, having a separate
group to do software quality assurance
(SQA) may not work if you only have
10 people in your company. The chal-
lenge is to figure out a way to perform
quality assurance reviews and oversight
in an objective, independent manner.
And do not confuse “organization” with
“company” or enterprise. An organiza-
tion achieves a maturity level rating—
not one project, not an entire company.
Without going into detail, an organiza-
tion generally consists of three to eight
projects reporting to the same person,
like a director or a division head—not
an entire company (like IBM).

Do not get stupid about “business
objectives.” Ultimately, most organiza-
tions’ business objectives are to achieve
Level X by a certain date. If you are not
currently doing SQA and do not want
to do SQA (because of the cost and
because it is overhead) yet you must
achieve the level, do not try to be clever
and tailor SQA out of the CMM pro-
cess. Any certified evaluation team will
catch you.

“Better, cheaper, faster.”
This really irks me. When the CMM
was written, most organizations had not
yet begun the downsizing frenzy. Nowa-
days, however, organizations have cut
their staff to the bare minimum. Man-
agement loves the maxim “better,
cheaper, faster” and eventually, you will
be able to turn out software of better
quality, more quickly, and less expen-
sively—but not at first! The average
time to obtain your return on invest-
ment is three to five years.

SPI is expensive. Most organizations
either hire outside consultants to start
the journey or build it from the inside.
Even if you are not hiring consultants,
taking people away from coding, i.e.,
“real work,” and having them do SPI
costs you time, money, and schedule
slippage. So management instead assigns
SPI work in addition to existing work to
an organization with extreme resource
constraints, and it fails. You cannot
squeeze additional effort from people
who are already overworked. And having
these people “work weekends, holidays, I
don’t care what it takes” violates the
CMM principle of establishing and
following reasonable plans.

“Keep it simple.”
I like this one. Most organizations start
off believing that they can keep their
procedures simple—until they try to do
it. Writing procedures that are simple
and easy to follow, yet are thorough and
complete, is extremely difficult. That is
why the people on your teams need to
be able to write and like to write as well
as have a technical background and
knowledge of the organization.

Managers in organizations today
seem to feel that one person can wear
many hats, i.e., a Powerbuilder pro-
grammer can also write procedures for
how to write a requirements specifica-
tion. Do you know what happens when
you ask that unfortunate “techie” to do
that? He breaks out in a cold sweat.
Although some people are adaptable
and can do many jobs, not everyone
can do everything well. Different skill-
sets are required for different jobs.

Another problem is that teams often
catch the improvement fever. They

Software Process Improvement

CROSSTALK The Journal of Defense Software Engineering 15September 1998

want to improve everything. The challenge is to stay focused
and use the CMM for software as your guide, but do not
attack more than you can handle at one time. Remember:
SPI is continuous improvement. It is iterative. Do what you
can do in the time allotted, then go back and pick out more
things once you have been allocated more time to do them.

Conclusion
Although there are other points to ponder when attempting
this journey down the CMM path, these are the most fre-
quently found errors made that I have documented. Good
luck on your journey. u

About the Author
Margaret Kulpa is a consultant with Abacus Technology Corp.
in Chevy Chase, Md. She is a certified lead evaluator and is
authorized to teach the SEI’s Introduction to CMM and the
Software Capability Evaluation class. She has performed SPI
duties for over 15 corporations and has evaluated over 30 orga-
nizations. She has also written and taught Key Process Area
classes for Levels 2 and 3.

Abacus Technology
5454 Wisconsin Ave., Suite 1100
Chevy Chase, MD 20815
Voice: 301-951-1712
Fax: 301-907-8508
E-mail: kulpamk@songs.sce.com

be performed in an action plan allows
the Measurement Team and manager to
track progress with respect to the imple-
mentation of the measurement activities.
An outline for an action plan follows:

1.0 Objective.
2.0 Description.
2.1 Background.
2.2 Goals.

• Business Goals.
• Measurement Goals.
• The Goals of This Plan.

2.3 Scope.
2.4 Relationship to Other Software

Process Improvement Efforts.
2.5 Relationship to Other Functional

Activities.
3.0 Implementation.
3.1 Activities, Products, and Tasks.
3.2 Schedule.
3.3 Resources.
3.4 Responsibilities.
3.5 Measurement and Monitoring.
3.6 Assumptions.
3.7 Risk Management.
4.0 Sustained Operation.

As the measurement activities are
being planned, be sure to consider how
the quality and success of the measure-
ment activities will be measured. Build-
ing the need to measure the quality and
success of the measurement activities
into the measurement processes will help
keep the activities aligned with the needs
of the organization and mitigate some of
the more common reasons why measure-
ment fails. These reasons include lack of
use of the data, personnel not under-
standing why the data need to be col-
lected, and measurement viewed as an

expendable, overhead activity. Following
the goal-driven process outlined above
provides a means to involve stakehold-
ers, create understanding, and make
measurement a part of the way the orga-
nization conducts business. Maintaining
alignment between the measurement
activities and the information needs of
the organization helps the organization
leverage information, which may other-
wise not be captured, to enhance its
performance. In summary, the goal-
driven software measurement process
directs attention toward measures of
importance rather than measures that are
merely convenient. u

About the Author
Dave Zubrow is team
leader for software
engineering measure-
ment and analysis for
the SEI and is assistant
director of analytic
studies for Carnegie

Mellon University. He is an Assocation
for Software Quality Certified Software
Quality Engineer and a member of the
Software Division Council for the Ameri-
can Society for Quality Control. He has a
bachelor’s degree from Penn State Univer-
sity and a master’s degree and a doctorate
from Carnegie Mellon University.

Voice: 412-268-5243
Fax : 412-268-5758
E-mail: dz@sei.cmu.edu

References
1. Schiemann, William and John Lingle,

“Seven Greatest Myths of Measure-

ment,” IEEE Engineering Management
Review, Spring 1998, pp. 114-116.

2. Park, R., W. Goethert, and W. Florac,
Goal-Driven Software Measurement,
(CMU/SEI 96-HB-002) Software Engi-
neering Institute, Carnegie Mellon Uni-
versity, 1996.

3. PSM96, Practical Software Measurement:
A Guide to Objective Program Insight,
Washington, D.C., Joint Logistics Com-
manders, Joint Group on Systems Engi-
neering, March 1996.

4. Basili, V. and D. Weiss, “A Methodology
for Collecting Valid Software Engineer-
ing Data,” IEEE Transactions on Soft-
ware Engineering, Vol. 10, No. 6, 1984,
pp. 728-738.

5. Briand, L., C.M. Differding, and H.D.
Rombach, “Practical Guidelines for
Measurement-Based Process Improve-
ment,” Software Process Improvement
and Practices, Vol. 2, 1996, pp. 253-287.

6. Park, Robert E., et al., Software Size
Measurement: A Framework for Counting
Source Statements (CMU/SEI-92-TR-
20), Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
Pa., September 1992.

7. Florac, William A., et al., Software Qual-
ity Measurement: A Framework for Count-
ing Problems and Defects (CMU/SEI-92-
TR-22), Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
Pa., September 1992.

8. Goethert, W., et al., Software Effort Mea-
surement: A Framework for Counting Staff-
Hours (CMU/SEI-92-TR-21), Software
Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., September
1992.

METRICS, from page 26

Ten Things Your Mother Never Told You About the Capability Maturity Model

16 CROSSTALK The Journal of Defense Software Engineering September 1998

By now, everyone in software process improvement
(SPI) knows about sponsors, champions, and change
agents [1,8,9]. Watts Humphrey states that these roles

are needed to lead stakeholders through their resistance to
process change [1]. Humphrey has also discussed the need for
coaches [2], and this topic has been mentioned here and there
in articles and meetings, for example, in Gray and Stephenson
[3] and Gray [4]. Still, leaders of SPI initiatives often overlook
the coach’s role and end up working too hard. Where they are
used, coaches are the spark plugs of the process improvement
engine. It is time to clarify what they do so process improve-
ment will happen faster and easier.

In a famous psychological study of death and dying,
Elisabeth Kübler-Ross [5] described five predictable stages of
grieving over tragic news: (1) denial and isolation, (2) anger,
(3) bargaining, (4) depression, and (5) acceptance. Imple-
mentation Management Associates, Inc. [6] and the Software
Engineering Institute both argue in their training that people
subjected to process change go through the same emotional
stages. These emotional reactions are the source of the resis-
tance to change that sponsors, champions, and change agents
must overcome.

Figure 1 summarizes the Kübler-Ross grieving cycle graphi-
cally. In the typical Kübler-Ross case, shown by the darker
curve in the figure, the cycle ends at a lower level of happiness
and productivity than where it began. She studied people who
were terminally ill; for these people, a happier, more produc-
tive final state was not a possibility.

During software process improvement, an important ratio-
nale for doing change management has to be that if process
change is properly managed, people’s resistance will be shorter
in duration and less intense, and that following their period of
resistance they will end at a higher level of happiness and pro-
ductivity than where they began. A sample grieving cycle for
well-managed process change is shown by the lighter curve in
Figure 1.

There are some effective change management techniques
that can be taught, such as the use of the Software Engineering

Institute’s Techology Transition Model [7] and the roles of
sponsors, champions, and change agents. However, organiza-
tions that plan software process improvement should also seek
help from a successful SPI coach, because change management
is a complex, sensitive task that must be tailored to each differ-
ent process improvement effort.

This article discusses activities that usually are necessary
for successful software process improvement, distributed
among four roles. Sponsors, champions and change agents
are often ill-suited for the coach’s activities. Following are all
the roles in greater detail [1,8,9].

Sponsor
The sponsor’s role is the easiest to describe. The sponsor acts
like a banker who owns and donates resources to the process
improvement effort for whatever reason the sponsor finds
compelling, ranging from a bookkeeper-like attention to re-
turn on investment (ROI) to nothing more than a personal
commitment to support the champion. The sponsor guaran-
tees that the champion receives the resources needed for pro-
cess improvement on time throughout the planned process
improvement period.

A sponsor must have total control over the resources
needed for the process improvement initiative. Only then can
the sponsor guarantee that the champion will get them on time

Why Coaches Are Needed in
Software Process Improvement

Lewis Gray
Abelia Corporation

This article defines an important role in software process improvement—the coach. The coach
is different from the familiar roles of sponsor, champion, and change agent. The coach com-
bines expert knowledge of new practices and tools with expert leadership skills in change
management. Whether formal or informal, skilled or not, coaches are everywhere in software
process improvement. Despite this, little has been written about what they do. Organizations
often confuse the coach with other roles and fail to use coaches well. Software process improve-
ment teams will likely perform better when their coaches do, just as sports teams with good
coaches usually perform better than teams with poor coaches. Organizations can benefit from
a better understanding of what process improvement coaches can and should do for them.

Figure 1. Grieving cycle with change management.

CROSSTALK The Journal of Defense Software Engineering 17September 1998

as planned. Literally, the buck stops at
the sponsor’s desk. However, the sponsor
typically does not need to know all the
details of process change.

Champion
The SPI champion has three jobs: to
initiate, promote, and protect SPI.

First, the champion initiates process
improvement. This involves finding
enough resources to do it properly and
then generating so much enthusiasm
for process improvement that the orga-
nization budgets for it. The champion
usually recruits the SPI sponsor and
coach and collaborates with the coach
on an SPI action plan. The champion
selects the change agents with the help
of the coach.

Second, the champion promotes
process improvement while it is under
way. The champion is the public rela-
tions person for the effort. The cham-
pion justifies process improvement to
colleagues and staff, and when the orga-
nization wants a presentation on SPI,
perhaps for a proposal, the champion
ensures it is done properly.

Third, the champion protects process
improvement from detractors and
poachers. Derogatory comments about
process improvement stop at the cham-
pion, who defends the Process Improve-
ment Team against detractors. Poachers
are managers outside the process im-
provement effort who want to pull one
or more of the SPI team members off
the SPI initiative onto other projects that
need help. The champion protects the
integrity of the team against such poach-
ing and defends the process improve-
ment schedule.

Often, the role of champion is an
informal one without a corresponding
job description or funding. It is done in
addition to the champion’s regular du-
ties. Typically, the champion does not
need a detailed, implementer’s under-
standing of the new practices and tools.

Change Agent
Change agents live and breathe the
details of SPI. Their role is to make the
changes that improve the organization’s
software process. Then, typically, they
test the improved process on one or

agents when they make mistakes, and
praises them when they perform well. In
summary, the coach knows the improved
practices and is skilled at introducing
them.

A good coach is important to suc-
cess. I recommend that an SPI coach
finalize the action plan for process im-
provement and supervise implementa-
tion of the plan. Unlike the sponsor
and the champion, the coach should be
deeply involved in the implementation
details of process change with the
change agents. The coach will have the
most influence on the change agents
and should also serve as the champion’s
confidant and adviser on SPI. In some
cases, the coach may play a similar role
for the SPI sponsor.

The coach heads the change manage-
ment effort and is most responsible for
leading the other team members through
the Kübler-Ross grieving cycle to a posi-
tive conclusion. It is easy to underesti-
mate how difficult this is. Even SPI team
members have occasional “allergic reac-
tions” to what they are asked to do. The
coach helps prevent and treat these types
of reactions among stakeholders who are
outside the team.

If you do not have a Software Engi-
neering Process Group (SEPG) with an
experienced coach, do not hesitate to
bring one in from the outside. Keep in
mind that for better or worse, someone
will plan the software process improve-
ment effort and guide the change agents.
It is better if these roles are filled by
people who are already knowledgable in
the new practices and have the skills to
successfully introduce new technologies.

Organizations that merely let coach-
ing happen are likely to suffer from poor
coaching. Unless someone knowledge-
able is specifically assigned that role,
there will be a series of SPI failures, as
one would expect from a self-coached
sports team.

Roles, Personnel, and Positions
Any of the above roles could be carried
out by any number of personnel in the
organization who may hold any of vari-
ous positions. To understand how the
roles interact, one must understand the

more example software development
projects. These people are the players
on the process improvement team. The
sponsor and the champion could be
compared to the team’s owner and
manager.

This is a tough, exciting job. The job
is both a prize in itself and a burden. I
recommend that it be assigned with care.
Each Process Improvement Team mem-
ber must learn to work with and trust
every other member. Resistance to pro-
cess change will appear in unexpected
places in your organization, and the
champion can never completely protect
the team from it; so, change agents must
cope with it. It helps if they are skilled
and are respected by their peers. They
should not be risk aversive, and they
must not be heroic “prima donnas.”

Change agents follow the action plan
supplied by the coach. When they are
criticized for what they are doing, they
are protected by the champion. When
they need planned resources, they get
them from the sponsor by way of the
champion. When they make mistakes,
the coach corrects them. Change agents
learn and implement all of the details of
the new practices.

Coach
To date, unlike the other change man-
agement roles, the coach’s role has not
been defined in descriptions of SPI. To
understand what the coach does, con-
sider two key questions. First, who
should prepare the process improvement
action plan? Not the sponsor, champion,
or the change agents, because one can-
not assume they know enough details of
SPI to properly plan it. Second, who
corrects change agents when they make
mistakes? Not the change agents, for
obvious reasons, nor could the sponsor
or the champion who, once again, may
not know enough about SPI and change
management to even spot a mistake.

In both cases, there is a clean fit to a
fourth role in the process improvement
effort—the SPI coach. An SPI coach is
like a sports coach who tells the change
agents what moves to make, but the
change agents are the players. The coach
plans the SPI effort, often in collabora-
tion with the champion, corrects change

Why Coaches Are Needed in Software Process Improvement

18 CROSSTALK The Journal of Defense Software Engineering September 1998

differences between the terms “role,”
“personnel,” and “position.”
• Role – A collection of activities with

one name, such as sponsor, cham-
pion, coach, or change agent.

• Personnel – Individual people in a
project or its parent organization.

• Position – A box on an organizational
chart for a project or parent organiza-
tion. A position has a title assigned
such as project manager, quality
manager, SEPG director, Process
Action Team (PAT) member, soft-
ware engineer, or software require-
ments analyst.
These distinctions are helpful be-

cause, for example, personnel who hold
two different positions in the same
organization, such as a corporate vice-
president and a midlevel manager,
might both need to share the role of
sponsor for an SPI effort to be success-
ful. For example, the corporate sponsor
might provide funds to the midlevel
managers for the effort, but the manag-
ers might have authority to divert the
funds to other more “important”
projects if they can justify it. In such a
case, a champion must also recruit the
midlevel managers as sponsors if the
funding from the corporate level is ever
to reach the change agents on the Pro-
cess Improvement Team.

Qualities of a Good Coach
What makes people good SPI coaches?
These people share many of the same
qualities as good basketball or football
coaches. In a 1996 article in The Wash-
ington Post, Richard Justice [10] writes,
“Coach inspires players with respect,
honesty, and unrelenting drive.” This
coach was Jim Lynam of the Washington
Bullets basketball team. Indiana Pacers
Coach Larry Brown told Justice, “What
that team has done is what everyone
strives for in this business.” According to
Brown, “Jimmy Lynam has taken a
group of players and gotten the absolute
most out of them.” When Justice tried
to explain how Lynam did it, he was also
describing qualities that good SPI
coaches should have.
• Knowledge of the game and its

strategies. Most good sports coaches
also were once good players. In SPI, a

good coach is likely to be someone
who was a good software developer
in an organization with a mature
software process.

• A sense of humor. They can put
work in the proper perspective. Ex-
cellence is not based on drudgery; it
is based on fun.

• Honesty and straightforwardness.
• Inspire trust. This is critical to pro-

cess improvement. Change agents
cannot feel they must constantly
second-guess the coach. Trust is built
on honesty and success.

• Good communication. SPI coaches
must be able to explain to change
agents how to carry out the activities
of a mature software process.
Coaches must know when their
explanations are getting through and
when they are not. When team
members do not understand them,
coaches have to find another way to
package the message so that it is
understood.

• Respect for the team. A good SPI
coach listens to team members when
they raise an objection.

• No grudges. Richard said of Lynam:
“If he chews out a player during a
game—and he does it frequently—
he has a one-on-one chat the next
day to explain his actions.” An SPI
coach may have little control over
who is chosen as SPI team mem-
bers. The coach discovers a way, if
there is one, to make the given team
successful in improving the software
process. Personal antagonism be-
tween the SPI coach and a team
member, or between two team
members, usually blocks long-term
process improvement. The coach
must find a way to avoid or defuse
antagonistic situations.

• Negative reactions seen in the
proper perspective. Coaches must
understand that even their team
members will have negative reactions
to the pressures of change from time
to time. The reactions are usually not
directed personally at the coach, and
the coach must not act as though
they are unless they are.

• Focus on what can be done. I em-
phasize the word “can.” Do not dwell

on what cannot be done or waste
time grieving about it. For example,
there are many ways to accomplish
each of the key practices in the
CMM. Some practices, such as re-
quirements management, software
project planning, and software con-
figuration management, can be
much easier to perform with decent
software tools than with pencil and
paper. Nevertheless, pencil and paper
are much underrated as tools. Orga-
nizations that cannot afford the
proper software tools must learn a
method that does not involve the
desired tools—but they should not
give up on the key practice. The
coach must look for what the SPI
team can do and show the team how
to construct a mature software pro-
cess that builds on that. An SPI
coach never lets the SPI team give up
as long as there is a reasonable prob-
ability of success.

Resources on Coaching
Readers who want to understand SPI
coaching better can get a good start by
reading Humphrey: “We have not yet
developed a coaching ethic in software
development. It could certainly help if
we did. Sports and the performing arts
have learned the value of coaching. … It
seems unlikely that truly superior soft-
ware development performance will be
achieved without the help of skilled
coaches.” [2]

For further exploration of coaching
as an organizational activity, see Curtis
[11] and the SEI People Capability Ma-
turity Model (P-CMM). Recognizing
the value of coaches, SEI has placed
coach development in the P-CMM as a
Level 5 activity. Coach development is
hard, but hiring a good coach is much
easier. For most organizations, I recom-
mend that you consider the key coach-
ing activities in the P-CMM to be a
checklist of what to look for in a pro-
spective SPI coach.

Conclusion
In conclusion, the following is a quiz.
Pick any ongoing SPI initiative (or soft-
ware technology introduction effort)
within your project or parent organiza-

Software Process Improvement

CROSSTALK The Journal of Defense Software Engineering 19September 1998

tion. Using the descriptions above of the
four roles of sponsor, champion, coach,
and change agent, and restricting your
answers just to this initiative, can you
answer:
• What personnel are the sponsors for

that initiative? What positions do
they have within your project or
parent organization?

• What personnel are the champions
for the initiative? What positions do
they have within your project or
parent organization?

• What personnel are the coaches for
your initiative? What positions do
they have within your project or
parent organization?

• What personnel are the change
agents for your initiative? What posi-
tions do they have within your
project or parent organization?

Now ask yourself, if no one is filling one
or more of these four roles, how will the
activities associated with those roles be
accomplished? Do you have one or more
of the risks here in your initiative?
Should you be tracking them in your
risks matrix? u

About the Author
Lewis Gray, president of Abelia Corpora-
tion, has 30 years experience introducing
new technology. He specializes in coaching

and teaching CMM-
based software process
improvement. He was
a leader in the develop-
ment of IEEE/EIA
12207, MIL-STD-
498, and J-STD-016

and is the only instructor outside the SEI
authorized to present the Technology
Transition Model for leading the adoption
of new technology.

Prior to founding Abelia, Gray had key
project management and technical posi-
tions at TRW, GTE, and INTELLIMAC.
He received a bachelor’s degree in math-
ematics and a doctorate in the philosophy
of science (specializing in technology
assessment) from Indiana University,
where he also taught mathematics, tech-
nology assessment, and philosophy of
science.

Abelia Corporation
12224 Grassy Hill Court
Fairfax, VA 22033-2819
Voice: 703-591-5247
Fax: 703-591-5005
E-mail: lewis@abelia.com
Internet: http://www.abelia.com

References
1. Humphrey, Watts S., Managing the

Software Process, Addison-Wesley, Read-
ing, Mass., 1989.

2. Humphrey, Watts S., A Discipline for
Software Engineering, Addison-Wesley,
Reading, Mass., 1995.

3. Gray, Lewis, and Dennis G. Stephenson,
“Achieving Intergroup Coordination
Through a Product Architecture Organi-
zation,” Proceedings of the Seventh Annual
Software Technology Conference, Salt Lake
City, April 1995.

4. Gray, Lewis, “Defining the Coach’s Role
in Software Process Improvement,”
Proceedings of the Tenth Annual Software
Technology Conference, Salt Lake City,
April 1998.

5. Kübler-Ross, Elisabeth, On Death and
Dying, Collier, New York, 1969.

6. “Implementing Change,” Implementa-
tion Management Associates, Inc., Den-
ver, Colo., 1989.

7. The Technology Transition Model
(TXM), SEI workshop on “Introducing
New Software Technology.” For more
information, see http://www.abelia.com/
instcrse.htm.

8. Fowler, Priscilla and Stan Rifkin, Soft-
ware Engineering Process Group Guide,
Technical Report CMU/SEI-90-TR-24,
Pittsburgh, Pa. Software Engineering
Institute, 1990.

9. Rogers, Everett M., Diffusion of Innova-
tions, New York, The Free Press, 4th ed.,
1995.

10. Justice, Richard, “Bullets Take Heart
from Lynam,” The Washington Post, April
10, 1996.

11. Curtis, Bill, William E. Hefley, and Sally
Miller, People Capability Maturity Model,
SEI, Pittsburgh, Pa. 1995.

Why Coaches Are Needed in Software Process Improvement

The Ogden Air Logistics Center, Software Engineering
Division (OO-ALC/TIS) at Hill Air Force Base, Utah was
assessed July 13-23, 1998 and found to be a Level 5 matu-
rity organization according to the Software Engineering
Institute Capability Maturity Model (CMM).

The Software Engineering Division, which comprises
over 500 employees, develops and maintains software for
operational flight programs and automatic test equipment.
TIS is the first government agency known to be rated at this
maturity level. Only three other companies involved in
software development are known to share this rating.

The development of numerous tools, such as time and
accounting systems, defect tracking databases, and a tech-
nology change management database helped TIS automate
many of the activities relating to the goals in the Level 4
and Level 5 key process areas.

As a final self-check, TIS prepared cross matrices be-
tween their documentation and the goals, commitments,

TIS Achieves CMM Level 5
abilities, and activities associated with each key process
area. These matrices provided a road map through the hier-
archy of documentation. The projects within TIS also orga-
nized examples by each key process area. The seminar “Sur-
viving a Software Capability Evaluation,” presented at the
April 1998 Software Technology Conference in Salt Lake
City, Utah, reinforced TIS’s belief in the need for this detail
of preparation. This final check was also a benefit to the
assessment team; it helped shorten the long days experi-
enced by the assessment team members.

The assessment team consisted of nine members, six of
which were either lead assessors or candidate lead assessors.
The team consisted of Mark Paulk, Brian Larman, and
Donna Dunaway from the Software Engineering Institute,
Bonnie Bollinger and Millee Sapp from Robins Air Force
Base, Ga., Mike Ballard from the Software Technology
Support Center, and David Putman, Pat Cosgriff, and
David Haakenson from the Software Engineering Division.

20 CROSSTALK The Journal of Defense Software Engineering September 1998

Everyone agrees on what pro-
cess improvement is, right? It is
the most discussed topic in soft-

ware engineering. It has been around
for such a long time; there is no need to
define anything before launching into a
familiar discussion, right? Wrong.

Process Improvement Defined
To paraphrase W. Edward Deming,
author of Out of the Crisis, process im-
provement is not something you talk
about; it is something you do. For pro-
cess improvement in software engineer-
ing, when all is said and done, a lot
more is said than done. What is worse,
far too much of what is done is done
wrong—the process is not better, and
process improvement is besmirched. Let
us look at process improvement and see
if there is a way to effectively and con-
sistently improve software engineering
processes.

Two things need to be understood:
process and improvement. It may sound
silly, but the number of different defini-
tions and their imprecision lead to a
great deal of confusion and misunder-
standing about process improvement.

A prerequisite for process improve-
ment is to have a comprehensive pro-
cess definition. The operating defini-
tion of process is “the definition of the
way in which something is intended to
be done.” Any process has an accom-
plishment objective. A process must
describe the steps to achieve its objec-
tive and the means to do the steps.
Since this definition could apply to
many things, for software engineering,
our process is assumed to have a formal
definition so that it can be repeated.

Important Terms and Concepts
A variety of concepts must be under-
stood before you can make the distinc-
tions needed to initiate true process
improvement.

Processes vs. Projects
Distinguish processes from projects: A
process is the intended way to complete
a project, whereas a project is the appli-
cation of resources to that process.
Because projects are tangible, the only
way you can measure a process is to
measure projects and use the informa-
tion to make inferences about the pro-
cess. When measuring, it is important
to know what can affect processes and
projects:
• Processes are affected by common

causes of variation, e.g., teams, tools,
environment. When you work on
common causes, it is called “process
improvement.” Common causes
should be addressed by your pro-
cess.

• Projects can be affected by either
common or special causes of varia-
tion, e.g., system failures, attrition,
or improper schedule or budget.
Working on special causes is (or
should be) problem identification
and correction, commonly called
“fire fighting.” Special causes cannot
necessarily be prevented or ad-
dressed through process changes.
You must always distinguish which

type of cause is at work, because if you
treat a common cause with special cause
techniques and tools (or vice versa), you
are “meddling” rather than solving
problems. Meddling invariably causes
more “fires,” and fire fighting does not
improve processes.

Efficiency, Cycle Time, Quality
Three characteristics describe any
process:
• Efficiency (E) – the relationship

between resource use and accom-
plished results.

• Cycle Time (T) – the “design
speed” of the process, i.e., the speed
of a particular development process
relative to other processes (assuming
certain factors are equal).

• Quality (Q) – the quality of the
process.

You may laugh when someone says
“good, fast, cheap—pick two” but this
is more insight than humor. For any
process,

 function f(E,T,Q) = constant K.
Therefore, if you want better and faster
and cheaper, you will need a different
process.

Sequence and Means
Sequence and means are the two ele-
ments of a process. Sequence is simply
the order in which things are accom-
plished. There are two types of se-
quences:
• Required – an order that must be

followed, as demonstrated through
precedence, i.e., putting on a second
coat of paint requires that the first
coat already be applied and cured.
In software development, prece-
dence has long shown it is best to
start coding after the requirements
are gathered.

• Discretionary – the order in which
it is decided that something will be
done. Past precedence and the avail-
ability of related means influence
the sequence in which discretionary
processes are executed.

Real Process Improvement
Steve Neuendorf

Independent Management Consultant

Process improvement: The name belies its nature. Many people see it as the way to build products better,
faster, and cheaper. In truth, there are many ways to be better, faster, and cheaper at whatever you are
doing, and process improvement is only one of them. However, process improvement is the most reliable
because first it works on people and only then does it work on the process. First you understand how good,
fast, and cheap a process is and why it is that way. You also develop an understanding of why alterations
of a process or adoption, as well as altogether different processes may be better, faster, or cheaper. With this
understanding, you can then implement the changes that will result in improved performance.

CROSSTALK The Journal of Defense Software Engineering 21September 1998

After sequence comes the means by
which the steps or tasks will be carried
out. It is understood that a project is
“the application of resources to a pro-
cess to produce a result.” People usually
think of resources as labor, time, and
money, but for understanding the pro-
cess you must consider other resources
such as tools, techniques, technology,
and factors particular to “resources”
such as the skill and experience of the
team members. Therefore, the defini-
tion of means includes all aspects you
should consider so that you can under-
stand and improve processes. It is help-
ful to consider the means separately in
categories such as management, tech-
nology, teams (or people), tools, tech-
niques, and environment.

Capability and Capacity
For effective process improvement, an
organization must consider all of its
processes collectively. As defined so far,
a process is a sequence and a set of
means. By this definition, each organi-
zation would have a virtually infinite
number of processes (possible combina-
tions of E, T, and Q). Therefore, the
additional dimensions of capability and
capacity must be understood. Each
possible combination of E, Q, and T
defines a capability. The current ability
of the organization to execute a capabil-
ity defines capacity.

This is not as complicated as it may
sound. For example, one of the means
defined as “Red Team” is comprised of
members with certain experience and
knowledge. Red Team projects are done
faster, better, and cheaper than “Blue” or
“Green” Team projects. Red Team per-
formance levels are a “capability.” Be-
cause the organization may have only a
limited number of employees qualified
to form Red Teams, there is a limited
capacity associated with the Red Team
capability.

Innovation and Continuous
Improvement
There are two categories of improve-
ment: continuous improvement and
innovation. Continuous improvement
of processes is the systematic upgrading
of lower capability means to give higher

capacity at a higher capability. To use
the prior example, continuous improve-
ment of team capability would be to
provide training to Blue and Green
Team members so that more Red Teams
can be formed.

Innovation is the introduction of
new capability. Again, using the prior
example, innovation would be training
everyone in a new technique. Everyone,
even the Red Team, would have a greater
capability to execute the new technique.
It is important to note that innovation
usually introduces learning curve dy-
namics and a risk of failure to a greater
extent than continuous improvement.

Following is another distinction
between strategy and process improve-
ment. Again, using our example, if you
were to merely adopt a strategy to re-
place Green and Blue Team members
with Red Team-qualified candidates,
better values of performance (E, Q, and
T) would be expected. However, Red
Team-caliber candidates are expensive
and much harder to find. Green and
Blue Team members could be trained
(their processes improved); however,
process improvement requires under-
standing the process—you need to
know what will improve a process and
how much improvement is needed. For
example, the cost of making your Blue
and Green Team members perform like
the Red Teams must first be deter-
mined, then the benefit of improving
team performance can be discovered.

As in anything complex, what is
“obvious” is not always true, and what
is true is not always obvious. Only by
improving your understanding of the
process can you manage the risk of
making changes that do not result in
the desired improvement.

Tools for Process Improvement
For all of the above categorization,
there are still two categories of process
improvement that need to be consid-
ered when you apply the available pro-
cess improvement tools. There are re-
petitive processes, such as most
manufacturing, and there are
nonrepetitive processes, such as soft-
ware engineering.

Repetitive Processes
Virtually all of the common process
and statistical process control (SPC)
literature focuses on repetitive process
principles and examples. Characteristics
of these processes are a mostly fixed
precedence, sequence, and means. Gen-
erally, the process flow-chart tool is
used to understand and improve these
processes, with care to use the decision
element of the flow-chart tool to divide
flow into segments that are distributed
in such a manner that SPC tools can be
used to analyze data (see Figure 1).

Nonrepetitive Processes
The goal in process improvement for
software engineering is to improve non-
repetitive processes. Your understanding
of these processes comes from analysis
of the effects of variation in the means
of production on performance. For
nonrepetitive processes, attempts to
understand and improve processes by
using repetitive process tools and tech-
niques will yield the same results as
trying to teach a pig to sing—you get
no singing, and it upsets the pig.

The key to understanding nonre-
petitive processes is knowing that while
the means may be similar from project
to project, the steps and sequence can
never be exactly the same. That is, even

Repetitive Process Flow Charting

Process Flow Symbol Charting
Symbol Properties
Arrow Flow volume

Flow timing

Input/Output Naming
Responsibility notation

Storage/Queue Volume
Capacity
Timing

Operation Resource use
Timing
Capacity

Decision Criteria
Flow percentage

Figure 1. Flow charting without documenting
the properties makes a nice picture but a poor tool
for process understanding and improvement.

Real Process Improvement

22 CROSSTALK The Journal of Defense Software Engineering September 1998

if you start a new project with the last
project’s teams (people and skills), man-
agement (people, styles, and leadership),
and tools and techniques in the same
environment, you are nevertheless deal-
ing with a different project. However,
there are myriad aspects of the means
(management, teams, tools, techniques,
environment, etc.) that can be measured
in a way so the variation in these mea-
sures can be related to variations in per-
formance (E, T, and Q) for any project.

However, at this point you do not
necessarily yet understand the nature of
your nonrepetitive processes. Notice in
the process flow-chart tool description
from Figure 1 that the volume property
of the arrows, along with the “normaliza-
tion” use of decisions, allows an analyst
to “normalize out” variation due to
throughput and size. For nonrepetitive
processes, project cost, defects, and dura-
tion will vary due to differences in the
means of completing the project and the
(deliberately) heretofore not mentioned
size factor—changing the size of a
project can change everything.

I have not mentioned the size mea-
surement because it seems to work like
a light switch—flip the switch and
about half the people turn on and the
rest turn off. The goal of a size measure
is to remove variation due to size from
the analysis without introducing an-

ample, imagine project management is
the means being evaluated. The low
end of the scale would be no project
management or maybe a project lead
and no formal tracking. The top of the
scale would be a full-time project man-
ager who reports to the project manage-
ment office and uses a full set of project
management tools.

With all means identified and a
scale created for each of the means, the
values of the means for any given
project constitute a process. Improve-
ment of the process is the improvement
of the means. Figure 2 shows how a
process is managed to obtain a perfor-
mance result. For the organization
measured, the scale in each means, e.g.,
management, represents the range of
influence of the measured capability on
performance. For any project, the ac-
tual value of the mean (the triangle
symbol) predicts the contribution of
that aspect to the overall performance
of the project. The process model shows
the collective effect of the measured
means values on project performance
and gives the overall predicted project
performance. The goal of performance
measurement then becomes measuring
actual performance against predicted
performance to detect problems. Pro-
cess improvement is working on the
means, both for capability (higher levels
on the scale) and for capacity (how
much is available for use).

If you know what to do, calibrating
the process improvement model can be
straightforward, i.e., for any given set of
means, values for E, Q, and T (exclu-
sive of special causes) can be predicted.
It follows that if the model is calibrated,
the effect of changes in the means (ben-
efits) can also be quantified. Finally,
understanding the means makes im-
provement actions and investments
evident and makes improvement cost
(time and money) easily determined.
You now have the action, cost, and
benefit of process improvement objec-
tively in front of you. Now more can be
done than said.

It also is important to note that even
in a calibrated model, it is likely that
the variation in performance effect for

Figure 2. Managing a process to obtain a performance result.

other source of variation and without
removing a process-related source of
performance variation. If your size
measure does this (some straightfor-
ward statistical analysis will tell), you
are on the right track.

An Example
To illustrate how this translates into
reality, I use an example with which I
assume most readers are familiar: the
Software Engineering Institute (SEI)
Capability Maturity Model (CMM). In
a simplistic view, the CMM measures
capability maturity on a scale of Level 1
to Level 5 with Level 5 being most
mature. Several practitioners and ana-
lysts have also developed relationships
between the CMM maturity level and
performance in each dimension of
process measurement (E, T, and Q),
notably, the higher the maturity level,
the better the performance. From the
analyses I have seen, the differences in
each E, T, and Q are substantial, and I
assume they are statistically significant.

The nonrepetitive process improve-
ment model is analogous to this view of
the SEI CMM. That is, for each of the
means (management, teams, tools,
techniques, environment, etc.), a scale
of possible conditions is developed, and
criteria to evaluate that means accord-
ing to that scale are prepared. For ex-

Project Management is (1) identifying the process used (and predicted performance) and (2) assuring
that the actual performance equals predicted performance.
Process Improvement is (1) improving your capacity at each higher level of capability (more projects at
the higher expectation levels) and (2) increasing your capability in each of the process areas (dotted lines).

Software Process Improvement

CROSSTALK The Journal of Defense Software Engineering 23September 1998

the lower levels of a means is much
greater than for higher levels. That
translates into the risk that the predic-
tion at low levels will be off. In analysis
theory, these are prediction anomalies
called outliers, which are ignored. In
process improvement, these must be
accommodated. There are some stellar
software producers at CMM Level 1;
therefore, at Level 1, the model is not
fully predictive. However, the over-
whelming odds are that Level 1 perfor-
mance will be worse than the perfor-
mance of organizations at higher levels.

The real key to process improve-
ment is hidden in the first phrase of a
sentence two paragraphs back: “If you
know what to do, ...” Process improve-
ment is not intuitive (“perfect practice
makes perfect”). At risk of confusing
my explanation of process improve-
ment, the process that most needs
implementing is the one you use for

process improvement. Once this pro-
cess is good, the result will be an im-
proved software engineering process. In
other words, for process improvement
to succeed, the skill level of the process
improvement project team must be
high, not the skill level in software
engineering groups.

Most organizations do not have the
requisite process improvement skills
among their management or staff. No
matter how motivated, facilitated, or
well led, a team without the right skills
is likely to fail to implement process
improvement. If you are in a typical
organization, process improvement has
failed at least once. If you blamed the
team, you were wrong—your expecta-
tions were unfounded. If you blamed
process improvement merely because it
is an art that is difficult to master, you
were wrong, too—process improvement
is alive and well and works great in the

right hands. If you brought together the
right resources in the right place at the
right time with the right management
and right leadership, you probably did
not read this far. Good Luck. u

About the Author
Steve Neuendorf is an
independent manage-
ment consultant. He has
over 25 years measure-
ment and process im-
provement experience,
with over 15 years in

software engineering process improve-
ment. He has a bachelor’s, a master’s, and
a doctorate from the University of Puget
Sound.

Voice: 425-557-8747
E-mail: steve@serv.net
Internet: www.serv.net/~steve

Real Process Improvement

The Air Force Communications Agency (AFCA) at Scott
Air Force Base, Ill. has transferred its responsibility for
conducting Capability Maturity Model (CMM)-Based
Appraisals for Internal Process Improvement (CBA/IPI)
for Air Force organizations to the Software Technology
Support Center (STSC) at Hill Air Force Base, Utah. The
CBA/IPI is a method licensed by the Software Engineer-
ing Institute to assess an organization’s capability to de-
velop and maintain software. STSC consultants have
experience in CMM-Based Appraisals that range from
maturity Levels 2-5.

Organizations that need CBA/IPI assessments should call
the STSC staff at 801-775-5555 ext. 3065 DSN 775-5555
ext. 3065 or E-mail spi@stsc1.hill.af.mil.

Passing the
CBA/IPI Torch

Need Assistance with
 Software Process

Improvement?
Call the SPI Hotline at 801-775-5555 ext. 3055 DSN 775-
775-5555 ext. 3055 or E-mail us at spi@stsc1.hill.af.mil.

We can answer questions about various software process
improvement (SPI) issues, including

• How to get started on SPI. • CMM key process areas.
• Available SPI training. • SPI best practices.
• Assessments. • SPI return on investment.

Software Technology Support Center (STSC) SPI veter-
ans are on call to answer questions and research your prob-
lems for up to one hour without charge. We can provide
you with policy, process, and procedure templates from our
STSC library. If you need in-depth assistance, we will refer
you to the appropriate experts using our database of pre-
qualified consultants from the STSC and external sources.

Several SEPG members responsible for leading OO-
ALC/TIS to its Level 5 status now work in the STSC. Call
the SPI Hotline for their consulting services.

24 CROSSTALK The Journal of Defense Software Engineering September 1998

In a recent article by William
Schiemann and John Lingle, they
 describe “Seven Greatest Myths of

Measurement.” [1] Among the points
made in this article is the need to use
measurement to anticipate the future
rather than to merely record the past.
This is the same perspective promoted
by the Software Engineering Institute’s
(SEI) Goal-Driven Software Measure-
ment process [2] and the Department of
Defense initiative for Practical Software
Measurement [3]. The benefit and value
of software measurement come from the
decisions and actions taken in response
to analysis of the data, not from the
collection of the data. I liken software
measurement activities to potential and
kinetic energy: Gathering the data cre-
ates a potential, but it takes analysis and
action to make it kinetic. The Goal-
Driven Software Measurement approach
identifies 10 steps to establish a measure-
ment program that is aligned with the
organization’s business processes. In this
way, the risk of having data gathered,
but not used, is minimized.

The steps of the approach are orga-
nized into three sets of activities: identi-
fying goals, defining indicators and the
data needed to produce them, and creat-
ing an action plan to guide the imple-
mentation. Business goals are translated
into measurement goals [4, 5] by identi-
fying high-level business goals and refin-
ing them into concrete, operational
statements with a measurement focus.
This refinement process involves prob-
ing and expanding each high-level goal
to derive questions, the answers to which
would help manage the organization.
The questions provide concrete examples
that can lead to statements that identify
what type of information is needed.

However, a sense of what informa-
tion is needed is not specific enough.
The goal-driven approach requires that
indicators, e.g., charts, tables, or other
types of displays and reports, be sketched
out and approved by the intended user.
These indicators serve as a requirements
specification for the data that must be
gathered, the processing and analysis
that must take place, and the schedule
by which these activities should occur.
The final set of activities takes the out-
put of the preceding two sets of activities
and uses them to develop an action plan.
First, the existing data collection and
measurement activities within the orga-
nization are analyzed to avoid duplica-
tion and identify gaps. Priorities, in
terms of data to gather to produce the
indicators, are assigned. Then, tasks are
defined to take advantage of existing
activities and to address the gaps. Part of
the plan also addresses the need for the
measurement activities to evolve with
respect to staying synchronized with the
organization’s goals and to become more
efficient and effective in its own opera-
tion. The following sections summarize
each of the 10 steps. In summary, the
Goal-Driven Software Measurement
process consists of the following:

Identifying Goals
1. Identify your business goals.
2. Identify what you want to know or

learn.
3. Identify your subgoals.
4. Identify entities and attributes re-

lated to your subgoals.
5. Formalize your measurement goals.

Defining Indicators
6. Identify quantifiable questions and

the related indicators that you will

use to help you achieve your mea-
surement goals.

7. Identify the data elements that
you will collect to construct the
indicators that help answer your
questions.

8. Define the measures to be used and
make these definitions operational.

Creating an Action Plan
9. Identify the actions that you will

take to implement the measures.
10.Prepare a plan to implement the

measures.

Identifying Goals

Step 1: Identify Business Goals
The first step in identifying and defin-
ing software measures is to identify the
business goals that drive your organi-
zation’s efforts. If a strategic plan exists
and is currently being followed, it can
be used as a starting point. It is often
worthwhile, however, to check the
current commitment to the strategic
goals. Without a clear sense of the
organization’s strategic goals and the
objectives and responsibilities for each
work unit or position, there is a risk
that measures will not be aligned with
important issues within the organiza-
tion or used. To elicit goal statements,
it is sometimes useful to ask a question
such as, “What do we want to achieve?”
Once the goals have been identified,
they need to be prioritized. This is best
done in a team setting with the relevant
stakeholders participating.

Step 2: Identify What You Want to
Know or Learn
If measurement activities are to be
aligned with business goals, the goals
must be translated into operational state-

Measurement with a Focus
Goal-Driven Software Measurement

Dave Zubrow
Software Engineering Institute

The collection of accurate metrics is a pointless exercise until the data is analyzed and
used to predict and influence future events. The article discusses how to set up a met-
rics collection and analysis game plan that will advance specific business interests.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 25September 1998

ments. The strategic actions planned and
taken with the hope of meeting the goals
provide proper targets for measurement.
In this step, the goals are linked with
knowledge of the organization’s business
strategies and processes. As illustrated in
Figure 1, the questions related to the
goals are framed in terms of the entities
(work products or activities) and at-
tributes (the size, effort to produce, or
quality of an entity) associated with the
organization’s work processes. Often-
times, the description of the work pro-
cesses is in the form of a mental model
rather than an explicit definition. If this
is the case, it is worthwhile to identify
the work products, activities, and other
entities that offer opportunities for mea-
surement. The key is taking the time to
think through and document what you
want to know about those entities with
respect to the goals previously identified.

Step 3: Identify Your Subgoals
The preceding step usually generates
many questions. Although they are
stimulated by the top-level goal state-
ment, the questions must be focused. By
analyzing the questions and seeking
commonality among them, subgoals can
be derived. The subgoals provide a re-
finement of the goal and serve as a sum-
mary for the questions to which we
would like answers. Subgoals are not
directly derived from the goals to allow
managers and other stakeholders the
opportunity to brainstorm about the
kinds of information they need with
respect to their goals. This helps avoid
the tendency to prematurely close the
discussion on goals and the information
that is needed. Similarly, the grouping
and summarization of questions in this
step provides a check that the question
asked is related to an important dimen-
sion or subgoal of the original goal.

Step 4: Identify Entities and
Attributes
In this step, attention is once again
turned to the work processes of the orga-
nization. The questions from Step 2 are
useful in this step as well. As noted, the
opportunities to gather data and mea-
sure reside in the organization’s work
processes. The subgoals and related

questions define the focus for the mea-
sures. Careful analysis of the questions
will usually help identify what needs to
be measured; for example, “How large is
our backlog of customer change re-
quests?” The entity in this question is the
backlog of change requests and the at-
tribute of interest is its size. Note that at
this point, we can further ask in what
way should size be measured. This point
is addressed in the next step.

Step 5: Formalize Your
Measurement Goals
In this step, a measurement goal is
crafted that merges the purpose and
perspective derived from the business
goal with the possibilities for measure-
ment as they exist within the organi-
zation’s work processes. In addition, the
goal statements express environmental or
contextual factors that are important to
understand for those who will design
and do the measurement and analysis
activities.

Well-structured measurement goals
have four components:
• An object of interest (an entity).
• A purpose.
• A perspective.
• A description of the environment

and constraints.
Note that in the four components,

the perspective of who will use the infor-
mation is explicitly documented. One
means to ensure the information gath-
ered will be used is to identify and docu-
ment the user (“audience” is too passive)
for the information.

As an example, the first five steps for
defining goals might yield the following:
• Increasing customer satisfaction was

identified as a business goal (Step 1).

• Questions asked about increasing
customer satisfaction (Step 2) include

• Do our products satisfy customer
requirements?

• Do we respond to customers in a
timely manner?

• Does our process ensure quality?
• From a set of the questions, a subgoal

associated with requirements might
be derived. The derived subgoal (Step
3) might be to increase the traceabil-
ity between requirements and subse-
quent work products in the develop-
ment process.

• The entities associated with the
derived subgoal (Step 4) include the
work products that define and vali-
date the delivered product. The
attribute of interest of the work
products is the degree to which they
address the requirements and per-
haps the degree to which they only
address the requirements. The latter
captures the extent of “unrequired”
features.

• Finally, we would address the derived
subgoal with a formal measurement
goal (Step 5), such as

• Object of interest: The develop-
ment process.

• Purpose: Assess the degree of
traceability of work products to
requirements in order to control
the scope of development efforts.

• Perspective: Measure traceability
of subsequent work products to
requirements from the perspec-
tive of project managers.

• Environment: New development
project for military avionics.
Process maturity at the site has
been rated at the Repeatable
Level of the CMM. Work prod-
ucts follow MIL-STD 2167A.

Figure 1. Creating process according to business goals.

Measurement with a Focus: Goal-Driven Software Measurement

26 CROSSTALK The Journal of Defense Software Engineering September 1998

Defining Indicators

Step 6: Identify Quantifiable
Questions and the Related
Indicators
Armed with the measurement goal state-
ment, indicators or displays to address
the goal can be sketched out. Sketching
or drafting the table, chart, or report that
needs to be produced helps ensure the
requirements for measurement are com-
plete. In the course of designing the
indicator, issues regarding the frequency
of data gathering, the timing for generat-
ing the indicator, the need to use current
and historical data, etc., surface. Simi-
larly, the indicator also elicits whether
the points on the chart, for instance,
represent “raw” values, percentages, or
some other derived scale. To a large ex-
tent, the indicator represents the product
of the measurement activities. It is the
consumable for the managers and practi-
tioners who are looking for information
to support their decisions and actions.
Figure 2 shows an example of a template
that can be used to document the defini-
tion, inputs, and use of an indicator.
Continuing with the previous customer

satisfaction example, an indicator such as
the following might be created to answer
the question, “What percentage of
projects are producing traceability matri-
ces between requirements and other
work products?”

Step 7: Identify the Data Elements
The indicators reflect what data ele-
ments are needed. For instance, to pro-
duce the preceding indicator, the total
number of projects per quarter and the
number of projects having traceability
matrices per quarter are required. Identi-
fying the data elements, however, is not
the same as defining them.

Step 8: Define the Measures
To continue the customer satisfaction
example, definitions are needed for
• Projects.
• Criteria to determine whether they

have traceability matrices, i.e., must
they be reviewed prior to accepting
them for this measure.

• How to assign projects to the periods
for reporting, e.g., the quarter in
which the project completes its de-
sign review.
These definitions are critical to

achieve proper interpretations of the
data. Note, however, that the definitions
need to be created with the purpose of
the indicator in mind; that is, they
should be consistent with providing an
answer to the question that the indicator
addresses.

Developing a complete and unam-
biguous as possible definition can be
arduous. To aid this task, the SEI devel-
oped a series of measurement framework
checklists for common software mea-
sures such as size, effort, milestones, and
defects [6-8].

Creating an Action Plan

Step 9: Identify the Actions for
Implementation
Knowing the data needed and having
defined them, the existing situation
within the organization can be analyzed
with respect to your measurement needs.
Existing sources of the needed data
should be identified. The data elements
needed may be found in a variety of

sources including project plans, defect
tracking systems, the configuration man-
agement systems, and effort reporting
systems. Likewise, data that is needed
but is not available should be analyzed
with respect to the amount of effort
required to obtain the data. Consider-
ations at this step include whether new
forms, tools, or training would be re-
quired to obtain the data. Additionally,
you must prioritize the currently un-
available data in terms of the indicators
that depend upon the data. For each
data element, you should determine its
status with respect to the following:
• Does an explicit definition of the

measure exist?
• Have the frequency of collection and

the points in the process where mea-
surements will be made been deter-
mined?

• Has the time line required to move
measurement results from the points
of collection to databases or users
been established?

• Are there forms and procedures to
collect and record the data?

• Have storage and access mechanisms
and procedures been determined?

• Who is responsible to design and
operate the database?

• Who will collect and who can access
the data?

• How will the data be analyzed and
reported? Who is responsible for the
data, and who will receive the re-
ports?

• Have the supporting tools been de-
veloped or acquired?

• Has a process guide to collect the
data been developed?
In our example, reporting on the

existence of traceability matrices may
not exist. This gap would then be ad-
dressed in the action plan. For instance,
to capture this data, the organization
may need to add this to a project review
or audit checklist for the Software Qual-
ity Assurance Group.

Step 10: Prepare an Action Plan
Once a gap analysis has been completed
between the data needed and the exist-
ing measurement activities, prepare an
action plan. Documenting the tasks to

Figure 2. Indicator Template.

See METRICS, Page 15

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 27September 1998

A variety of testing techniques are available that
can easily be adapted and applied to Year 2000 (Y2K)
 projects. One technique that greatly helps plan, coordi-

nate, document, and track testing is the test-cycle technique.
In this technique, testing is organized and performed in cycles
that can be defined to simulate specific dates. The great value
in this approach is its application to large-scale enterprise sys-
tems. This kind of “end-to-end” test is especially critical in
Y2K projects because of the need for testing interfaces between
many different systems, both internal and external to the en-
terprise. This article presents an overview of the test-cycle
concept, the benefits of using test cycles, and an example of
how test cycles can facilitate Y2K testing.

The examples presented in this article may appear simple
because they are presented for the sake of illustration. In the
real-world application of the test-cycle approach, the scope can
be much larger but these techniques may still be used to man-
age the complexity of large-scale systems or user acceptance
testing.

What Is the Test-Cycle Concept?
First, a test cycle is any defined period of testing. A test cycle
could simulate a day, a week, a month, or no period. The abil-
ity to simulate a given period, however, is what makes test
cycles an ideal technique for date-sensitive testing.

Exactly what happens during a test cycle depends on the
technology involved. For example, in a traditional legacy main-
frame environment, a test cycle usually consists of three parts:
on-line data entry, batch processing, and the verification of
batch results (Figure 1). In an environment that does not con-
tain batch processing, the test cycle consists of interactive pro-
cessing only. In a batch-only environment, a test cycle would
consist of batch processing followed by the verification of
batch results.

For each test cycle, a simulated processing period can be
defined. That is why test cycles are an ideal way to plan and
organize Y2K testing. One test cycle can be set for 12/15/
1999, another cycle defined as 12/31/1999, another at 1/1/
2000 and so on. The test environment date for each test cycle
will need to be set using a date simulation tool.

The number of test cycles required for a test will depend on
the amount of simulated time to be spanned during the test.
For example, if you are merely testing the date rollover, you
will only need a few cycles—probably 12/31/1999, 1/1/2000,
and 1/3/2000 (the first Monday in 2000). However, if you are
going to perform a more complete Y2K compliance test, you
will need to define test cycles that allow a longer span of test-
ing. For example, if you are testing a 30-day cancellation pe-
riod across the century rollover, you might have one cycle
defined as 12/15/1999 and another at 1/15/2000. You would
also want other test cycles defined at 2/28/2000 and 2/29/
2000 to test leap year processing. With the test-cycle approach
and a date simulation tool and a data aging tool, you can de-
fine cycles as far in the future as you like. So, for testing leap
year processing, you could also have cycles for 2/28/2004 and
2/29/2004.

Within each test cycle, one or more tests are defined to be
performed. In some test cycles, it may be desirable to define no
tests, depending on the cases being tested. The tests may be
defined using test scripts or test cases.

The Process of Defining and Using Test Cycles
Now that test-cycle concepts have been discussed, let us look
at the details of planning a Y2K test using test cycles.

Step 1 – Make Sure You Have the Right Tools
You will need a date simulation tool to easily change your test
environment dates. You will also need a data aging tool to

Using Test Cycles for Testing Year 2000 Projects
Randall W. Rice

Rice Consulting Services

Figure 1. Traditional test cycle.

Figure 2. Matrix headings with test-cycle dates.

A major challenge in enterprise-wide system testing is to devise a test process that simulates the
operation of the organization over a period of time and that covers the processing of many
systems. Enterprise-wide testing is extremely complex, and the need for such testing is particu-
larly evident in most Year 2000 testing efforts. However, traditional testing processes often test
software and systems at snapshots of time as opposed to testing transactions through specific
checkpoints or cycles. The test-cycle approach in this article describes how to construct a set of
tests that are controllable, repeatable, and measurable across any given span of time.

DI noitpircseD 1elcyC 2elcyC 3elcyC 4elcyC 5elcyC 6elcyC 7elcyC

9991/51/21 9991/13/21 0002/1/1 0002/3/1 0002/51/1 0002/82/2 0002/92/2

28 CROSSTALK The Journal of Defense Software Engineering September 1998

advance the dates in the test data and keep the relationships
synchronized.

Step 2 – Define the Dates You Will Need to Simulate
These simulated system dates will depend upon the extent of
your testing—namely, the levels of Y2K compliance you need
to validate. There are four basic categories of Y2K compliance
to consider:
• No value for the current date will cause interruption in

operation. No matter what the system date is, the system
will work correctly.

• Date-based functionality must behave consistently for dates
prior to, during, and after 2000. All functions using dates
as a basis should be correct. This includes calculations in
the 19th, 20th, and 21st centuries, and calculations that
span those centuries.

• In all interfaces and data storage, the century in any date
must be specified either explicitly or by unambiguous algo-
rithms. Either the century must be explicitly shown in the
date, e.g., as a four-position field or by using a century
indicator, or by using a logic routine to interpret the date
based on a window of time or some other method.

• The year 2000 must be recognized as a leap year. If your
system processes data from early in the 20th century, you
need to be able to distinguish 1900 from 2000 for leap year
purposes.
The dates that many people are using as system test dates at

a minimum are
• 1/1/1999
• 9/9/1999
• 12/31/1999
• 1/1/2000
• 1/3/2000
• 1/4/2000
• 2/28/2000
• 2/29/2000

Your specific system dates will depend on your applica-
tions, business, and technology needs.

Step 3 – Build a Test-Cycle Matrix
Spreadsheets are great tools for this. You need to leave at least
the first two columns blank for the test case identification (ID)
and description, then define the test cycles along the top of the
spreadsheet (Figure 2).

Step 4 – Define the Test Cases or Business Cases to
Be Placed on the Matrix
Test cases and business cases are those entities you intend to
test. These cases will go through one or more cycles of testing
and will execute several test scripts or test scenarios. This ap-
proach to testing is what gives the test cycle concept so much
power. You get to simulate not only the effect of the century
rollover but also how people and things are processed through
your systems from beginning to end. This is in contrast to
merely testing one program at a time in a stand-alone fashion.

Figure 3. Test cycle matrix with cases.

Figure 4. Test cycle with test ID numbers.

Figure 5. Sample test script.

Some examples of test and business cases would be a
policyholder, a customer, a patient, or a taxpayer. Each of these
entities would then have attributes that would make it unique.
For example, if you are testing policyholders, you might have
one policyholder with a deductible of $500 and another with a
$1,000 deductible (Figure 3). The number of test and business
cases you include will depend on the level of test coverage you
need relative to the risk involved.

Step 5 – Define the Test Order for Each Test or
Business Case and Place in Correct Spreadsheet Cell
Each cell can contain a reference to a test or tests that are to be
performed for a particular test and business case in a particular
test cycle (Figure 4). You might decide to skip a cycle or two
for some cases and double up or have several tests in other
cycles. Once again, this is an example of how test cycles help
you simulate the real world. Just like your live production
databases were not instantly created in your business, the test
data entered into the system cycle by cycle will continuously
build. Keep in mind, however, that every test and business case
added to the test will be one more item to maintain through-
out the test.

Step 6 – Define the Tests in Detail
For every test indicated on the test-cycle matrix, a detailed
description of the test will be needed for documentation both
before and after the test. The details should include controls
(such as when the test will start and stop), input, expected
output, and the test procedure to be followed. An ideal way to

Software Engineering Technology

DI noitpircseD 1elcyC 2elcyC 3elcyC 4elcyC 5elcyC 6elcyC 7elcyC

9991/51/21 9991/13/21 0002/1/1 0002/3/1 0002/51/1 0002/82/2 0002/92/2

1
=DED

005$

2
=DED
000.1$

DI noitpircseD 1elcyC 2elcyC 3elcyC 4elcyC 5elcyC 6elcyC 7elcyC

9991/51/21 9991/13/21 0002/1/1 0002/3/1 0002/51/1 0002/82/2 0002/92/2

1
=DED

005$
100A 200A 300A 400A 500A 500A

2
=DED
000.1$

100A 200A 300A 400A 500A 500A

petS DImargorP noitcA tluseRdetcepxE tluseRdevresbO liaF/ssaP

1 100BCA rebmunredlohycilopretnE
.>RETNE<sserpdna

noitamrofniredlohyciloP
.yltcerrocdeyalpsid

2 100BCA redlohycilophtiW
,deyalpsidnoitamrofni

.>5f<sserp

otderrefsnartsilortnoC
.)200BCA(neercsgnillib

tcerrocnoitamrofnignilliB
.redlohyciloprof

3 200BCA .>01f<sserP .unemniamottixE

CROSSTALK The Journal of Defense Software Engineering 29September 1998

document these aspects of a test for interactive software is to
use a test script (Figure 5). You must determine how much
detail is reasonable, given the amount of time you have left for
testing and the relative business and technical risk.

Step 7 – Put It All Together
After using this method for many years, I have developed what
seems to be a fairly smooth procedure to organize a major test
based on the test-cycle concept. Although you can certainly
automate testing using test cycles, many organizations do not
have test automation tools in place and do not have the time to
integrate a tool before starting Y2K testing. In addition, my
surveys show that although 80 percent of the organizations I
surveyed own an automated test tool, only about 25 percent of
those organizations use the tool. For these reasons, the manual
application of the test execution process will be shown.

First, you will need a manila folder for each test and busi-
ness case you have defined. There will be a folder for each row
on the matrix (spreadsheet). Label each folder with a business
case ID number. This should also correspond to the ID on the
matrix. Next, place everything you will need for the business
case in the folder. This will include test data and test scripts or
test procedures (Figure 6).

To simplify things and to find the right test information
quickly, place a cover sheet (Figure 7) on the outside of the
folder. The cover sheet shows the test cycles, the test scripts
and the procedures performed in each test cycle, and a sign-
off column to be initialed by the person who tests the busi-
ness case.

The final piece is to get as many cardboard bankers’ boxes
as you have test cycles. If you have only a few folders per cycle,

you can get by with using dividers in one or two boxes. You
will need a way to start out the test with each set of folders
separated by test cycle. Place the folders in the boxes by test
cycle and in business case ID order. Each test cycle results in a
new collection of these types of folders.

Step 8 – Execute the Test
Start the test by setting the system date with the date simulator
to the first test-cycle date. If a bed of test data will be used
from the start, make sure the dates in the test data are correct.

Starting with the folders in the first cycle box, perform the
tests in each folder for Cycle 1 only. During the test, you
might create documentation you would like to save, such as
screen prints or reports. These can be placed in the folder,
unless the volume is large. In this regard, the test is self-docu-
menting. When the test is complete, initial the folder in the
“tested” and “verified” columns on the cover sheet, and place

Figure 6. Business case folder.

Figure 7. Folder cover sheet.

Figure 8. Test execution process using cycles.

it in the next cycle in which it will be used. If batch processing
is part of the test cycle or test procedure, the folder will go
back into the same test-cycle division from which it was re-
trieved. After batch processing is complete, the folder can be
pulled, evaluated, and moved on to the next cycle division in
which it will be used (Figure 8).

This process continues until the folder is finished and
placed in a “done” box. Eventually, all of the business case
folders will be filed in the done box in business case ID order.
A year or two from now, if anyone needs to know what was
tested, it is a simple matter to locate and retrieve the test
documentation.

Step 9 – Evaluate and Track the Test
As the test is performed, you will evaluate the results and deter-
mine if the test passed or failed in that particular cycle. There
are two effective and easy ways to keep track of test progress

Using Test Cycles for Testing Year 2000 Projects

elcyC stpircStseT detseT deifireV

1 100A

2 200A

3 300A

4

30 CROSSTALK The Journal of Defense Software Engineering September 1998

manually. One way is to use the outside cover sheet of the
folder to indicate pass or fail. The other is to highlight each cell
in the matrix as the test is completed and passed. It is good to
use both methods.

The Key Benefits of Using Test Cycles
Although designing test cycles and business cases is extra work,
there are some excellent benefits you achieve with no other test
method that are especially important for Y2K testing.
• The ability to simulate a business case from point A to

point Z in your processing. Most other test methods focus
on one process or software module at a time, but never
have a way to effectively string them together for end-to-
end testing of a system or systems.

• The ability to plan and coordinate the march of time for a
test. For Y2K testing, the tester knows that time must be
advanced, but the problem is how to maintain synchroniza-
tion among the test data, test environment, and test cases.
The test-cycle concept allows you to do this with ease.

• A safety net in case the test environment gets corrupted.
It is common in testing for the test to destroy data or up-
date data files with incorrect information. It also is not
uncommon for other people to delete or to restore over test
files. The common response to this situation is to restore
from the last backup, but how do you know what was
tested since the last backup? In most test processes you do
not know exactly what was done, but with test cycles, you
do know. The backup process is fairly straightforward. You
take image backups of the test environment before and
after on-line input. If batch processing is part of your test,
the backup taken after on-line processing will also suffice
for the batch backup (Figure 9). These backups should be
taken during each test cycle.

Conclusion
In testing, the confidence level of the test depends on the rigor
and coverage of the test. The rigor and coverage of the test
depends on the relative risk, both business and technical.
While some might look at the work involved in planning a test
using test cycles as being excessive, others will testify that this
kind of effort is required on some projects and systems to
validate their operation through multiple simulated dates. The
extent of test planning and execution always depends on the
scope of coverage and risk. The question is, are you willing to
bet your business or systems operation on anything less than
the right test method for the job? u

Figure 9. Backups performed in test cycle.

About the Author
Randall W. Rice is president of Rice Consult-
ing Services, Inc. and has over 20 years experi-
ence building and testing large-scale informa-
tion systems. He is a certified quality analyst
and certified software test engineer specializing
in systems testing and the testing of Y2K
projects. He is the author of The Year 2000

Testing Handbook, creator of the “Testing the Year 2000” work-
shop, and co-author of The Top Ten Challenges of Software Testing.
He also is chairman of the Quality Assurance Institute’s annual
International Software Testing Conference. He has worked with
corporations and government agencies worldwide on Y2K testing
issues.

Rice Consulting Services
P.O. Box 891284
Oklahoma City, OK 73189
Voice: 405-692-7331
Fax: 405-692-7570
E-mail: rcs@telepath.com
Internet: http://www.riceconsulting.com

Software Engineering Technology

Coming Events
Call for Papers: Software Engineering Laboratory
Software Engineering Workshop

Dates: Dec. 2-3, 1998
Location: Goddard Space Flight Center, Md.
Topics: Software benchmarks, technologies, environ-

ments, standards, requirements capture and valida-
tion approaches, methods for safety-critical systems,
reuse, COTS-based development (emphasis on pro-
cess experiences, not products), automatic code
generation, process improvement, and measures.

Abstracts (3-5 pages) should be directed to
SEB Abstracts Coordinator
Code 581
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

E-mail (ASCII text only): Jackie Boger,
jboger@cscmail.csc.com

Deadline for receipt of abstracts: Sept. 14, 1998
Internet: http://fdd.gsfc.gov/seltext.html.

Camden Technology Conference: The
Transformation of Learning

Dates: Oct. 23-25, 1998
Location: Camden, Maine
Hosts: Bob Metcalfe, Tom DeMarco, and John Sculley.
Subject: The event will gather a faculty of experts from

business, technology, government, and academia
who will play a major role in shaping the learning
methods and technologies of the coming century.
Speakers include Alan Kay, Brenda Laurel, Seymour
Papert, and Roger Schank.

Contact: 877-223-9752
Internet: http://www.camcon.org

CROSSTALK The Journal of Defense Software Engineering 31September 1998

A formal CMM appraisal isn’t the freewheeling laughfest you might expect it
to be. For the process team, it’s like having Internal Revenue Service auditors
camp in your kitchen for a couple of weeks to analyze six-year-old gas receipts
and discarded Q-Tips, and to interview everyone including the neighbor’s cat to
see if every detail of your life is really what you say it is. Yet in the waning days of
our recent appraisal, our software engineering process group leader wore a
perma-grin that made me wonder if the strain had made him blow a gasket.

Then we heard the appraisal results: Level 5! Management is ecstatic, but
they’re also quick to emphasize that they’ve pushed CMM-based improvements
all these years to achieve business objectives—not for the chance to gloat. With
this in mind, let me emphasize that just because the nine-member appraisal team
was led by the author of the CMM himself (Mark Paulk), and included reputa-
bly the toughest CMM appraiser around (Donna Dunaway), and just because
they all agreed that all the teams and product lines from our entire 500+ soft-
ware producers utilize Level 5 processes, that doesn’t mean your processes aren’t
just as good or better than ours, although there’s a 99 percent chance you’d be
wrong. Neener neener neener.

So in this spirit of humility, I’ll share my firsthand insight of what it takes to
be a CMM Level 5 organization. First, there’s preparation. To be fair, my prepa-
ration for this last appraisal was limited, but if I’d been interviewed, I would
have been prepared: “That whaduyacallit—CMM thing—is for software, and I
don’t help produce any,” I’d have said.

So if you want to split hairs, I suppose you could say that the Level 5 ap-
praisal applies slightly more to everyone else in our division than to CROSSTALK.
But we’re right there on the same organizational chart, clear as day. And that
means I have insight from working in the same organizational culture as the
developers. Not that I’m saying I know any of the specific processes our develop-
ers use—give me a break; most of our developers work in another building, and
the closest ones in this building are at the end of a particle accelerator-length
hallway that probably ends in another time zone—but I sometimes use the same
vending machines they use, and I’m on a few of the same E-mail lists, most of
which have to do with somebody-I-don’t-know’s retirement luncheon or what-
ever. And shouldn’t anybody who knew these people well enough that they’d pay
eight bucks and blow three hours in a restaurant waiting for one waitress to
process everybody’s credit cards already know about so-and-so’s luncheon?

But that is not the point. Actually, I forgot what my point was. But this I
know: I no longer put process improvement in the same category as “recre-
ational bug tasting” or “accompanying my wife to the fabric store.” As much as
it amazes me to say it, I’m a process convert.

First, some background. My old attitudes came from work in the publishing
field, which has a lot in common with software development. Both fields require
extensive coordination and tracking, plus both involve mostly desks and com-
puters and meetings—I mean, they’re practically identical.

Anyway, my previous employers all relied on heroics to get the job done, and
I liked being Mr. Heroic Stud Hombre. So when they sat us down here to get
our processes in order, I thought they had no business documenting what (in my
experience) was 100 percent unrepeatable. But we pushed ahead and laid out our
roles and responsibilities, documented a process we could all live with, created
metrics that actually told us things, and we’ve been tweaking the process ever
since. And now that I’ve had a taste of both approaches, I’ll take a good process
over being Zorro the Firefighter and Bomb Defuser. Why waste my creative
energies solving problems that a good process would take care of automatically?

So I guess the local process improvement culture did waft down the particle
accelerator tunnel into this office. And in case you were wondering, working for
a Level 5 organization is still a lot like working for any other organization, if you
don’t count the luminescent glow emanating from the building and the engi-
neers’ faces—or at least the faces of us converts. – Lorin May

BACKTALK

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
publisher@stsc1.hill.af.mil

Managing Editor Forrest Brown
801-777-9239 DSN 777-9239
managing_editor@stsc1.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
senior_editor@stsc1.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5555 ext. 3027
graphics@stsc1.hill.af.mil

Associate Editor Lorin J. May
801-775-5555 ext. 3026
backtalk@stsc1.hill.af.mil

Editorial Assistant Bonnie May
801-775-5555 ext. 3022
customer_service@stsc1.hill.af.mil

Features Coordinator features@stsc1.hill.af.mil

Customer Service 801-777-8045
custserv@software.hill.af.mil

Fax 801-777-8069 DSN 777-8069

STSC On-Line http://www.stsc.hill.af.mil
CROSSTALK On-Line http://www.stsc.hill.af.mil/

Crosstalk/crostalk.html
ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-777-8045 DSN 777-8045
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the
attention of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense soft-
ware community. Articles must be approved by the CROSSTALK editorial board
prior to publication. Please follow the Guidelines for CROSSTALK Authors, available
upon request. We do not pay for submissions. Articles published in CROSSTALK

remain the property of the authors and may be submitted to other publications.

Reprints and Permissions: Requests for reprints must be requested from the
author or the copyright holder. Please coordinate your request with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that
are of interest to our readers. There is no fee for this service, but we must
receive the information at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the Inter-
net. World Wide Web access is at http://www.stsc.hill.af.mil.
The STSC maintains a Gopher server at gopher://gopher.stsc.hill.af.mil. Its ftp
site may be reached at ftp://ftp.stsc.hill.af.mil. The Lynx browser or gopher server
can also be reached using telnet at bbs.stsc.hill.af.mil or by modem at 801-774-
6509 or DSN 775-3602. Call 801-777-7989 or DSN 777-7989 for assistance, or
E-mail to schreifr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies
of back issues of CROSSTALK free of charge. If you would like a copy of the
printed edition of this or another issue of CROSSTALK, or would like to subscribe,
please contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air Lo-
gistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force soft-
ware organizations identify, evaluate, and adopt technologies that will improve
the quality of their software products, their efficiency in producing them, and
their ability to accurately predict the cost and schedule of their delivery. CROSSTALK

is assembled, printed, and distributed by the Defense Automated Printing Ser-
vice, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individuals
actively involved in the defense software development process. Got an idea for BACKTALK? Send an E-mail to backtalk@stsc1.hill.af.mil.

I’m Level 5! (Technically)

